
Bull. Aust. Math. Soc. 91 (2015), 471–486
doi:10.1017/S0004972715000076

ON QUANTITATIVE SCHUR AND
DUNFORD–PETTIS PROPERTIES
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Abstract

We show that the dual to any subspace of c0(Γ) (Γ is an arbitrary index set) has the strongest possible
quantitative version of the Schur property. Further, we establish a relationship between the quantitative
Schur property and quantitative versions of the Dunford–Pettis property. Finally, we apply these results
to show, in particular, that any subspace of the space of compact operators on `p (1 < p < ∞) with the
Dunford–Pettis property automatically satisfies both its quantitative versions.
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1. Main result

A Banach space X is said to have the Schur property if any weakly null sequence in
X converges to zero in norm. Equivalently, X has the Schur property if every weakly
Cauchy sequence is norm Cauchy. The classical example of a space with the Schur
property is the space `1 of all absolutely summable sequences.

A quantitative version of the Schur property was introduced and studied in [10].
Let us recall the definition: if (xk) is a bounded sequence in a Banach space X, we set
(following [10])

ca(xk) = inf
n∈N

diam{xk : k ≥ n}

and
δ(xk) = sup

x∗∈BX∗

inf
n∈N

diam{x∗(xk) : k ≥ n}.

The quantity ca(·) measures how far the sequence is from being norm Cauchy, while
the quantity δ(·) measures how far it is from being weakly Cauchy. It is easy to check
that the quantity δ(xk) can be alternatively described as the diameter of the set of all
weak∗ cluster points of (xk) in X∗∗.
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Again, following [10], a Banach space X is said to have the C-Schur property
(where C ≥ 0) if

ca(xk) ≤ Cδ(xk) (1.1)

for any bounded sequence (xk) in X. Since obviously δ(xk) ≤ ca(xk) for any bounded
sequence (xk), necessarily C ≥ 1 (unless X is the trivial space). Moreover, if X has
the C-Schur property for some C ≥ 1, it easily follows that X has the Schur property.
Indeed, if (xk) is weakly Cauchy in X, then δ(xk) = 0, and thus ca(xk) = 0. The space
constructed in [10, Example 1.4] serves as an example of a Banach space with the
Schur property but without the C-Schur property for any C > 0. On the other hand,
`1(Γ) possesses the 1-Schur property (see [10, Theorem 1.3]). (Here and below, Γ

denotes an index set.)
Our main result is the following generalisation of the theorem quoted above.

Theorem 1.1. Let X be a subspace of c0(Γ). Then X∗ has the 1-Schur property.

For the proof of the main result, we will need some lemmas. The first establishes a
special property of the norm on c0(Γ) and its subspaces.

Lemma 1.2. Let X be a subspace of c0(Γ). Then for any x∗ ∈ X∗ and any sequence (x∗n)
in X∗ which weak∗ converges to 0,

lim sup ‖x∗n + x∗‖ = ‖x∗‖ + lim sup ‖x∗n‖.

Proof. Let us first suppose that X is separable. It is obvious that for any x ∈ X and any
weakly null sequence (xn) in X, have

lim sup ‖xn + x‖ = max(‖x‖, lim sup ‖xn‖).

The assertion then follows from [11, Theorem 2.6] (applied for p =∞).
The general case follows by a separable reduction argument. Suppose that x∗ ∈ X∗

and that (x∗n) is a weak∗ null sequence in X∗. Consider the countable set

A = {x∗} ∪ {x∗n : n ∈ N} ∪ {x∗n + x∗ : n ∈ N}.

We can find a separable subspace Y ⊂ X such that for each y∗ ∈ A we have ‖y∗‖ = ‖y∗|Y‖.
Then the assertion follows immediately from the separable case. �

The next lemma is a stronger variant of [2, Lemma 1.7] or [11, Lemma 2.3] for the
special case of subspaces of c0(Γ).

Lemma 1.3. Let X be a subspace of c0(Γ) and (x∗n) a sequence in X∗ weak∗ converging
to x∗. Then for any finite-dimensional subspace F ⊂ X∗,

lim inf dist(x∗n, F) ≥ lim inf ‖x∗n‖ − ‖x
∗‖.

Proof. Let c > lim inf dist(x∗n, F). By passing to a subsequence we may assume that
dist(x∗n, F) < c for each n ∈ N. We can thus find a sequence (y∗n) in F such that
‖x∗n − y∗n‖ < c for each n ∈ N. Since the sequence (x∗n) is bounded, the sequence (y∗n)
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is also bounded. Therefore, by passing to a subsequence, we can suppose that the
sequence (y∗n) converges in norm to some y∗ ∈ F. Then

c ≥ lim sup ‖x∗n − y∗n‖ = lim sup ‖x∗n − y∗‖ = lim sup ‖(x∗n − x∗) + (x∗ − y∗)‖
= lim sup ‖x∗n − x∗‖ + ‖x∗ − y∗‖ ≥ lim sup ‖x∗n‖ − ‖x

∗‖ + ‖x∗ − y∗‖
≥ lim inf ‖x∗n‖ − ‖x

∗‖.

The first equality follows from the fact that the sequence (y∗n) converges to y∗ in the
norm; the third one follows from Lemma 1.2. �

The next lemma is a refinement of constructions from [10, Lemma 2.1] and
[2, Theorem 1.1]. In its proof we will use the following notation: if x ∈ c0(Γ) or
x ∈ `1(Γ) and A ⊂ Γ, then x|A denotes an element defined as

(x|A)(γ) =

x(γ) γ ∈ A,
0 γ ∈ Γ\A.

Lemma 1.4. Let X be a subspace of c0(Γ), c > 0 and (yn) be a sequence in `1(Γ) = c0(Γ)∗

such that:

• (yn) weak∗ converges to 0 in `1(Γ);
• ‖yn|X‖ > c for each n ∈ N.

Then for any η > 0 there is a subsequence (ynk ) such that each weak∗ cluster point of
(ynk |X) in X∗∗∗ has norm at least c − η.

Proof. For n ∈ N, set ϕn = yn|X . Let ε ∈ (0, c/6). Without loss of generality, we may
assume that ε < 1. Select strictly positive numbers (εk) such that

∑∞
k=1 εk < ε.

We inductively construct elements xk ∈ X, indices n1 < n2 < · · · and finite sets
∅ = Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γ such that, for each k ∈ N:

(a) ‖xk‖ ≤ 1, xk|Γk−1 = 0 and ‖xk|Γ\Γk‖ < εk;
(b) |ϕnk (xk)| > c − ε and |ϕnk (

∑k−1
i=1 xi)| ≤ ε · ‖

∑k−1
i=1 xi‖;

(c) if we denote y1
nk

= ynk |Γk and y2
nk

= ynk |Γ\Γk , then ‖y2
nk
‖ < εk.

In the first step, we set Γ0 = ∅ and n1 = 1. Since ‖ϕn1‖ > c, there is x1 ∈ BX with
|ϕn1 (x1)| > c. Choose a finite set Γ1 ⊂ Γ satisfying

‖x1|Γ\Γ1‖ < ε1 and ‖yn1 |Γ\Γ1‖ < ε1.

Since the second requirement in (b) is vacuous, the first step is finished.
Assume now that we have found indices n1 < · · · < nk, finite sets ∅ = Γ0 ⊂ · · · ⊂ Γk

and elements x1, . . . , xk satisfying (a), (b) and (c). We define an operator Rk : X→ c0(Γ)
by

Rk x = x|Γk , x ∈ X.

Then Ker Rk is of finite codimension and thus Fk = (Ker Rk)⊥ is a finite-dimensional
space in X∗. Let m ∈ N be chosen such that, for each n ≥ m:
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• |ϕn(
∑k−1

i=1 xi)| ≤ ε · ‖
∑k−1

i=1 xi‖; and
• dist(ϕn, Fk) > c − ε.

(The first requirement can be fulfilled because (ϕn) converges weak∗ to 0 and the
second by Lemma 1.3.) Let nk+1 = m and

xk+1 ∈ (Fk)⊥ = Ker Rk

be chosen such that ‖xk+1‖ ≤ 1 and ϕnk+1 (xk+1) > c − ε. (We use the fact that X∗/Fk =

((Fk)⊥)∗.) We find a finite set Γk+1 ⊃ Γk satisfying

‖xk+1|Γ\Γk+1‖ < εk+1 and ‖ynk+1 |Γ\Γk+1‖ < εk+1.

This finishes the construction.
For J ∈ N, let

uJ =

J∑
i=1

xi.

It follows from (a) that, for each k ∈ N and J > k,∥∥∥∥∥ k∑
i=1

xi

∥∥∥∥∥ < 1 + ε,

∥∥∥∥∥ k−1∑
i=1

xi

∥∥∥∥∥ < 1 + ε,

∥∥∥∥∥ J∑
i=k+1

xi

∥∥∥∥∥ < 1 + ε. (1.2)

Indeed, for k ∈ N and γ ∈ Γk\Γk−1, we have from (a)

|x j(γ)| ≤


ε j j < k,
1 j = k,
0 j > k,

j ∈ N.

Further, xk is bounded by εk on Γ\
⋃∞

k=1 Γk by (a). These observations verify (1.2).
For each k ∈ N, we set

ϕ1
nk

= y1
nk
|X and ϕ2

nk
= y2

nk
|X .

For a fixed index k ∈ N and arbitrary J > k, we need to estimate

|ϕnk (uJ)| =
∣∣∣∣∣ϕnk

( k−1∑
i=1

xi

)
+ ϕnk (xk) + ϕnk

( J∑
i=k+1

xi

)∣∣∣∣∣. (1.3)

Condition (b) and (1.2) ensure that∣∣∣∣∣ϕnk

( k−1∑
i=1

xi

)∣∣∣∣∣ ≤ ε · ∥∥∥∥∥ k−1∑
i=1

xi

∥∥∥∥∥ < ε(1 + ε). (1.4)

From (b) we also have
|ϕnk (xk)| > c − ε. (1.5)
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Finally, (a) and (c) give∣∣∣∣∣ϕnk

( J∑
i=k+1

xi

)∣∣∣∣∣ =

∣∣∣∣∣(ϕ1
nk

+ ϕ2
nk

)( J∑
i=k+1

xi

)∣∣∣∣∣
=

∣∣∣∣∣y2
nk

( J∑
i=k+1

xi

)∣∣∣∣∣ ≤ εk ·

∥∥∥∥∥ J∑
i=k+1

xi

∥∥∥∥∥
< εk(1 + ε). (1.6)

Using (1.4)–(1.6) in (1.3), we get

|ϕnk (uJ)| ≥ c − ε − ε(1 + ε) − εk(1 + ε)
≥ c − ε(3 + 2ε) ≥ c − 5ε. (1.7)

It follows from (1.7) that, for zJ = (1 + ε)−1uJ , we have zJ ∈ BX by (1.2) and

|ϕnk (zJ)| > (1 + ε)−1(c − 5ε), k ∈ N, J > k.

Let z∗∗ ∈ BX∗∗ be a weak∗ cluster point of (zJ). Then

|ϕnk (z
∗∗)| ≥ (1 + ε)−1(c − 5ε), k ∈ N.

It follows that each weak∗ cluster point of (ϕnk ) has norm at least (1 + ε)−1(c − 5ε).
This completes the proof, as given η > 0, we can choose ε at the outset such that

(1 + ε)−1(c − 5ε) > c − η. �

Proof of Theorem 1.1. Let X be a subspace of c0(Γ) and (x∗n) be a sequence in X∗

bounded by a constant M. Suppose that 0 < c < ca(x∗n). We extract subsequences (an)
and (bn) from (x∗n) such that

c < ‖an − bn‖, n ∈ N.

We denote ϕn = an − bn, n ∈ N. We extend an to An ∈ `1(Γ) and ϕn to zn ∈ `1(Γ) with
preservation of the norm and set Bn = An − zn. Then Bn is an extension of bn (not
necessarily preserving the norm). By passing to a subsequence if necessary, we can
assume that (An) converges pointwise (and hence weak∗ in `1(Γ)) to some A ∈ `1(Γ)
and (Bn) converges pointwise to some B ∈ `1(Γ). (This is possible due to the fact that
any sequence in `1(Γ) can be viewed as a sequence in `1(Γ′) for a countable Γ′ ⊂ Γ.)
Then (zn) weak∗ converges to A − B. Set yn = zn − A + B for n ∈ N. Then (yn) weak∗

converges to 0 and ‖yn|X‖ > c − ‖(A − B)|X‖ for each n ∈ N.
Let ε > 0 be arbitrary. By Lemma 1.4, there is a subsequence (ynk ) such that each

weak∗ cluster point of (ynk |X) in X∗∗∗ has norm at least

c − ‖(A − B)|X‖ − ε.

Let a be a weak∗ cluster point of (ank ) in X∗∗∗. Let (aτ) be a subnet of (ank ) weak∗

converging to a. Let b be a weak∗ cluster point of the net (bτ). Then a and b are weak∗

cluster points of (x∗n) in X∗∗∗.
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Obviously a|X = A|X and b|X = B|X and, a − b − (a − b)|X = a − b − (A − B)|X is a
weak∗ cluster point of (ynk |X) in X∗∗∗. Thus

‖a − b − (a − b)|X‖ ≥ c − ‖(A − B)|X‖ − ε.

Let F ∈ (`∞(Γ))∗ = c0(Γ)∗∗∗ be an extension of a − b preserving the norm. Then

‖a − b‖ = ‖F‖ = ‖F|c0(Γ)‖ + ‖F − F|c0(Γ)‖ ≥ ‖F|X‖ + ‖(F − F|c0(Γ))|X∗∗‖
= ‖(A − B)|X‖ + ‖a − b − (a − b)|X‖
≥ ‖(A − B)|X‖ + c − ‖(A − B)|X‖ − ε
= c − ε.

(For a Banach space Y and G ∈ Y∗∗∗, we denote by G|Y the respective element of Y∗

canonically embedded into Y∗∗∗.) It follows that δ(x∗k) ≥ c − ε. Since ε > 0 is arbitrary,
δ(x∗k) ≥ c. Hence ca(x∗k) ≤ δ(x∗k) and the proof is complete. �

2. Quantitative Schur property and quantitative Dunford–Pettis property

It is well known that the Schur property is closely related to the Dunford–Pettis
property. Recall that a Banach space X is said to have the Dunford–Pettis property
if for any Banach space Y every weakly compact operator T : X → Y is completely
continuous. Let us further recall that T is weakly compact if the image by T of the
unit ball of X is relatively weakly compact in Y , and that T is completely continuous
if it maps weakly convergent sequences to norm convergent ones, or, equivalently,
if it maps weakly Cauchy sequences to norm Cauchy (hence norm convergent) ones.
Obviously, any Banach space with the Schur property has the Dunford–Pettis property.
Further, any Banach space whose dual has the Schur property enjoys the Dunford–
Pettis property as well.

Quantitative variants of the Dunford–Pettis property were studied in [8] where two
strengthenings of the Dunford–Pettis property were introduced (the direct quantitative
Dunford–Pettis property and dual quantitative Dunford–Pettis property; see
[8, Definition 5.6]). Section 6 of [8] shows several relations between the Schur property
and the two variants of the quantitative Dunford–Pettis properties. In this section we
focus on the relationship of the quantitative Schur property and quantitative versions
of the Dunford–Pettis property.

The unexplained notation and notions in this section are taken from [8]. More
specifically, the quantities caρ∗(·) and caρ(·) measure how far the given sequence is
from being Cauchy in the Mackey topology of X∗ or the restriction to X of the
Mackey topology of X∗∗, respectively. The quantity δ̃(·) is defined by taking the
infimum of δ(·) over all subsequences. Similarly for c̃a(·), c̃aρ∗(·) and c̃aρ(·). These
quantities are defined and described in detail in [8, Section 2.3]. Further, d̂(· , ·)
is the nonsymmetrised Hausdorff distance, χ(·) denotes the Hausdorff measure of
norm noncompactness, ω(·) and wkX(·) are measures of weak noncompactness; see
[8, Section 2.5]. Applying a measure of (weak) noncompactness to an operator means
applying it to the image of the unit ball (see [8, Section 2.6]). Finally, the quantity cc(·)
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measures how far the given operator is from being completely continuous; that is, if
T : X → Y is an operator, then

cc(T ) = sup{ca(T xk) : (xk) is a weakly Cauchy sequence in BX},

see [8, Section 2.4].
It is obvious that a Banach space X with the Schur property possesses also the direct

quantitative Dunford–Pettis property (see [8, Proposition 6.2]). If we assume that X has
a C-Schur property, we get the following result.

Theorem 2.1. Let X be a Banach space with the C-Schur property where C > 0.

(i) Then caρ(xn) ≤ Cδ(xn) for any bounded sequence (xn) in X. In particular, X has
both the direct and the dual quantitative Dunford–Pettis properties.

(ii) The space X satisfies the following stronger version of the dual quantitative
Dunford–Pettis property: if A ⊂ X is a bounded set, then

wkX(A) ≤ ω(A) = χ(A) ≤ 2C wkX(A). (2.1)

Proof. The inequality in assertion (i) follows from caρ(xn) ≤ ca(xn) for any bounded
sequence (xn) in X which is an immediate consequence of the definitions. Thus X
satisfies condition (iv) of [8, Theorem 5.5], that is, X possesses the dual quantitative
Dunford–Pettis property. Further, from [8, Proposition 6.2] we know that X has the
direct quantitative Dunford–Pettis property.

(ii) First we notice that (2.1) is indeed a stronger version of the dual quantitative
Dunford–Pettis property. Indeed, using [8, diagram (3.1) and formula (2.6)] one can
deduce from (2.1) the validity of condition (i) of [8, Theorem 5.5]. For the proof of
(2.1), let A be a bounded set in X. If (xk) in X is a bounded sequence, by taking
consecutively infima in (1.1) over all subsequences, we obtain

c̃a(xk) ≤ Cδ̃(xk). (2.2)

By [9, Theorem 1],
δ̃(xk) ≤ 2̂d(clustX∗∗(xk), X) (2.3)

for any bounded sequence (xk) in an arbitrary Banach space, and (2.3) and (2.2)
together yield

c̃a(xk) ≤ 2Cd̂(clustX∗∗(xk), X). (2.4)

Since obviously (see [8, inequalities (2.2)])

χ(A) ≤ sup{c̃a(xk) : (xk) is a sequence in A},

(2.4) yields
χ(A) ≤ 2C wkX(A). (2.5)

Since X has the C-Schur property, it has the Schur property, and thus any weakly
compact subset of X is norm compact. Hence

χ(A) = ω(A). (2.6)
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A consecutive use of [8, inequality (2.4)], (2.6) and (2.5) gives

wkX(A) ≤ ω(A) = χ(A) ≤ 2C wkX(A),

which is the inequality (2.1). �

If the dual X∗ of a Banach space X possesses the Schur property, then we have by
[8, Theorem 6.3] that X has the dual quantitative Dunford–Pettis property and,
moreover, for any Banach space Y and an operator T : X → Y the following
inequalities hold:

wkY (T ) ≤ ω(T ) ≤ χ(T ) ≤ cc(T ) ≤ 2ω(T ∗) = 2χ(T ∗) ≤ 4χ(T ).

Thus the quantities χ(T ), cc(T ), χ(T ∗) and ω(T ∗) are equivalent in this case. However,
the quantities ω(T ) and wkY (T ) need not be equivalent to the others, that is, X need not
have the direct quantitative Dunford–Pettis property (see [8, Example 10.1]). However,
if we assume that X∗ has a quantitative version of the Schur property, then, for an
operator T with domain X, the compactness (both norm and weak) of T and its adjoint
are quantitatively equivalent to the complete continuity of T .

Theorem 2.2. Let X be a Banach space such that X∗ has the C-Schur property for some
C ≥ 0. If Y is a Banach space and T : X → Y is a bounded linear operator, then

wkY (T ) ≤ ω(T ) ≤ χ(T ) ≤ cc(T )
≤ 2ω(T ∗) = 2χ(T ∗) ≤ 4C wkX∗(T ∗) ≤ 8C wkY (T ). (2.7)

In particular, X has both the direct and the dual quantitative Dunford–Pettis
properties.

Proof. The first five inequalities are contained in [8, Theorem 6.3(i)]. By Theorem 2.1
we get the sixth inequality. The last inequality follows from [8, Equation (2.8)].
Further, X∗ has both the direct and dual quantitative Dunford–Pettis property by
Theorem 2.1(i). Hence X itself possesses both the direct and dual quantitative
Dunford–Pettis property by [8, Theorem 5.7]. �

If we combine the previous theorem with Theorem 1.1, we immediately get the
following corollary.

Corollary 2.3. Let X be a subspace of c0(Γ). Then X has both the direct and dual
quantitative Dunford–Pettis properties. Moreover, inequalities (2.7) are satisfied with
C = 1.

In the case where X = c0(Γ), [8, Theorem 8.2] yields even stronger inequalities (with
C = 1/2). This is proved by a different method.

We continue with a characterisation of spaces whose dual has the quantitative Schur
property. It is well known that the dual space X∗ of a Banach space X has the Schur
property if and only if X has the Dunford–Pettis property and contains no copy of `1
(see [4, Theorem 3]). The following theorem quantifies this assertion.
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Theorem 2.4. Let X be a Banach space. Then X∗ has the quantitative Schur property if
and only if X has the direct quantitative Dunford–Pettis property and contains no copy
of `1.

Proof. Suppose that X∗ has the quantitative Schur property. Then X contains no copy
of `1. Indeed, if X contains an isomorphic copy of `1, by [12, Proposition 3.3] the
dual space X∗ contains an isomorphic copy of C({0, 1}N)∗, hence also an isomorphic
copy of C([0, 1])∗. The space C([0, 1])∗ fails the Schur property as it contains a copy of
L1(0, 1). Thus X∗ fails the Schur property as well. Further, X has the direct quantitative
Dunford–Pettis property by Theorem 2.1.

For the proof of the converse implication we need the following consequence of
Rosenthal’s `1-theorem.

Lemma 2.5. Let X be a Banach space not containing an isomorphic copy of `1. Then
any bounded sequence (x∗n) in X∗ satisfies ca(x∗n) ≤ 3 caρ∗(x∗n).

Proof. If (x∗n) is norm Cauchy, then the inequality is obvious. So, suppose that
ca(x∗n) > 0 and fix any c ∈ (0, ca(x∗n)). Then there is a sequence of natural numbers
ln < mn < ln+1, n ∈ N, and a sequence (xn) in BX such that |(x∗ln − x∗mn

)(xn)| > c for every
n ∈ N. By Rosenthal’s `1-theorem, there is a weakly Cauchy subsequence of (xn). Let
us assume, without loss of generality, that ln = 2n − 1 and mn = 2n for every n ∈ N
and that (xn) is weakly Cauchy. Since, for every k ∈ N, the singleton {xk} is a weakly
compact set in BX , there is some nk > k such that |(x∗2nk−1 − x∗2nk

)(xk)| < caρ∗(x∗n) + (1/k).
Using this estimate and the fact that {(xnk − xk)/2 : k ∈ N} is a relatively weakly
compact subset of BX , we can write

c ≤ lim sup |(x∗2nk−1 − x∗2nk
)(xnk )|

≤ 2 lim sup |(x∗2nk−1 − x∗2nk
)(2−1(xnk − xk))| + lim sup |(x∗2nk−1 − x∗2nk

)(xk)|

≤ 2 caρ∗(x∗n) + lim sup
(
caρ∗(x∗n) +

1
k

)
= 3 caρ∗(x∗n).

This completes the proof of the lemma. �

For the converse implication in Theorem 2.4, suppose now that X has the direct
Dunford–Pettis property. Then there exists C > 0 such that

caρ∗(x∗n) ≤ Cδ(x∗n)

for any bounded sequence (x∗n) in X∗ (see [8, Theorem 5.4(iv)]). By Lemma 2.5,

ca(x∗n) ≤ 3 caρ∗(x∗n) ≤ 3Cδ(x∗n)

for any bounded sequence (x∗n) in X∗. Hence X∗ has the 3C-Schur property. �
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3. Subspaces of C(K) for K scattered

It is natural to ask whether Theorem 1.1 holds for a larger class of spaces in place
of c0(Γ). The first attempt is to consider isomorphic `1 preduals, that is, spaces whose
dual is isomorphic to `1. But this has no chance due to the old result of Bourgain and
Delbaen [1] later improved by Haydon [7]. In fact, Freeman et al. recently proved
in [5] that any Banach space with separable dual can be embedded into a space whose
dual is isomorphic to `1.

The second attempt is to consider isometric `1 preduals, that is, spaces whose
dual is isometric to `1 (or, more generally, `1(Γ)). We focus on the case C(K),
K scattered. We can substitute C(K) for c0(Γ) if and only if K has finite Cantor–
Bendixson rank. Of course, the constant 1 should be replaced by a constant depending
on the height of K. The positive part of this result is contained in Theorem 3.1 below
which essentially follows from the Bessaga–Pełczyński classification of C(K) for K
countable. In Example 3.2 we show that the constant really depends on the height.
This example can be viewed as an approximation of the example constructed in [13]
which is recalled as a part of Example 3.3 below.

Theorem 3.1. For n ∈ N, denote the Banach–Mazur distance of c0 and C[0, ωn] by Cn.
Let K be a compact space satisfying K(n+1) = ∅ for some n and let X be a Banach space
isometric to a subspace of C(K). Then X∗ has the Cn+1-Schur property.

Proof. Let n, K and X satisfy the assumptions. Firstly, we will show that without loss
of generality we may assume that X is separable. Indeed, let (x∗k) be any bounded
sequence in X∗. Denote by Z the closed linear span of this sequence. Then Z is
separable. Let D be a countable norm-dense subset of Z. It is now easy to find a
separable subspace Y ⊂ X such that ‖x∗|Y‖ = ‖x∗‖ for each x∗ ∈ D. Then the mapping
x∗ 7→ x∗|Y is an isometric injection of Z into Y∗. Therefore the quantities ca(x∗k) and
δ(x∗k) are the same when computed in X∗, Z or Y∗. Therefore, if we know that Y∗ has
the Cn+1-Schur property, we deduce that ca(x∗k) ≤ Cn+1δ(x∗k). Since (x∗k) was arbitrary,
this proves the Cn+1-Schur property of X∗.

So in the rest of the proof we will suppose that X is separable. Let X̃ be the closed
algebra generated by X and the constant function 1. Then X̃ is canonically isometric
to C(L), where L is a quotient of K. (This is a well-known consequence of the Stone–
Weierstrass theorem: define on K an equivalence ∼ by k ∼ l if and only if x(k) = x(l)
for x ∈ X̃ (equivalently for x ∈ X). Then L = K/∼ is a compact space and X̃ is isometric
to C(L).) Since X is separable, X̃ is separable as well, hence L is metrisable. Further,
since K(n+1) = ∅, we get also L(n+1) = ∅. (Indeed, let q be the quotient mapping of K
onto L. It is easy to check that L′ ⊂ q(K′) and by induction we get L(k) ⊂ q(K(k)) for
k ∈ N.)

Therefore, without loss of generality K is countable. It follows that K is
homeomorphic to [0, α] for an ordinal α < ωn+1. Since C[0, α] is isometric to a
subspace of C[0, β] for α < β, X is isometric to a subspace of C[0, ωn+1]. This space is
isomorphic to c0 by the Bessaga–Pełczyński classification of C(K) for K countable. Let
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d > Cn+1 be arbitrary. It follows that there is an onto isomorphism T : C[0, ωn+1]→ c0
with ‖T‖ · ‖T−1‖ < d. Then T (X) is an isometric subspace of c0, so T (X)∗ has the
1-Schur property by Theorem 1.1. Further, S = (T |X)∗ is an isomorphism of X∗ onto
T (X)∗ with ‖S ‖ · ‖S −1‖ < d. Let (x∗n) be a bounded sequence in X∗. Then

ca(x∗n) ≤ ‖S −1‖ ca(S x∗n) = ‖S −1‖δ(S x∗n) ≤ ‖S −1‖ · ‖S ‖δ(x∗n) ≤ dδ(x∗n).

Hence X∗ has the d-Schur property. Since d > Cn+1 was arbitrary, X∗ has the Cn+1-
Schur property. �

Theorem 3.2. For each n ∈ N there exists a Banach space Xn with the following
properties.

(i) Xn is isomorphic to c0.
(ii) Xn is isometric to a subspace of C[0, ωn+1].
(iii) There are sequences (ek) in Xn and (e∗k) in X∗n with the following properties:

(a) ‖ek‖n = 1 for each k ∈ N;
(b) the sequence (ek) converges weakly to zero in Xn;
(c) for any x∗∗ ∈ X∗∗n with ‖x∗∗‖ ≤ 1, we have lim sup |x∗∗(e∗k)| ≤ (2/n);
(d) x∗k(xk) = 1 for each k ∈ N.

In particular, Xn does not have the direct quantitative Dunford–Pettis property
in the sense of [8, Theorem 5.4(iii)] with constant C < n/2 and X∗n does not have
the C-Schur property for C < n/16.

Proof. For x = (xk) ∈ c0 and p ∈ N set

Ap(x) = sup{|xp + xi1 + · · · + xip | : p < i1 < i2 < · · · < ip}.

It is easy to check that

max(|xp|,
1
2 max{|xk| : k > p}) ≤ Ap(x) ≤ (p + 1)‖x‖∞

for any x ∈ c0. Next let us fix some n ∈ N. For x ∈ c0 we set

‖x‖n = max{Ap(x) : 1 ≤ p ≤ n}.

It follows that ‖ · ‖n is an equivalent norm on c0. Set Xn = (c0, ‖ · ‖n). Then (i) is
obviously fulfilled.

Let us show (ii). For k ∈ N, let Λk be the subset of [0, ω]k formed by nondecreasing
sequences equipped with the lexicographic order. Then it is easy to check that
Λk is order-isomorphic to the ordinal interval [0, ωk]. Further, set Λ =

⋃n+1
k=1 Λk.

Define an order on Λ such that the shorter sequences are smaller and Λk is ordered
lexicographically. The set Λ equipped with this order is order-isomorphic to the ordinal
interval [0, ωn+1]. Define a mapping ϕ : Xn → R

Λ by the formula

ϕ(x)(i1, . . . , ik) =


x(i1) + · · · + x(il) if 1 ≤ i1 ≤ n and l ≤ k is maximal such that

l − 1 ≤ i1 < i2 < · · · < il,
0 otherwise,
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where we use the convention that x(ω) = 0. Then ϕ is a well-defined isometry of Xn into
`∞(Λ) and, moreover, ϕ(Xn) ⊂ C(Λ) (where Λ is considered with the order topology).

Indeed, the inequality ‖x‖n ≤ ‖ϕ(x)‖∞ is obvious. To see the converse, we fix l and
i1, . . . , il such that 1 ≤ i1 ≤ n and l − 1 ≤ i1 < i2 < · · · < il. First suppose that il < ω. If
l − 1 = i1, then

|x(i1) + · · · + x(il)| ≤ Al−1(x) ≤ ‖x‖n.

If l − 1 < i1, then

|x(i1) + · · · + x(il)| = lim
m→∞

∣∣∣∣∣x(i1) + · · · + x(il) +

i1−l+1∑
j=1

x(il + k + j)
∣∣∣∣∣ ≤ Ai1 (x) ≤ ‖x‖n.

If il = ω, then x(il) = 0, hence

|x(i1) + · · · + x(il)| = |x(i1) + · · · + x(il−1)| ≤ ‖x‖n

by the previous case. This completes the proof that ϕ is an isometry.
Finally, let us show that ϕ(x) is a continuous function for each x ∈ Xn. Fix x ∈ Xn

and i = (i1, . . . , ik) ∈ Λ. If ik < ω, then i is an isolated point of Λ, so ϕ(x) is continuous
at this point. So suppose that ik = ω. If i1 > n, then

{( j1, . . . , jk) : j1 > n} = {j ∈ Λk : j > (n, ω, . . . , ω)}

is an open set containing i on which ϕ(x) is zero. Hence ϕ(x) is continuous at i.
Similarly, if i1 = 0, then

{( j1, . . . , jk) : j1 = 0} = {j ∈ Λk : j < (1, 1, . . . , 1)}

is an open set containing i on which ϕ(x) is zero. Next suppose that 1 ≤ i1 ≤ n. Let m
be the smallest index such that im = ω. Necessarily m ≥ 2. For r ∈ N, r ≤ im−1, let

Vr = {(i1, . . . , im−1, jm, jm+1, . . . , jk) : jm > r} = ((i1, . . . , im−1, r, ω, . . . , ω), i].

These sets form a neighbourhood basis of i in Λ. Let l be maximal such that l − 1 ≤ i1 <
i2 < · · · < il. Necessarily l ≤ m. If l < m − 1, then ϕ(x) is constant on Vim−1 . If l = m − 1,
then necessarily l − 1 = i1 and hence ϕ(x) is again constant on Vim−1 . If l = m, then
ϕ(x)(i) = x(i1) + · · · + x(im−1). For j ∈ Vr,

|ϕ(x)(i) − ϕ(x)(j)| ≤ (k − l + 1) sup
j≥r
|x( j)|.

Since x ∈ c0, this shows that ϕ(x) is continuous at i and completes the proof that
ϕ(x) ∈ C(Λ).

Finally, let us prove (iii). Let (ek) be the canonical basis of Xn. It follows from the
definition that ‖ek‖n = 1 for each k, hence (a) holds. Moreover, ek converges weakly to
zero, as in c0, so (b) holds as well. Let (e∗k) be the sequence of biorthogonal functionals
to (ek). Then clearly (d) holds.

Let us show (c). Fix any x∗∗ ∈ X∗∗n satisfying ‖x∗∗‖ ≤ 1. Suppose for contradiction
that lim sup |x∗∗(e∗k)| > 2/n. Then there is η > 2/n such that |x∗∗(e∗k)| > η for infinitely
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many k. Without loss of generality we may suppose that x∗∗(e∗k) > η for infinitely
many k (otherwise we would replace x∗∗ by −x∗∗). Therefore we can find indices
n < i1 < i2 < · · · < in such that x∗∗(e∗i j

) > η for j = 1, . . . , n. By Goldstine’s theorem
there is x ∈ BXn with e∗i j

(x) > η for j = 1, . . . , n. Then

1 ≥ ‖x‖n ≥ An(x) ≥ |xn + xi1 + · · · + xin | ≥ nη − |xn| ≥ nη − An(x) ≥ nη − 1,
hence η ≤ 2/n, a contradiction.

It remains to prove the ‘in particular’ part. It follows from (c) that any w∗-cluster
point of (e∗k) in X∗∗∗n has norm at most 2/n. Now it immediately follows that the space
Xn does not satisfy condition (iii) of [8, Theorem 5.4] for C < n/2. Further, if X∗n has the
C-Schur property, by Theorem 2.1(i), X∗n satisfies condition (iv) of [8, Theorem 5.6]
with constant C. It follows from the proof of the quoted theorem that X∗n satisfies
condition (iii) of that theorem with constant 8C. Finally, by [8, Remark 5.8] the space
Xn satisfies condition (iii) of [8, Theorem 5.4] with the same constant 8C. By the above
we get 8C ≥ n/2, hence C ≥ n/16 and the proof is complete. �

Example 3.3. There are Banach spaces Y1 and Y2 with the following properties:

(i) Both Y1 and Y2 are isometric to subspaces of C[0, ωω].
(ii) Y1 fails the Dunford–Pettis property, so Y∗1 fails the Schur property.
(iii) Y∗2 has the Schur property, so Y2 has the dual quantitative Dunford–Pettis

property. Y2 fails the direct quantitative Dunford–Pettis property.
Proof. The existence of Y1 is a result of [13]. The above spaces Xn are in a sense
approximations of Y1. For the sake of completeness we recall the definition of Y1.

The quantity Ap(x) defined above makes sense for any x ∈ RN. Further, it is finite if
and only if x is bounded. The space (Y1, ‖ · ‖) is defined as

Y1 = {x ∈ `∞ : Ap(x)→ 0}, ‖x‖ = sup{Ap(x) : p ∈ N}.
It is proved in [13] that Y1 is isometric to a subspace of C[0, ωω], the canonical basis
(ek) of Y1 is unconditional, the orthogonal functionals (e∗k) form also an unconditional
basis of Y∗1 , ek weakly converge to zero, e∗k as well, while e∗k(ek) = 1. This proves the
failure of the Dunford–Pettis property.

The space Y2 can be taken to be the c0-sum of the spaces Xn, n ∈ N. Then all the
properties easily follow. �

In view of the previous example the following question seems to be natural.
Question 3.4. Let X be a Banach space isometric to a subspace of C(K) with K
scattered. Suppose that X has the Dunford–Pettis property. Does X∗ have the Schur
property? Does X have the dual quantitative Dunford–Pettis property?

A related topic is the study of spaces having the hereditary Dunford–Pettis property,
that is, spaces all of whose subspaces enjoy the Dunford–Pettis property. Within C(K)
spaces, they are exactly those such that K has finite height (as explicitly formulated
in [3, Theorem 1] as a consequence of [13]). Further, spaces with the Schur property
enjoy the hereditary Dunford–Pettis property as well. The space constructed by Hagler
in [6] has the hereditary Dunford–Pettis property by [3, Proposition 2]. It seems to us
that the following questions are interesting.

https://doi.org/10.1017/S0004972715000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000076


484 O. F. K. Kalenda and J. Spurný [14]

Question 3.5.

(1) Is the space Y2 from Example 3.3 hereditarily Dunford–Pettis?
(2) Let X ⊂ C(K) with K scattered be hereditarily Dunford–Pettis. Is X contained in

C(L) for some L with finite height?
(3) Does X∗ have the Schur property for any subspace of the space from [6]?

4. Subspaces of the space of compact operators

The space K(`2) of all compact operators on the Hilbert space `2 can be viewed as
a noncommutative version of c0 and its dual N(`2), the space of all nuclear operators
on `2 equipped with the nuclear norm, can be viewed as a noncommutative version of
`1. The noncommutative versions share many properties of the commutative ones, but
the Schur property and Dunford–Pettis property are essentially commutative.

Indeed, N(`2) does not have the Schur property and, moreover, K(`2) does not
enjoy the Dunford–Pettis property. This is witnessed by the following easy example.
Let (en) denote the standard basis in `2. Consider the operators Tn(x) = 〈x, e1〉en,
x ∈ `2, and S n(x) = 〈x, en〉e1. These operators are rank-one operators, thus they are
nuclear and hence compact. Moreover, both sequences converge weakly to 0 both in
K(`2) and N(`2). The Schur property of N(`2) can be disproved by observing that
‖S n‖ = ‖Tn‖ = ‖e1‖ ‖en‖ = 1. Moreover, the failure of the Dunford–Pettis property of
K(`2) follows by the fact that Tr(S nTn) = 1.

This easy observation was strengthened in [14], where the authors show that a
subspace of K(`p), the space of compact operators on `p, enjoys the Dunford–Pettis
property if and only if it is isomorphic to a subspace of c0 (that is, only in the
‘commutative case’). Theorem 1.1 enables us to complement and strengthen their
result to show that such a space automatically has a quantitative Dunford–Pettis
property.

More precisely, we prove the following:

Theorem 4.1. Let X be a subspace of the space K(`p) of compact operators on `p

where 1 < p <∞. Then the following assertions are equivalent:

(i) X has the Dunford–Pettis property.
(ii) X∗ has the Schur property.
(iii) X is isomorphic to a subspace of c0. Moreover, in this case, there is for each

ε > 0 an isomorphic embedding T : X → c0 such that ‖T‖ ‖T−1‖ < 4 + ε.
(iv) X∗ has the 4-Schur property.
(v) For each Banach space Y and each bounded linear operator T : X → Y,

inequalities (2.7) hold with C = 4.
(vi) The space X has both the dual and the direct quantitative Dunford–Pettis

properties.
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Proof. The implication (ii)⇒ (i) is well known (see [4, Theorem 3]).
(i) ⇒ (iii). If X ⊂ K(`p) has the Dunford–Pettis property, it is embeddable into c0

by [14, Theorem 1]. Moreover, the constant of embedding can be explicitly computed
from [14, Lemmas 1 and 2]. Indeed, the embedding T : X → c0 is constructed as
the composition ψ ◦ φA, where φA is provided by [14, Lemma 1] and ψ is provided
by [14, Lemma 2]. The operator ψ satisfies ‖ψ‖ ‖ψ−1‖ ≤ 4 by [14, page 420]. Further,
φA satisfies ‖φA‖ ‖φ

−1
A ‖ ≤ 3 (see the computation in [14, page 418]), but it can be easily

modified to be an almost isometry. Indeed, if we replace in [14, formula (3), page 420]
the number 1

4 by ε/2, then we will obtain ‖φA‖ ‖φ
−1
A ‖ ≤ (1 + ε)/(1 − ε). This completes

the proof.
The implication (iii) ⇒ (iv) follows from Theorem 1.1. Indeed, let T : X → c0

be an embedding with ‖T‖ = 1 and ‖T−1‖ ≤ 4 + ε. Let (x∗n) be a bounded sequence
in X∗. Then ((T ∗)−1x∗n) is a bounded sequence in (T (X))∗ satisfying δ((T ∗)−1x∗n) ≤
(4 + ε)δ(x∗n). By Theorem 1.1 we get ca((T ∗)−1x∗n) ≤ (4 + ε)δ(x∗n), hence ca(x∗n) ≤
(4 + ε)δ(x∗n) as well. Since ε > 0 is arbitrary, the proof is finished.

The implications (iv)⇒ (v) and (v)⇒ (vi) follow from Theorem 2.2.
Finally, the implications (vi)⇒ (i) and (iv)⇒ (ii) are trivial. �
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