
A ONE-REGULAR GRAPH OF DEGREE THREE 
ROBERT FRUCHT 

1. Introduction. Soon after the publication of Tutte's paper [5] on m-cages, 
H. S. M. Coxeter asked in a letter to the author whether one-regular graphs of 
degree 3 exist. The purpose of the following paper is to show by an example 
that the answer is in the affirmative. 

To avoid repetitions for the definitions of the terms: finite graph, group of 
automorphisms of a graph, regular graphs of degree 3 (or cubical graphs), etc. 
the reader is referred to a former paper by the author [4, pp. 365-366]. Let us 
add only the definition of a symmetrical graph, as it seems that this term has 
not yet been defined explicitly, although it has been used by Foster [3], who 
gave a list of the symmetrical graphs known to him, and defined implicitly by 
Tutte [5], whose "s-regular cubical graphs*' are nothing else than those sym
metrical graphs which are connected and regular of degree 3. 

Definition. A finite and connected graph is called symmetrical if for any two 
arcs AB and CD of the graph its group contains at least one transformation 
which takes the vertex A into C, and B into D. 

Finally, we shall need Tutte's definition [5] that a graph of degree 3 is s-regular 
if it is connected, and if for any two s-arcs 5i, 52 there is a unique transformation 
of the graph which carries .Si into S*; here an s-arc is any path AQ—> A\—> A2—-> 
. . . —>AS formed by 5 consecutive arcs AQ—>AI, A\—+AI, . . . , ^4s_i—>AS of 
the graph taken in a definite sense ; of course A t ^ A j for i 9^ j . 

Tutte was especially interested in the problem of finding w-cages, i.e., those 
5-regular graphs of degree 3 where 5 takes its maximal value 

5 = \\m + 1], 

m being here the girth of the graph, i.e., the least number of arcs forming a closed 
polygon (or ra-circuit) ; he showed also that 5 < 5 for any symmetrical graph 
of degree 3. 

The present paper is concerned with the other extreme case, that of the lowest 
possible degree of symmetry a symmetrical graph of degree 3 can possess. 
Coxeter [1, p. 421] had found that there are infinitely many cubical graphs with 
s = 2} but it seems that hitherto no example with s = 1 was known. 

In §3 such an example will be given. Unfortunately this graph has 432 
vertices (hence 648 edges) so that it is practically impossible to draw it on a 
sheet of paper. The author hopes however that someone else will find a one-
regular graph of degree 3 with fewer vertices. 
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The construction of the new graph is based on a general method (described in 
§2) which might be of some interest in itself apart from the use made of it here, 
as it would allow us to find also other symmetrical graphs of degree 3. 

2. A general method for constructing symmetrical graphs of degree 3. In this 
section H will be any group of finite order g which can be generated by three 
elements of order 2. Let ai, a2, a% be these generators, a0 the identity, and a*, as, 
. . . , ag-.i the other elements of H. 

Then a graph G with g vertices can be defined as follows: 
(i) With every element at (i = 0 , l , 2 , . . . , g — 1) of H we associate a vertex 

of G which shall be called at also, since there will be no danger of confusion. 
(ii) Any two vertices at and a^ of G shall be joined by an arc if, and only if, 

in H the product a jar1 is equal to one of the three generating elements. 
In other words, the relation 

(R) a3<i~l = ak 

must hold in H with k = 1 or 2 or 3, if a * and as are the endpoints of an arc in 
G; and no other arcs besides those just defined are introduced. 

Note that by taking the inverse of both sides, relation (R) may be given the 
equivalent form : 

(R#) a^'1 = ** (* = 1,2,3), 

since af1 = ak. It is thus seen that the relation (R) is only apparently asym
metrical in the subscripts i and j . 

THEOREM 2.1. The graph G just defined is regular of degree 3. 

(In Tutte's terminology such a graph, where each vertex is an endpoint of three 
arcs, is called "cubical.") 

Proof. From the defining relations (R) or (R') we have aj = akaif whence it 
follows that for any given vertex at (i = 0, 1, 2, . . . , g — 1) of G there are just 
three arcs ending there, viz, those whose other endpoints are axau a2ai} and 
a%au respectively. 

THEOREM 2.2. The graph G is connected. 

Proof. It will be sufficient to show that for any vertex at of the graph G there 
is some 5-arc joining it with ao (the vertex corresponding to the identity of H). 
Since H is generated by &i, a2, a3, the element at of H can be written as some 
product of generators, say 

at = aklakaak, . . . akt_xau, 

where all the suffices &i, k2, . . . , ks can take only the values 1, 2, 3; moreover, 
it can be assumed that no "partial product" 

Q>ktakt+ia'kt + M • • • akt+u (t>l,t + u<s) 
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be equal to the identity do (because otherwise it could be omitted from the total 
product). Then 

ao —• ak„ akt —> akt^ak„ akt_xakt —» ak,_,aks_xaks, . . . , 

akaakz . . . akl —> aklaktaki . . . ak, 

are arcs of the graph G since they satisfy the condition (R), and joining them in 
the sense indicated by the arrows we obtain the desired s-arc leading from 
ao to df. 

THEOREM 2.3. / / aô and an are any two vertices of the graph G, the group of 
automorphisms of G contains at least one transformation which takes aj into an. 

Proof. Let Tp (p = 0, 1, 2, . . . , g — 1) be that permutation of the vertices of 
G which takes at (i = 0, 1, 2, . . . , g — 1) into the vertex corresponding to the 
product aiap\ 

Tp 

ax = axap\ 

then Tp belongs to the transformations of the group of automorphisms of G. 
Indeed, if aô is the other endpoint of an arc a t —» ay, we have only to show that 
aiTp—+ a/" is also an arc of G. But by (R), afi~x = Q>u (where £ = 1 , 2 , or 3); 
hence 

aj p . (at
 p)~ = (ajap)(aiap)~ = afipap~ aT = a3<tf = ak, 

and this is, by (R), just the condition for a?p and a0?
p to be endpoints of an 

arc in G. 

Now, if aj and an are the two vertices considered in the theorem, the transfor
mation Tj takes any a{ into a^a^ and hence a0 into a0a;- = aj. In an analogous 
manner Tn takes a0 into an. Hence the product Tf~lTn, i.e., the inverse transfor
mation Tf1, followed by Tni takes aj into any and thus satisfies Theorem 2.3. 

It might be remarked as a corollary that the g transformations To, 7\, . . . , 
Tg-i constitute a group simply isomorphic to H. 

The theorem thus proved tells us, in other words, that the group of auto
morphisms of G is transitive on the vertices ; note that this is less than symmetry 
(as defined in §1) which requires transitivity at least on the 1-arcs. In order 
to obtain symmetrical graphs of degree 3 it will be necessary to impose a further 
condition on the group H. (So far it had only been required that H be generated 
by three elements of order 2.) Since this condition has to do with the auto
morphisms of the group H, it will be convenient to state first the following 
theorem : 

THEOREM 2.4. Let the group H (generated by three elements of order 2) admit 
an automorphism </> which permutes the three generators of H. If this auto
morphism carries any element at of H into af, then the corresponding permutation 
of the vertices of G is a transformation of G belonging to its group of automorphisms. 
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Proof. We have only to show that, if at and aj are endpoints of an arc in G, 
so also are a / and a / . Since <j> is an automorphism of H, 

af . (a/)-1 = a/ . {a^lf = (aftf1)*, 

and replacing aja{~1 by a* (where & = 1, 2, or 3), we have 

aj . (at) = ak . 

But we made the assumption that 0 only permutes the generators ai, a2, a-*; 
hence a** is also one of the generating elements, say aq (q = 1, 2, 3). Thus we 
have obtained 

a / , ( a / ) " 1 = aff (q = 1, 2, 3); 

and this is, according to (R), the condition for a** and a / to be endpoints of an 
arc in G. 

Having proved Theorem 2.4, we now give a sufficient condition for obtaining 
symmetrical graphs of degree 3. 

THEOREM 2.5. If the group H admits an automorphism such that the three 
generators of order 2 undergo a cyclic permutation, then the graph G is symmetrical. 

Proof. Let af •—» a5 and aq —± aT be any two arcs in G; then Theorem 2.5 will 
be proved if we can show that the group of automorphisms of G contains at 
least one transformation 6 fulfilling the two conditions: 

(C) at = aq and a^ = ar. 

To obtain such a transformation 6 we proceed as follows: as in the proof of 
Theorem 2.3, let Tp be that transformation of G which replaces any vertex at by 
afro, let <t> be the transformation of G corresponding (by Theorem 2.4) to the 
automorphism </> of H whose existence is supposed in Theorem 2.5; then also 
the three products (read from left to right) 

6n= Tr^T, (» = 1,2,3) 

are transformations belonging to the group of the graph. We will show that just 
one of them fulfils the two conditions (C). 

It is obvious that the first of these conditions is satisfied for each value of n; 
indeed, Trl replaces at by a0, any power of <j> leaves a0 fixed, and Tq takes a0 

into aq. As to the second condition, the following argument may be used: 
By (R) we have not only aj = akat (k = 1, 2, 3), but also that araq~

l is a 
generator, 

araq~ — at (t = 1, 2, or 3). 

Now, since <t> is supposed to produce a cyclic permutation on the generators 
#i, #2, a$, some power of <j> will replace ak by at. Let <t>n be that power of 0, then 
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a / = at (n = 1, 2, or 3), 

and it follows readily that also the second condition (C) is satisfied by the 

transformation 6 = 6n = Tl~
1<t>nTq, since 

We close this section by giving three examples of symmetrical graphs of degree 
3 which can be obtained by Theorem 2.5. 

(1) The simplest example of a group H which can be generated by three (but 
not less than three) elements of order 2 (and which admits an automorphism of 
the kind established in Theorem 2.5) is the direct product {a\\ X {a2} X {#3} 
of order 8. It is easy to see that the corresponding graph G is that of the vertices 
and edges of a cube. 

(2) The symmetric group of degree 4 and order 4! = 24 can be generated by 
#i = (1 2), a2 = (1 3), a3 = (1 4). The corresponding graph turns out to be 
Foster's 111-13 [3, Fig. 9]; it is called {12} + {12/5} by Coxeter [1, pp. 439,440]. 

(3) An apparently new symmetrical graph with 64 vertices and girth 8 corre
sponds to the group of order 64 which can be generated by the following permu
tations on twelve symbols: 

a,= (12)(3 4)( 9 11), 
a2 = (13)(5 6)( 7 8), 
a3 = (5 7)(9 10)(11 12). 

(As an abstract group, it can be characterized by the condition that all the 
commutators be invariant elements.) 

3. Example of a one-regular graph of degree 3. The symmetrical graphs 
mentioned as examples at the end of the foregoing section are 2-regular. It is 
easy to see that this is due to the fact that in these examples the group H does 
not only admit an automorphism allowing a cyclic permutation of the generators, 
but is formally symmetrical in the three generators, admitting, e.g., an auto
morphism which leaves a3 fixed and replaces ax by a2. 

This fact seemed to justify the author's hope of obtaining a one-regular graph 
of degree 3 by the method of Theorem 2.5, if a group H could be found which 
admits automorphisms producing cyclic permutations of the three generators of 
order 2, but no automorphism leaving a3 fixed while interchanging a\ and a2. 
We will show that such a group is that generated by the following three permu
tations on nine symbols: 

a,= (12)(3 5)(4 8), 
a2 = (1 3)(2 6)(5 9), 
a 3 = (14)(2 3)(6 7). 

In this section the letter H will be used to denote the group with these generators. 

THEOREM 3.1. The group H just defined admits an automorphism # satisfying 
the conditions: 
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d\ = &2, #2 = # 3 , CLz = d\\ 

but there is no automorphism \[/ of H satisfying the conditions: 
\i/ \p \f/ 

a\ = a2, a2 = ai, a3 = «3. 

Proof. If b is the following permutation: 

b = (13 2)(4 5 6)(7 8 9), 

it is immediately seen that 

b~ aj) — #2, b~ a<J) = a3, b~ a%b = a,\\ 

whence it follows that the automorphism 

a* = b~l
aib (i = 0, 1,2, . . . , £ - 1) 

satisfies the conditions of Theorem 3.1. It may be remarked that this is an 
inner automorphism of the group H, since b is an element of H; indeed a some
what lengthy computation shows that 

b = {(aidz) (aia2aia3) } • (aia2aia3) a i a3-

To prove that no automorphism \f/ of H can exist which leaves a3 fixed while 
interchanging a\ and a2, compute the product 

e = a3a2(a3ai) (a3a2) aia2, 

from which it is found that e = a0. Assuming the existence of an automorphism 
\p and applying it to the product e just introduced, we would have 

e = a3ai(a3a2) (#3#i) #2&i; 

but since e = a0, the left-hand side of the last equation must likewise be the 
identity ao; the right-hand side however is found equal to 

(16 8)(2S7)(3 4 9), 

hence distinct from the identity. This contradiction shows the impossibility of 
the existence of yp. 

THEOREM 3.2. The graph G of degree 3 which corresponds to the group H is 
one-regular. 

Proof. That G is at least one-regular follows from Theorems 2.5 and 3.1. It 
remains to be shown that G is not 2-regular. This can be done as follows: 

We have already seen, in the proof of Theorem 2.2, that the endpoints of the 
s-arcs beginning with ao are the "non-trivial" products of 5 generating elements 
(where ''non-trivial*' means that there are no partial products equal to the 
identity); e.g., the six 2-arcs beginning with aQ are 

https://doi.org/10.4153/CJM-1952-022-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-022-9


240 ROBERT FRUCHT 

do —> #i —> a2#i, ao —> a i - ^ a^ai, a0 —> a2 —» <Zia2, 

# 0 —» <22 —-> <23#2, # 0 —•» « 3 —> # 1 # 3 , <2o —* # 3 —» # 2 # 3 . 

In an analogous manner we can form the twelve 3-arcs beginning with a0, etc. 
By computing all the products of 2, 3, 4, . . . generators of our group H, it turns 
out that these endpoints of the s-arcs beginning with a0 are all different so long 
as s < 5. But of the endpoints of the 96 six-arcs beginning with a0 only 77 are 
distinct, since it turns out that there are fifteen pairs of such 6-arcs with a 
common endpoint, and two triples of such 6-arcs, viz, those ending with 

aiasdiaodiao = d^dyaid^a^dz = dzd2did\dzd\ = (1 5 9) (2 4 8) (3 6 7) 

or 

aiazdiaiatfi-i = d^d\dtd\d^di = d3d2d^d2did2 — (1 9 5) (2 8 4) (3 7 6). 

These two vertices are thus characterized as the only endpoints of triples of 
6-arcs beginning with ao; therefore no transformation of G can exist that leaves 
do fixed but carries one of these 6-arcs into a 6-arc ending at some other vertex. 
Now the two triples of 6-arcs just considered begin with one of the following 
three 2-arcs: 

do —* #2 —* did2j do—^dz—* d2dzy or do —-> d\ —-> dzd\ ; 

hence no transformation of G can take one of these three 2-arcs into any of the 
other three 2-arcs beginning with d0. This means that G is not 2-regular. 

COROLLARY. The graph G is of girth 12. 

Indeed a 12-circuit can be formed with two of the 6-arcs of one of the triples 
just mentioned, but no m-circuit exists with m < 12. 

THEOREM 3.3. The one-regular graph just found hds 432 vertices. 

Proof. Since the number of vertices of G is equal to the order of the group i7, 
we have only to prove that the group generated by 

ai = (12)(3 5)(4 8), d2 = (13)(2 6)(5 9), a3 = (1 4)(2 3)(6 7), 

is of order 432. 
It is easy to see that the order of this group 77 is either 432 or some fdctor 

contained in 432. Indeed, the generators ai, a2, a3, and hence any permutation 
of IT, leave fixed the following triple system of 9 elements: 

129; 137; 145; 168; 238; 246; 257; 349; 356; 478; 589; 679; 

and it has been pointed out by Emch [2] that the group of all the permutations 
which leave a triple system of nine elements invariant, has the order 432, since 
it is simply isomorphic to the holomorph of the noncyclic group of order 9. 
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Hence our group H is simply isomorphic either to the same holomorph of order 
432 or to some proper subgroup of it. It remains only to be shown that this second 
alternative does not take place, i.e., that the order of H cannot be less than 432. 

Our group H is transitive, since the eight permutations ai, a2, a3, 

aia3ai = (1 5)(2 8) (6 7), axa2ai = (1 6) (2 5) (3 9), 

a3aia3 = (1 8) (2 5) (3 4), a2axa2 = (1 9) (3 6) (4 8), 

a2a%a2az = (1 7 3) (2 6 4), 

replace the symbol "1" respectively by 2, 3, . . . , 9. According to a well-known 
theorem, the order of H will be nine times that of the subgroup Hi formed by ail 
the permutations of H each of which leaves the symbol " 1 " fixed. But this 
subgroup Hi contains the following three permutations: 

aza'2ad = (24) (37) (59), aza2aiazaiaz = (2 5 9 4) (3 6 7 8), 

(ai<23) • aza2aiazaia2 = (2 7 8 9 3 6) (4 5). 

It is readily shown by computing all the products of the last two permutations 
(which are even) that it is possible to form 24 different even permutations which 
leave the symbol " 1 " fixed. Hence Hi (containing also the odd permutation 
aza2az) cannot have an order less than 48, and H cannot be of order less than 432. 

COROLLARY. The group of automorphisms of the graph described in this section 
is of order 1296. 

Indeed it is a regular permutation group on the 1296 one-arcs. 

Addendum. 
It was kindly pointed out by Coxeter (in a letter to the author) that the one-

regular graph described in the last section could be derived from the regular 
hyperbolic tesselation {12, 3} by making appropriate identifications; in other 
words, it could be embedded in a surface of characteristic —108 (or genus 55) 
so as to form a map of 108 dodecagons (in agreement with the Corollary to 
Theorem 3.2). 
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