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ON THE DUALITY OF SOME MARTINGALE SPACES

N.L. BASSILY AND A.M. ABDEL-FATTAH

Fefferman has proved that the dual space of the martingale Hardy space Hi is the
BMOi -space. Garsia went further and proved that the dual of Hp is the so-called
martingale ifp-space, where p and g are two conjugate numbers and 1 ̂  p < 2.

The martingale Hardy spaces H* with general Young function $ , were in-
vestigated by Bassily and Mogyorodi. In this paper we show that the dual of the
martingale Hardy space £T* is the martingale Hardy space H<t where ($, $) is
a pair of conjugate Young functions such that both $ and 9 have finite power.
Moreover, two other remarkable dualities are presented.

1. BASIC NOTATIONS AND DEFINITIONS

Let X G £ 1 ( n , A, P) be a random variable defined on the probability space
(fi, A, P) and consider the regular martingale

Xn = E(X | Fn), n>0,

where {Fn}, n ^ 0, is an increasing sequence of o--fields of events such that

We suppose that Xo = 0 almost surely. We denote by d0 = 0, d\, d2, ... the difference
sequence corresponding to the martingale (Xn, Fn)-

The .Kp-spaces were investigated by Garsia (see [2]).

In [3] we generalised this notion. Consider a pair ($, \tf) of conjugate Young

functions and let

pW = { 7 : 7 e L # , E(\X - Xn-t\ | Fn) ^ E(-y \ Fn) almost surely Vn ^ 1},

We say that X £ K$ if the set / i ^ ' is not empty. In this case we define
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44 N.L. Bassily and A.M. Abdel-Fattah [2]

where ||.||$ denotes the Luxemburg norm in the Orlicz-space L*. For the definition

of the Young functions, Orlicz-spaces and Luxemburg norms we refer to [4] and [5]. It

is easily proved that (K$, \\.\\K J is a Banach space (see [3]). The space # « , is the

well-known BMOi -space.

We say that the random variable X belongs to the Hardy space E$ if the quadratic
variation

It is easy to show that H$ with the norm ||-X"||H = ||S||$ is a Banach space (see [3]).

A Young function $ is said to be of moderated growth if its power

is finite. Here <f>(x) stands for the right-hand side derivative of $ .

2. AUXILIARY RESULTS

LEMMA 1 . If the Young function $ has a finite power, then Hi C K$ .

PROOF: In fact, the Burkholder-Davis-Gundy inequality (see [6, Theorem 15.1])
guarantees that X £ 27* implies that

where Xn = E{X \ Fn), n > 1.

From this for all n ^ 1 we have almost surely.

E(\X - Xn.r\\ Fn) < E(2X* \ Fn).

Consequently, X £ K* with \\X\\Kt

The following assertion gives a sufficient condition which ensures that the martin-

gale Hardy space H$ and the martingale space K$ coincide and the corresponding

norms are equivalent. D

THEOREM 1 . Suppose that $ and its conjugate 9 have finite powers p and q

respectively. Then, the spaces H$ and K$ coincide. More precisely, there exist positive

constants c$ and C# depending only on $ such that
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PROOF: Suppose that X G K* . Let Xn — E(X \ Fn), n > 1 be the corresponding

regular martingale and let us define

This random variable with arbitrary constants /3 > a > 0 satisfies the inequality

where 7 G JJ.X is arbitrary and X(B) stands for the indicator of B.

For arbitrary A > 0 define

Then X" G •£<» and for arbitrary A > 0 we have

{ 0 if A > a

X(Jt*>A)> if A ^ o.
Consequently, since @ > a > 0, it follows that

Choose (3 = cot where c > 1 is a constant, and integrate the above inequality with
respect to the measure d<f>{a) and using Fubini's theorem we get

Since $ has finite power, then for any c > 1 there exists a constant A = A(c) > 0 such
that

</>(cx) ^ A<f>(x), x^O.

From the preceding inequality we get

Applying Young's inequality and rearranging, we have
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where b = (c — l ) / (Ap) and p > 1 is arbitrary.

Let A "I" +oo , X™ | X£ and by the monotone convergence theroem we have

Applying the so obtained inequality to the new martingale

Since g, the power of \P is finite it follows that with p = q

REMARK. Especially, with <J>(s) = xp/p, p > 1, we have <j>(x) = x1""1 and *(a;)
x<l/q> 9 > 1 where 1/p + 1/q = 1. Thus, if K G if* = Kp we have

This is the inequality obtained by Garsia ([2, Theorem III.5.2]). The constant c > 1 is
used to optimise the coefEcient on the right hand side in the preceding inequaity. The
minimal value of (cv)/(c — 1) is obtained when c = p/(p — 1). Thus we get

Now, let us denote X* = sup |A"n|, then by the monotone convergence theorem we

have

11*1* < « T ^

We deduce that X* £ L* . By the above mentioned Burkholder-Davis-Gundy inequality

it follows that X G H$ and with some C't > 0 we have

4 ll*ll». < 11**11* < 9-^A \\x\\Ki.

This proves the right hand side of our inequality.
Conversely, suppose that X € 27$, then using Lemma 1, with some constant

c^ > 0, we have
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This proves the left hand side of our inequality. U

LEMMA 2 . Let ( $ , $ ) be a pair of conjugate Young functions and suppose that

both $ and \? have finite power p and q respectively. Then for every X 6 H$ there

exist positive constants c§ and C$ depending only on $ suci that the following two

sided inequality holds:

4 2 ) sup \\X - Xn\\t < | |X | | H ^ 4 2 ) sup \\X - X\\t.

Here Xn = E(X \Fn), n^O.

PROOF: Denote X* = sup |-X"n|. Since $ has finite power, then by the Burkholder-

Davis-Gundy inequality we have

(i)

where c^ and c^ are positive constants depending only on $ . Since \P has a finite
power q, then using Doob's maximal inequality (see [7]) we have

(2) suP||Xn|U <| |X*| |< t<gsup| |Xn| | .

Remarking that XQ = 0 almost surely and that ||Xn||# f 11-̂ 11$ by using Jensen's
inequality and by [4, Appendix (Proposition A-3-4)], (2) implies that

\ sup \\X - JTB||# < sup ||Xn|U ^ HJT'IU ^ q \\X\\t < gsup \\X - Xn\\t.

holds. Thus, using (1) our inequality is proved with

4 2 ) 4 and c £ 2 ) 4

Ishak and Mogyorodi (see [8, 9] proved the following result:

THEOREM 2 . Let $ be a Young function with finite power p and 9 denotes its
conjugate Young function, not necessarily with finite power. If X G Hi and Y € K$
then the following Fefferman-Garsia type inequality holds

where c§ is a constant depending only on $ . Further, the Hmit lim E(XnYn) exists

and we have

Urn E(XnYn) ^ c ( / '

Here Xn = E(X \ Fn) and Yn = E(Y | Fn), n>0.

Now, combining the results of Theorems 1 and 2, we have
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THEOREM 3 . Let ($, \&) be a pair of conjugate Young functions and suppose
that both have finite power. If X G J?* and F G l t then

\E(XY)\K:C\\X\\HJY\\Hm,

where E{XY) = lim E(XnYn) and C is a constant depending on $ and \t such

PROOF: Using the result of Theorem 1, we have Y G K<% and

And using the result of Theorem 2 we have lim E(XnYn) = E{XY) and
n—>-t-oo

\E(XY)\ < C \\X\\Hm \\Y\\H9 , where C = c™/c%\

Let (To, | | . | |o) , (T j , H-llj), ••• be a sequence of Banach spaces, and let us define

t h e following Banach spaces

T(1) = lx = (xo, *! , . . . ) € (To x Tx x ...) : ||x||(1) = f ) ||*»||B < +oo l ,
I n=0 J

T(oo) f = ( x i ) X i > } € ( r o x T l X > . . . ) . ||x||(oo) = 8 u p | | X n | | < + o o \
I n^O J

and

T0
(oo) = {x € T(~> : Hm | |»n | | B = 0, ||x||(oo) = sup | | « B | | B | .

D

Now, we formulate the following lemma without proof (see [10]).

LEMMA 3 . Let Bn be the dual space of Tn, n = 0,1,2, .... Then, the dual

space of ITQ , ||.|| ) is isomorphic to (B^\ \\.\\ J and isomorphism can be given

by the formula

n = 0

n = 0
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3. MAIN RESULT

THEOREM 4 . Let ( $ , \P) be a pair of conjugate Young functions and suppose

that both of them have finite power. Then, the dual space of the martingale Hardy

space 27* is the martingale Hardy space 27* .

PROOF: If Y € 27* is fixed and X varies on 27* then lim E(XnYn) is a
n—»+oo

continuous and linear functional on 27* with norm < C \\Y\\H9 . Conversely, suppose

/ is a continuous and linear functional on (27*, \\-\\H ) • Then by Lemma 2, / is

also continuous with respect to the norm sup \\X — -X"n||$ . Consider the Banach space

T0
(oo)($) defined by the formula

i) {A = ( A o , J l l . . . ) , A B e I * , n ^ O , Urn ||AB|| = 0}
7 1 > + O O

furnished with the norm

Then, the space (if*, sup n > 0 \\X - Xn\\t) which can be considered as the set of the

sequences

X = {X-X0,X-XuX-X2,...), XeHi

is a subspace of TQ ($) since Xn converges to X almost surely and in Z/*-norm. The

continuous and linear functional / given on I 27*, sup \\X — X n | | # I can be extended
\ n^o /

to a linear functional G(A) on TQ ($) with the same norm as that of / . This can be

done by means of the Hahn-Banach theorem.

Remarking that the dual space of L* is Z* and choosing T< = 2/*(n, A, P),

i = 0, 1, 2, . . . , by Lemma 3 there exists a sequence (<rn)^=0 of random variables such

that <rn G Z * with

n=0

We also have

G(A) = Y, E(\n<rn) for all A e T0
(oo)($).

n = 0

Consider now the special sequence

X = {X — Xo, X — Xi, X — X2, ..., S — Xn, ...)

Putting Xn=(Xn-X0,Xn-Xu...,Xn- Xn_i, 0, 0, ...), we see that
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a s n - t +00 . Consequently,

Now, easy calculations show that

») = E EK*» - * M = E £{(£(*» I Fn) - E(Xn
«=0
n - l

= EIJ
l-n-l

n-l
A \ ''fn/A n = ^ y[j>^

t=0

t = 0

&i 1 -TnJ — &(<

i l l

* 1 *i)l.

Writing

we have
G(X) = Urn G(xn) = lim £(XnAn).

\ / n—»+oo \ / n—»+oo
It is easy to see that (An, Fn) is a martingale which satisfies

i

ri | -^n^ — ^y^i I •^tJII* ^ *
»=0 .=0

oo

t=0

This martingale (An, Fn) is Z*-bounded. It follows that (An, Fn) is a regular martin-
gale (see [11]) and there exists a random variable A G L* such that An = E(A | Fn).
We also show that A 6 K\t = Hy. This follows from the Doob maximal inequality
according to which A* — sup |An| G L*, since

rn | | , 0 0 .

This in fact implies that

£(|A - A n _i | I Fn) ^ £(2A* I Fn) almost surely for all n ^ 1,

and so A G if* and HAU^ ^ 2 ||A*||^. Using the result of Theorem 1, it follows that
A G IT* and

I I A H H ^ C ^ 11*11^ 241)||A1*)

where C^ is a constant depending only on 9 denned in Theorem 1. This proves our
assertion. U
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4. S O M E REMARKABLE DUALITIES

As a direct consequence of our main result proved in Section 3, we are now in a

position to present the following remarkable dualities:

THEOREM 5 . If ( # , * ) is a pair of conjugate Young functions such that both $

and ^ Aave finite power then:

(i) The martingale space K$ is the dual space of the martingale Ky-space.

(ii) The martingale Hardy space Hi is the dual space of the martingale Ky-

space.

In the special case when $(s ) = xp/p and ^(x) = xq/q, 1 < p < +00 and 1 <
q < +00, it follows that the dual of the space Hp is the space Kq, where 1/p+l/q = 1,
for all the values of p such that 1 < p < +00. This can be considered as an extension
of Garsia's result (see [2]).
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