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Abstract

We propose a new estimator for the ultimate prediction uncertainty within the famous Mack’s
distribution-free chain-ladder model, which can be proved to be unbiased (conditionally given the first
triangle column) under some additional technical assumptions. A peculiar behaviour of the unbiased esti-
mator is given by its possible negativity. This is a drawback which might be worth trading off for the
unbiasedness property, since there is empirical evidence that the likelihood of a negative realisation is
extremely low. This offers an alternative to the well-known Mack and BBMW formulas since the latters
can be proved to be biased. However, we also show that this novel estimator, as well as the Mack and
BBMW formulas, can (with non-negligible probability) materially fail to estimate the true uncertainty.

Keywords: Claims reserving; Distribution-free chain-ladder model; Conditional mean square error of prediction; Ultimate
prediction uncertainty

1. Introduction

The chain-ladder algorithm to compute the unpaid claim requirement in an insurance financial
statement is the most well-known reservation methodology in actuarial practice. This algorithm
has been widely examined by many researchers in the last three decades, such as Kremer (1982),
Taylor (1986, 2000), Renshaw (1989), Verrall (1990), Mack (1993), Murphy (1994), Schmidt &
Schnaus (1996), Barnett & Zehnwirth (1998), England & Verrall (1999) and Wiithrich & Merz
(2008).

In particular, considerable research related to the well-known distribution-free chain-ladder
model by Mack has been performed. In terms of the prediction uncertainty estimation within
Mack’s model, the most relevant contributions include those of Mack (1993), Buchwalder et al.,
(2006), Mack et al., (2006), Gisler (2006, 2019, 2020), Merz & Wiithrich (2008, 2014), R6hr (2016),
England et al., (2019), Diers et al., (2016) and Lindholm et al., (2020).

In 1993, Mack derived an estimator (Mack formula) to quantify the ultimate prediction uncer-
tainty within his model. Later, in 2006, certain controversial discussions occurred (see Mack et al.,
2006; Gisler 2006) when Buchwalder et al., (2006) proposed a novel estimator (BBMW formula);
however, the question related to which of the two formulas should be preferred went unanswered.
Recently, Gisler (2020) stated that the Mack formula should be preferred over the BBMW formula.
Notably, Gisler (2020) highlighted several deficiencies related to the BBMW estimator, linked with
the conditional resampling approach, which was adopted in Buchwalder et al., (2006) to derive the
estimator for the second term of the conditional mean squared error of prediction (MSEP), usu-
ally known as the estimation error. Moreover, Gisler (2020) proved that for individual accident
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years, the Mack estimator of the estimation error does (on average, given partial information)
overestimates the true prediction uncertainty, albeit to a smaller extent than the BBMW estimator.

However, Gisler (2019) previously demonstrated that the Mack formula can be derived by
applying a certain estimation principle, that is unfortunately, as mentioned in the original arti-
cle, not fully well-defined and must be applied with caution especially when non-linear functions
in the unknown parameters need to be estimated.

Considering these aspects and principally the fact that both Mack and BBMW formulas result
to be biased (as demonstrated in Gisler 2020), in this paper, we propose a new estimator for the
ultimate prediction uncertainty within the famous Mack’s distribution-free chain-ladder model,
which under some additional technical assumptions can be proved to be unbiased.

Unluckily, the new unbiased estimator does show some peculiar behaviours, in particular with
respect to its possible negativity. This is a drawback which might be worth trading off for the unbi-
asedness property, since there is empirical evidence that the likelihood of a negative realisation is
extremely low.

Organisation of the paper. In section 2, we specify the model assumptions of the Mack chain-
ladder model and recall the traditional notation as well as some key results. Moreover, we define
the true value of the ultimate claim prediction uncertainty for both single accident years and for
the total over all accident years.

In section 3, we propose a novel formula which can be used as an estimator for the true
uncertainty and can be demonstrated to be conditionally unbiased given the first triangle column.

In section 4, we consider several numerical examples to compare the results from the different
formulas and demonstrate that both the Mack and BBMW formulas as well as the new formula
can (with non-negligible probability) materially fail to predict the true uncertainty.

2. Mack Model
As usual in claims reserving, we denote by C; j > 0 the cumulative claim figures from accident
years i € {0, ..., I} at the end of development years j € {0,...,]}, ] <I and we assume that the
claims are fully developed at the end of development year J.

For time t € {0, ..., I + ]}, Dy indicates the cumulative claims payment data (C; ;) up to time ¢.
For instance, at time I we have

Dr={Cij:i=0,...,L i+j<I}. (1)

In 1993, the following distribution-free stochastic model underlying the chain-ladder reserving
method was introduced by Mack (1993).

Model Assumptions 1 (Mack model).

o Vectors (Cio,...,Cij), i€{0,...,1I} are independent
e There exist positive parameters fo, . . ., fi—1 and o, . . . ,012_1 such that foralli € {0, . .., I} and
alljefo,...,J—1}

E[Cj+11Ci0s - - ., Cijl =£Cijs (2)

Var(Ci,j+11Cio, - - -, Cij) = szci,j- (3)

Within Mack’s model, the unknown parameters fy,...,fj—1 and oZ,.. .,0]2_1 are estimated
at time I by using the following, conditionally given B; = {C; ;i + k < I, k < j} C Dy, unbiased

estimators
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I-j—1
Zi=o G, jt+l

=22 I jeqo,. . 1), (4)
Zi:{) Cij
I—j—1 2
— 1 Cijt1 =
2 - Coi| 22 %), jelo,....]—1), 5
o =i ;ZO z,]( Ci) Ji jed J—1} (5)

where, for J =1, 0]2_1 is usually estimated through extrapolation as

7 \?

= _ |7 = ("1—2)

0]_1 = min 0]_33 0}_27 /2\ . (6)
O']_3

The ultimate claim C; j for accident year i € {0, . . ., I} is at time I predicted by

J-1
Cy=Cir—i || #- (7)

j=I—i

Predictor (7) is, conditionally given B;_;, unbiased for E [C,-, ]|BI_,-] =E [C,-, I |DI], i.e. we have

E [Ei,] BI,,'] =E [Ci,]|B[,,’] . (8)
Moreover, the ultimate claim Zf:o Ci,j for the total over all accident years is at time I predicted
by
I
> Gy )
i=0

Predictor (9) is, conditionally given By, unbiased for E [ZLO Ciy ’Bo], i.e. we have

1 1
E |:Z /C\',‘J B()i| =E |:Z C,',]
i=0 i=0

Furthermore, Mack (1993) also demonstrated that it holds true
a2
a9

2.1 Quantification of the ultimate claim prediction error

Bo:| . (10)

2

O

Bj]=ﬁ2+1_]+, jel{o,...,]—1}. (11)
n=o Chj

The objective is to quantify the ultimate claim prediction uncertainty at time I for both single and
aggregated accident years. In a distribution-free framework, this is usually done by considering
the following quantities of interest which will be also referred to as the true values, because they
measure, with respect to the squared loss function, the expected deviation between the unknown
ultimate claim amounts (C; ; and Zf:o C;.j respectively) and their predicted amounts (C;; and

Zf:o a,], respectively) at time 1.

Definition 1 (Conditional MSEP for single accident years). The conditional MSEP of the ultimate
claim predictor for single accident year i is defined as

msepCi‘]‘Dl (6,-,]) =E |:(Ci,] — /C\i,])z ‘D1:| . (12)
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The true value (12) can be decomposed as follows:

2
o)+ (e ofc o)

J— J—1
DI) +Ci2,1—i l_[ fi—

1
Jj=I—i j=I—i

msepc, 1p, (6,-,,) = Var <C,',]

2

fil> (13)

= Var (Ci)]

PV;

EE;
where PV; denotes the process variance and EE,; the estimation error of an individual accident
year i.

Definition 2 (Conditional MSEP for aggregated accident years). The conditional MSEP of the
ultimate claim predictor for aggregated accident years is defined as

I I 2
mseszO Ci)IDy <Z C,'J) =E <Z (Ci,] — Ci,])) ‘D[ . (14)
i=0 i=0

The true value (14) can be decomposed as follows:

I I I I
msepyt ¢, (Z C,-J> = Var (Z Ci,]’DI> + (Z Cij—E |:Z Ciy
i=0 i=0 i

i=0 i=0
1 I J-1 J-1 :
= Z Var (Ci,] DI) + Z Ci1—i 1_[ fi— 1_[ fi , (15)
i=0 i=0 j=I—i j=I—i
f=0 PVi=PViot EE(ot

where PVio: denotes the process variance for the total over all accident years and EE;y the
estimation error for the total over all accident years.

The process variance PV; can be easily calculated. By iteration, the Model Assumptions 1
indicate that (see Mack, 1993)

J—1 k-1

J—1
PVi=Ciri 3 | [ £ | ol | ] £7|> icto....m. (16)

k=I—i \m=I—i n=k+1

On the other side, the estimation errors (for single accident year i and for the total over all
accident years) can be easily expressed as

J—1

J—1 J—1
e=Chi | [T () + [T #-2 [T ). icoon

k=I—i k=I—i k=I—i

I J-1 J-1 J-1 J-1
EEtotZZEEi+2 Z Ci1-iCi1—j l_[ ﬁ - l_[ fr l_[ ﬁ - 1_[ fil-  (18)
i=1

1<i<j<I k=I—i k=I—i k=I—j k=I—j
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3. The New Formula

Since the model parameter (f;) and (sz) are unknown, the true value (12) given by PV; + EE;
cannot be evaluated. For the process variance, the traditional approach in actuarial literature
considers the estimator (19) for PV; based on the data D; (see Mack, 1993):

J— [ S W SR
7 Mack _ Zc,f, [T 7| IT (7) - (19)
k=I—i m=I—i n=k+1
But unfortunately, this proposal does not result to be, conditionally given Bj_;, unbiased for
E[PVi|B_i].
On the other hand, for the estimation error, the traditional approach focus on estimating
E [EEi|BI_i] based on the data Dy, since directly estimating the positive term EE; based on the
data Dy leads to a degenerated estimator (namely 0).
However, the until now known proposals (see Mack, 1993 and Buchwalder et al., 2006) do not
result to be, conditionally given 3;_;, unbiased for E [EEi}BI_i] (see Gisler, 2020).

3.1 Single accident years

In this paper, our goal is to derive estimators IS\TiNEW and EENEW that fulfil the properties

E|: vEWY B, ,} = [PVi

BI_{| =E |:EE1~

i.e. estimators which result to be, conditionally given 5;_;, unbiased for E [PV,'|BI,,-] and
E [EE;| B_;] respectively.

Bl_ij| < 00, (20)

and

B [EEINEW

BI_,'] <00, (21)

Let us first present a, conditionally given B;_;, unbiased estimator for H e 1 ; fk .
We have the following Theorem.

: o
]_[J i (( ) - ,J+) H < 00, under Model Assumptions 1 (with

Theorem 1. Provided E |:
Ck]

J < I) we have that the estimator

-_—

(~\ 2 sz
(ﬁ) - | iet-I+1...0, (22)
j=I—i k=0 Ckj

—_

J—

is, conditionally given B_;, unbiased for 1_[1 I ,f

Proof. From result (11) as well as the conditionally unbiasedness of the parameter estimates

(ojz), we get

—

2

il 2 o;
2 i
oo >E | | (ﬁ) — T iji
j=I—i C

k=0 “kj
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| J-1 N\ 2 ;.3
=E|E 1_[ (]) - Ifjil ‘Bfl BI*I
L j=I—i Zkzo Ck]
J-2 ) sz [ ]2_1
=k (1) I-j-1 (f]‘l) -] ¢ Bj-1| |Br-i
Lj=I—i k=0 Ck] L Zk—() kJj—-1
= ~\? 01'2 2 = 2 .
=E () - == | |Bi = =[] £2 icti-T+1...0,
| j=1—i k=0 k,j j=I—i

O

In order to guarantee the existence of the involved quantities, in the following we will work
under the additional technical assumptions

J—1

N\ 2
E H(ﬁ) <00, ie{I—J+1,....1}, (23)
j=I—i
and
-1 i 2 ;-E
E (]3) _1_,+1 ‘ <oco, ie{I—J+1,...,1}. (24)
j=I-i k=0 Chj

Remark 1. As not uncommonly, the technical assumptions (23) and (24) are unverifiable.
However, they can be reasonably assumed to hold true, since they are consistent with data typically
encountered in actuarial practice. Moreover, we underline that the core technical requirement for
the unbiasedness result stated in Theorem 1 is the technical assumption (24) and not the positivity
of estimator (22) along all the possible trajectories.

Under Model Assumptions 1 and the technical assumption (24), there could exist trajectories of
the underlying claims payments process for which the realisations of estimator (22) are negative.
This is a drawback of the unbiased estimator (22) but not a probabilistic issue, since estimators
are random variables, and their realisations may even significantly differ from the quantity they

intend to estimate. However, for typical general insurance data, the unbiased estimator (22) results
2

) o
to be positive. This is due to the fact that for typical data, the term (ﬁ) dominates ZH+1C This
h=0 “hj
is also the argument that justifies the common use of the first-order Taylor approximations in this

domain.
Also note that the positivity of estimator (22) follows from the following regularity condition.

Regularity Condition.

I—-j—1 I-j—1 Ciir1/Cii 2
Yo Gi—j-1)= ) c,-,j<M—1> , je{0,...J-1<I-1}. (25

i=0 i=0 fj
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Display (25) further highlights that for typical data fulfilling Model Assumptions 1, the unbiased
estimator (22) results to be positive.

Remark 2. Given data Dy for which Model Assumptions 1 can be considered appropriate and
for sufficiently large data availability (i.e. I —J sufficiently large), the regularity condition (25)
is fulfilled. Also note that, when considering a positive set By and when sufficiently restricting
the domain of the model parameters, with the help of the time series model described in Merz
& Wiithrich (2008) (see Model Assumptions 3.9), all the considered triangles in our simulation
studies did fulfil the regularity condition (25). This gives empirical evidence that the likelihood of
a negative realisation of the unbiased estimator (22) is extremely low.

Remark 3. For generally excluding the negativity eventuality, we could have considered the
positive estimator for ]_[] I—i f2 given by

o~

2

ﬁ <A>2 J 1 o2 + <A>2 1 - (26)
o NN B D R [ e 1
Zimo hi YiZo Cny

Essentially, this estimator coincides, conditional on the data Dy, either with estimator (22) or with

the classical upwards biased estimator for ]_[ f 2 given by ]_[ (A> However, for estimator

(26) we would not be able to prove the condltlonal unbiasedness property as stated in Theorem 1
for estimator (22). Moreover, note that estimators (26) and (22) solely differ on an event with an
extremely low empirical likelihood.

Consequently, it could be worth trading off the peculiar behaviour of estimator (22) for its
unbiasedness property.

Now note that from Theorem 1 by successive conditioning on By, By and B;—; and looking
at (16), we have that the estimator

J—1 k—1 . P J—1 N2 ;‘5
= Z Ci1—i H Jon "kz l_[ [(f"> _#} 27)
k=I—i m=I—i n=k+1 h=o Chn

fulfils the desired property (20).
On the other hand, provided E |:1_[k I—i <A> i| < 00, from (17) using the conditional unbi-

asedness and uncorrelatedness of the parameter estimates (f;) we have

J-1 J-1 J-1
oo>E|:EEi BI—ii| =C,~2)1_,~E l_[ ff-2 l_[ fkﬁ-ﬁ- 1—[ (ﬁ)z B,
k=I—i k=I—i k=I—i
-1 J—-1
=G |E| [] (fk) Bi| - [] %) (28)
k=I—i k=I—i
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Therefore, from Theorem 1 it easily follows that the estimator

— NEW LR L R ;3
EE; Cl I—i l_[ ( k) — 1_[ |:< k) — #} ) (29)
n=o Chk

k=I—i k=I—i

fulfils the desired property (21). Moreover, when for given data Dy the regularity condition (25) is
fulfilled, estimator (29) is positive too.
Combining estimators (27) and (29) yields a novel estimator for (12):

Estimator 1 (Unbiased formula, single accident years). Under Model Assumptions 1, when for
given data Dy the regularity condition (25) is fulfilled, we have the following positive estimator for
PV; + EE; at time I:

J—1 k-1 J-1 =
—NEW = == NEW ~ = N2 o
e = 3 (1727 1160 -2
k=I—i \m=I—i n=k+1 n=o Chn
=1 , 2 o2
3 3 k
+Ci l_[ (fk) - 1_[ |:<k) e :| . (30)
k=I—i k=I—i 2no  Cnk

Remark 4. We underline that (30) is a conditionally given B;_; unbiased estimator for
E [PV,- +EE,<|BI,,-] under Model Assumptions 1 (with /] <I) and the additional assumptions
2 2 o2
|:Hk i (fk) j| <ooand E H ]_[J i <(f) — —1 711 c ) H < 00. Moreover, when for given
kij
data Dy the regularity condition (25) is fulfilled, estlmator (30) is positive.

3.2 Aggregated accident years

_——_NEW ——NEW
Our goal is to derive estimators PV and EE;¢ which result to be, conditionally given
By, unbiased for E [Pth}Bo] and E [EEmt|Bo] respectively.

Let us consider the following proposals:

NEW 1 I—i—1 EENEW
EE, _§ EES " +2 > G| Gy [] | —— (31)
c?, .
1<i<j<I k=I—j L1—1
NEW !
PViot =§ PV; . (32)

i=1

The following Theorem holds true.

0.2
Theorem 2. ProwdedE[]_[J I l() i| <ooandE|:']_[] . 1<<j> lc ) H <oo,Vie
kyj

Zk_]
{I—J+1,...,I}, under Model Assumptions 1 (with ] < I) we have:
——~NEW
E I:PVtot Bo:| =F I:PVtot Boj| < o0, (33)
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and
E |:EEmt Bo:| |:EEtot Bo:| <0 (34)
Proof. It holds that
NEW !
E [Pvmt 30i| —E [ZE [PV,NEW Bl_i] 5 } —E [Pvmt Boi| <00
i=1
This proves (33).
Furthermore, it holds that
E [EEMNEW BO]
QI I*i*lA EE NEW
—F ZE[ NEW B] ,:| B():| +2 Z E C,',],,' Cj,l*j H ﬁ( E |:C2 Bji:| BO
L i=1 1<i<j<I k=I-j h1—i
rr T B I—i—1 J—1 L\ 2 J-1
=E(Y EE|B) [+2 Y E|Cii | Cus [] K <E|: (fk) B“}—]_[f,f> By
L i=1 . 1<i<j<I k=I—j k=I—i k=I—i
roI 7 B I-i-1 -1, L -l
=E ZEEi By | +2 Z E|Ci-iCij 1_[ S E|: (k) — l_[ fr l_[ fe Bl—i:| By
L i=1 i 1<i<j<I k=I—j k=I—i k=I—i  k=I—i
I 1 i - J-
=E|)Y EE|By|+2 Y E|Ci1iCyuE ka ka—l_[fk ]_[szs,, B,
L i=1 . 1<i<j<I L k=I-j k=I-i k=I—-i k=I—j
r . B /-1 ot -1 -1
=E ZEE:' By | +2 Z E |G 1-iCyE <l_[fk— ka) ka— ka Bri | |Bo
L i=1 i 1<i<j<I | \k=1-i k=I—i k=I—j k=I—j
=E | EE;; BO] < 00,
where in the second last step we used the fact that
J-1 J—1 J—1
E[| [TA-T] % [1 ] |Bi-i | =0.
k=I—i k=I—i k=I—j
This proves (34). O

Combining estimators (31) and (32) yields a novel

Estimator 2 (Unbiased formula, aggregated accident

estimator for (14):

years). Under Model Assumptions 1, when

for given data Dj the regularity condition (25) is fulfilled, we have the following positive estimator
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for PViot + EEqo¢ at time I:

_—~_NEW _—_NEW
PViot + EE;o;

e U W 0 B -
a5 (T 2)7 1[0 ot
i=1 k=I—i \m=I—i n=k+1 2h=0  Cin

r RPN
ol [0

i=1 k=I—i k=I—i

I—-i—1

J—1
+2 3 Cui |Gy [T )| T1 (JAC">2_
k=I—i

1<i<j<I k=I—j

R ;E
[0 |) o

k=I—

Remark 5. We underline that (35) is a conditionally given By unbiased estimator for
E [Pth + EE,O,‘BO] under Model Assumptions 1 (with J < I) and the additional assumptions

[H] I l() ]<oo and EHHJ I— ,((f]) Z_ick]>':|<oo, Vie{I—J+1,...,1}.

Moreover, when for given data Dy the regularity condition (25) is fulfilled, estimator (35) is
positive.

Remark 6. Using the telescope formula

J-1 k=1 - J—1 % -
= 41_[(")21_%‘1 [ [(fm)z—%}' (36)

and rearranging the summation indices leads to the following more simple display of formula (35)

_—~_NEW _—NEW
PVior + EE;o;

J—1 I k=1 2 C’)_ki J-1 O U’%
2 2 G [ A ) o [ (fm> Ty | (37)

i
k=0 \i=I—k m=I—i Zh:o Chik m=k+1

For comparison reasons in section 4 (Numerical examples), we recall the Mack and BBMW
formulas (see, e.g. Wiithrich & Merz, 2008).
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3.3 Mack formula

Mack’s formulas for individual and for aggregated accident years are reported in the following
sections.

3.3.1 Single accident years
For individual accident years, the Mack formula reads:

—~ a2
N R @ -1 /(fk> =L ol (fk)
PV, L EEM =€) +(C Y e 69
k1 Ci,I— 11_[ k=i—i 2ah=0 Chk

3.3.2 Aggregated accident years
For aggregated accident years, the Mack formula reads:
2

o § 2Ot s DO

I—k—1
1 k=I—i Cir-i ] 1 1 i=1 k=I— 12 Chk

Mack /\Mack

I
PViot

M:

i

1= o2/ (f
+2 Y CyCy Y. (k) (39)

k=1 ~
1<i<j<I k=I— ;Zh C

Remark 7. Merging the second and third term in (39) by rearranging the summation indices leads
to the following more simple display

3~ N2
s O G 0

—~Mack ——Mack 2 k ~ k k

PV[Ot + EEtot = 1] = + Ci,] T—k—1 >
i=1 o G T Lh o h=0 Chk

which corresponds to the form of the Mack formula derived in Gisler (2019).

3.4 BBMW formula

BBMW’s formulas for individual and for aggregated accident years are reported in the following
sections.

3.4.1 Single accident years
For individual accident years, the BBMW formula reads:

lf\zMack +EE,-BBMW
Ul /(fk) J=1 2 c’ﬁ -1 2
2 5 o~ A ~
=(Cy)” X A+Cz;1—i I1 [(k) +T}_ I1 (k)
ji—i Ci1— IH k=I—i 2nzo  Cnk k=I—i
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3.4.2 Aggregated accident years
For aggregated accident years, the BBMW formula reads:

_——Mack ——BBMW
PViot + EE¢ot

IS =71 (3 A =1 % G
e 8 s (16 s |- T @)

i=1 k=I—i Cir- zl_[ i=1 k

I=i-1 1T, o2 7L 2
+2 Y cui|an [T R [(k) +#}— I1 (fk) L (42)
k] ok

1<i<j<I k=I—j k=I—i =I—i

Remark 8. Using the telescope formula

k= h=0 I—i
J-1 k-1 /E :| /3 J—1
o, Uk i\ 2
= 1|6 + e = [T () (43)
k=I—in=I— z|: Zh 0 Ch Zh Ch,k m=k+1

and rearranging the summation indices leads to the following more simple display of formula (42)

gy = o? L2 o2
+ Z Z Cl I—i l_[ fm I— k l_[ |: fm) + Ifmiﬂl :| (44)
k=0 \i=I—k m=I—i e Chk et Yoo Chm

3.5 Peculiar behaviours of the Unbiased formula (35)
We have seen that strictly under Model Assumptions 1 (or even including the technical assump-
tions (23) and (24)), the Unbiased estimator (35) does show a theoretical peculiar behaviour

with respect to its possible negativity. However, for given data D; which satisfies the regularity
condition (25), the Unbiased estimator (35) results to be positive.

Strictly under Model Assumptions 1, another theoretical peculiar behaviour of the Unbiased
estimator m + EEtot NEW relates to the fact that, when looking it as a multivariable function
in the estimated parameters (0]2), it may not increase for increasing values of its arguments. This
is curious, since the true value PV + EE(yt does not show this behaviour in the sense that data

with underlying higher volatility, i.e. with larger (sz) parameters, do lead to a larger mean squared
error of prediction.
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3.6 Final comments

The Unbiased formula (35) was derived focusing on a traditional well desired property for estima-
tors, namely unbiasedness. In our view, this approach is much more straightforward and easy to
explain (and to remember) compared to the approaches underlying the derivation of both Mack
and BBMW formulas.

We highlight that, when for given data Dy the regularity condition (25) is fulfilled, it holds true

——NEW ——NEW ——Mack ——— Mack ——Mack ———BBMW
PViot + EE¢ot < PViot + EE¢ot < PViot + EE¢ot ) (45)
Unbiased formula Mack formula BBMW formula

i.e. the Unbiased formula is smaller than Mack and BBMW formulas. However, as we will see in
the numerical section 4, the three formulas generally produce results which are very close.

Moreover, note that given data Dy, the true value PViy + EE; is a fix number which quan-
tifies the true prediction uncertainty. Therefore, we would appreciate if the three formulas were
to deliver results close to this quantity. However, the magnitude and the frequency of the pos-
sible deviations we observed in our numerical analysis (see section 4) is remarkable, even when
considering average-sized triangles often available in actuarial practice.

As a consequence, we would like to make the actuarial community aware that, even when
Mack’s model perfectly fits the available data, the ultimate claim prediction uncertainty esti-
mated according to the three considered formulas (Mack, BBMW and Unbiased) may with
non-negligible probability, perhaps materially (especially for small-sized triangles), deviate from
the true value. In particular, the latter can result to be bigger than the BBMW formula or even
smaller than the Unbiased formula. This fact can be demonstrated by simulations, by consider-
ing generated triangles that exactly fulfil the claims payments evolution described through Mack’s
model.

As usually done in statistics, MSEP given by

2
E |:(estimat0r — (PViot + EEm))

BOj| > (46)

can be considered for assessing the performance of the different estimators.
In that respect, when hypothetically assuming

e Model Assumptions 1 (with ] < I)

e the additional technical assumptions (23) and (24)

e the positivity of estimator (22) along all the (finite) trajectories of the claims payments
process

it would be possible to show that the Unbiased formula (35) outperforms the Mack and BBMW
formulas in terms of (46). It namely holds true:
BO}

—_ Mack /\Mack 2
E || PVior + EEot — PViot — EEjot
_—~_NEW _—_NEW 2
—E[ (P +EEq  —PViq—EEwi) |Bo

——Mack _——Mack ——NEW ——NEW
=E| | PViot + EE¢ot + PViot + EE¢ot — 2PViot — 2EEqot

—— Mack ———Mack ——NEW ——NEW
| PViot + EEtot — PViot — EEtot By (47)
——— Mack ———Mack
>8E |:PVt0t — PVtot B()i| +S§ E I:EEtot - EEtOt BO] > 0,
>0 >0

https://doi.org/10.1017/51748499522000082 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000082

Annals of Actuarial Science 131

provided it exists § > 0 with

——Mack _——Mack ——NEW _—NEW
P[Pvmt + BB = (Vi +EEg ) >

Boi| =1 (48)

Also, under the assumptions of the time series model described in Merz & Wiithrich (2008)
(with J < I) our simulation studies indicate (when ensuring the regularity condition (25) to be
fulfilled for all the considered triangles) an empirical superiority of the Unbiased formula (35) in
terms of (46) (see section 4).

However, since the quantity (46) might not be the most appropriate and the three above-
mentioned assumptions might not be consistent, from a theoretical point of view the assessment
of the “goodness” of the three estimators might still be a subject for future research.

4. Numerical Examples
Let us first analyse a simulated example.

4.1 Asimulated example

Consider the cumulative payments (C; j) showed in Table 1 which have been simulated (for a given
set By and independently for each accident year i) by using the true parameters (f;), (ojz) specified
in Table 2 according to the time series model

Ci,jr1 =1iCij + 0j3/Ci j&ijt1, (49)

with (g;j+1) iid., uniformly distributed on [— V3,4/3]. Consequently, having additionally
ensured positiveness of the data (see Model Assumptions 3.9 (time series model) and the related
Remarks 3.10 in Merz & Wiithrich, 2008), these cumulative payments fulfil Model Assumptions 1.

Also recall that when the true parameters are known, the true value PV + EE( for the
ultimate prediction uncertainty can be computed analytically through formulas (16) and (18).

These data yield the parameter estimates related to Mack’s model, as indicated in Table 3, as
well as the ultimate estimates (Cl 7) and reserves (C, 7 — Ci 1—;) at time I, as indicated in Table 4.
Moreover, using estimators (39), (42), and (35), we can obtain the prediction uncertainties, as
indicated in Table 5.

Given Dy, the empirical true value PVyt + EE¢o is calculated by simulating the future claims
payments (30’000 simulations using the true parameters (f;), (sz)) and computing the average of
the squared differences between simulated ultimate value and the ultimate estimate at time I given
by Zf:o Ciy. As expected, this numerical simulation yields a result that is well aligned with the
true value.

Table 5 indicates that the three formulas (Mack, BBMW and Unbiased) to quantify the ultimate
prediction uncertainty yield similar results. However, the true value PV, 4+ EEo is considerably
smaller than the estimated values, and, in this case, the Unbiased formula (35) achieves a result
that is most similar to the true value.

However, such a scenario does not usually occur. In fact, if another simulated triangle (see
Table 6) based on the same true parameters and same set B is considered, the results presented in
Table 7 are achieved. It can be noted that in this case, the BBMW formula yields the result closest
to the true ultimate uncertainty.

Finally, Table 8 presents the results of the performance simulation study (herein 50’000 trian-
gles based on the same true parameters and same set 53y are considered) related to the expected
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Table 1.

Example 1: Cumulative payments (C; ;).

ifj

0

1

2

3

4

5

6

7

8

9

10 11

12

fLiiN i I NIWIN RO

[ N
N RO

65’971

64’913

64’019

60’412

60’994

82’391

75°977

74’212

65’557

66’116

66’782

71’205
72’624

93’977

157347

174946

160’551

172’012

224’355

155’179

87’136

109’086

89’469

98’407

117434

153’900
202’827
330’174

281’175

224°271

277’463

299’669

135’433

203’401
118’576
95’662

117’546

179’785

283’647

507279

452’177

310’410

441’493

445’931

189’653
343’608

235’807

360745

635’517

664°043

421’458

570’113

505’293

283’374

456’945

267'996

415’762
803’765

847’500

502’431
641’125
590’708

365’485

281’408

429’018

944'734

908’333

597°008

792’838

316’691
468’920
1°065’840

942’100

628’692
871’763
734’989

326’726
534’776
1'164’170

983’815

700’158

337’556

582’498
1'234°940

1'014°437

359’336 372°286

605’717 628’852
1'291’107

376’973
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Table2. The true model parameters.

J 0 1 2 3 4 5 6 7 8 9 10 11
fi 2.000 1.500 1.400 1.300 1.200 1.150 1.100 1.070 1.060 1.050 1.030 1.020
sz 16’900 10°000 6’400 4’900 3’600 2’500 1’600 900 400 100 25 9

Table 3. Example 1: Parameter estimates.

J 0 1 2 3 4 5 6 7 8 9 10 11
’6\' 2.003 1.525 1.470 1.311 1.206 1.152 1.086 1.084 1.053 1.047 1.037 1.013
;F 26’471 14’052 7017 4’353 2’026 4’160 1019 1’118 457 68 1.05 0.02

Table 4. Example 1: Ultimate estimates and reserves at time /.

i Ciy (Ciy — Ci1—i)
0 376’973 0

1 636’769 7917
- B
= e
i =
5 1°094’483 222’720
= S
o e
T oo e
9 294’508 175’932
s S
o e
B e R
Total 9'941°452 3’096’447

Table 5. Example 1: The ultimate prediction error for aggregated accident years (as a percentage
of the reserves).

Prediction error'/? Process variance'/2 Estimation error!/2
Mack formula (39) 490’627 (15.8%) 429°735 236’735
BBMW formula v(42) 490’741 (15.8%) v 429’735 ” 236;970
Unbbias‘ed formﬁla (35) - 4>89’7‘l3 (15.8%) - 428’820 - >236"500
Truevalue e . 384’351(124%) [ 372’431 e 94’785 —
Truevalue (emp|r|ca[) R 334’365(124%) e
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Table 6.

Example 2: Cumulative payments (C; ;).

ifj

0

1

2

3

4

5]

6

7

8

9

10 11

12

fwimiNio I MIWINIRIO

[
N RO

65’971
64’913
64’019

60’412

60’994

82’391

75977

74212

65’557
66116

72’624

187958

93’936

140’629

100’735

71°286

213’956

205’051

105’289

98’112

76’987

172’000

125’926

344’405
103’214

186’520

106’167

71’699

279’304

108’207
184’062

152’162

358’828

439’786

136’486

205’785

188’834

113281

346’391

467’630

142’900

199’007

241'746
190’652

614’193

208’890

283’690

231’957

484’429

555’140

199’517

662285

241’909

335’372

296’436

632’496

618271

268’919

786’108

253’084
395’181
316’313
752’848
683078

911’763
293’980
446’817

342’334

938’338

312’383

469’567

368’969

176’703

965’090

342’935

501’198
381'722

1°023’516
3657469

1'054’659
380’311
520°948

1°072’869
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Table 7. Example 2: The ultimate prediction error for aggregated accident years (as a percentage of the reserves).

Prediction error'/? Process variancel/2 Estimation error'/?
Mack formula (39) 475’458 (18.2%) 399’960 257°083
BBwaormu[a(42) S 475’631(132%) R 399’950 e 257,404 —
Unvbi,a.se,d,f.okmm,a. (35) o 474,335 .(18,'2,(.)/0). R 3987831 e ”2'56’7'5'3'
True value 514’190 (19.7%) 386’880 338’697
Trueva[ue(empmca[) [ 513869(197%) st dhset sttt

Table 8. Expected squared deviation between estimator'/2 and true value'/?, given By.

1/2
Estimator E |:(estimator1/2 — (PVior + EEm)l/Z)z Bo] (empirical)
Mack formula 111°284
BBMW formula 111’307
Unbiased formula 111’171

squared deviation between estimator and true value, given By. Here, it can be empirically observed
that the Unbiased formula (35) slightly outperforms the other formulas.

Increasing the number of available accident years related to the above considered examples, we
get the data shown in Tables 9 and 10. Computing the prediction uncertainties at different points
in time (i.e. for different triangles sizes), we get the results displayed in Tables 11 and 12.

From Tables 11 and 12, we can observe that, at each evaluation point in time, the three for-
mulas do produce very close results. Moreover with increasing data availability, the possible gaps
between estimators and true values reduce, since the estimators for the model parameters tend to
get closer to the true parameters values.

In particular, as we can see from Table 13, at each evaluation point in time the Unbiased formula
is performing slightly better than Mack and BBMW formulas. Moreover, the expected squared
deviation between estimator and true value, given By, does decrease with increasing triangle size.

Remark 9. We highlight that all the considered triangles in this simulation study do fulfil the
regularity condition (25). Also, we would like to further underline that deviations from the true
value are ordinary and simply due to the random variable nature of estimators. Nevertheless, the
large deviations we observed in our simulation study, as well as their high frequency (see Table 14),
is noteworthy. Moreover, it is important to underline the key role played by the largeness of the
data availability given by I — J. Indeed, a large data availability helps to reduce the probability
that estimator (35) does significantly differ from the true value. In other words, I — J should be
sufficiently large (in fact larger than usually considered in the examples presented in actuarial
literature or usually available in actuarial practice) in order to get an estimator which is well close
distributed around the true value. A large data availability also helps to reduce the variance of the
estimated sigma parameters which generally tends to be very high.

4.2 Performance simulation study for different model parameter choices

Similarly as in the previous section, we simulate triangles according the time series model (49)
with (g;+1) independent and shifted Gamma distributed with some given shape parameter «,
with variance equal to 1 and expected value equal to 0. Then we run the performance analysis
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Table 9.

Example 1 extended: Cumulative payments (C;, ;).
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65’971

64’913

64’019

60’412

60’994

82’391

75977

74’212

65’557

66’116

66’782

71°205

72’624

69’416

68 616

69 127

69’628

70’102

69’925

70’045
72’103

93’977
157 347
174 946

160 551

172’012

224 355

155 179

87 136

109’086

89’469

98 407
117 434
84’808

87 661

168 115

126 411

181’068
151 222
155 371

93 749

153’900

202’827

330°174

281’175
224°271

277’463
299 669

135 433
203’401

117’546
95’662
151’816

102’663

164’ 054H
.214 701” “
v183 177” ”
222’080

219 712

179’785

283 647

507 279

452 177

310’410
441 493
445 931

189 653

343’608

118 576

151 965

248 361

129’466

248 275

308 513

304 000
275285

313’410
196 698

235’807

360’745

635 517

664 043

421 458

570 113

505 293

283 374

456’945
» ‘].85"6‘50 )
150900
S
175’186
» ;'351‘;3‘93 )
423020

443’417

267’996

415’762

803’765

847’500
502’431

641’125
590’708

365’485

504’607

197 592

203 406

387 811

175’105
475’289
558’593

482’717

297’546

281’408
429 018
944 734

908 333

597°008

792’838

734 989

446 963

549’682

213’174

194 874

417 993

184’382

581°022

316’691
468 920

1 065 840

942 100
628’692
871 763

461 470

632’797
256 860
199 719

481 994
231’315

598’347
663’451

805 892

326’726

534 776

1 164 170

983 815

700’158

894’636

865’876

468°728

655’584

280’429

231’999

523’657

235’838

337'556

582 498

1 234 940

il 014 437
751'541

966 834
885 785

514’ 249
672’495

303’948
230’908

557’415

359’336
605 717

1 291 107

I8 078 913
797 209
l 002 860

917’890

545’536
719’988
317219

372’286
628 852

1 320 394

v 110 290
822 004
1 024 748

566’204
744’545

329°044

944’797

376'973
641 664
1 344 345
r 133 825
839’913
>l’0‘42>’03‘2
960'668
577834
757’119

239918
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Table 10.

Example 2 extended: Cumulative payments (Cj ;).
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470’862

468’843

438°043
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Table 11.
different triangles sizes.

Example 1: The ultimate prediction error for aggregated accident years (as a percentage of the reserves) for

=9
J=19

=12
J=12

/=16
J=12

/=20
J=12

Mack formula (39)

BBMW formula (42)

Unbiased formula (35)
“Trueva[ue A
”True value (empmcal)

Cham ladder reserves

Mean unpa|d losses (empmcal)

579’474 (19.2%)

579’733 (19.2%)

578’395 (19.1%)

673’590 (22.3%)

671°765 (22.2%)
3'021°352
3'568’807

490’627 (15.8%
490’741 15 8%

( )

(3 )
489'7 713 (15 8%)
.384 351 (12. 4%)” b

( )

384 865 12.4%
3'096°447
3’003’186

458°046 (16.3%)

458112 (16.3%)

457424 (16. 3%)’ ‘
( )
( )

383 673 13 7%

383 214 13 7%
2’803’458
2’825’695

447210 (14.7%)
447°248 (14.7%)

446771 (14.6%)

384772 (12.6%)
386'215 (12.7%)
3'051°423
3076597

Table 12. Example 2: The ultimate prediction error for aggregated accident years (as a percentage of the reserves) for
different triangles sizes.
=9 1=12 1=16 =20
J=9 J=12 J=12 J=12

Mack formula (39)

BBMW formula (42) B

Unbiased formula (35)
“Trueva[ue e X

True value (empmcal)

385’816 (20.1%)

386’005 (20.1%)
384 695 20 0%)

(
925'734 (48 2%)
928 872 (48.39%)

(18.2%)
( )
474’335 (18.2%)
(19.7%)
(19.7%)

475 458 18 2%

475 631 18 2%

514 190 19 7%

513 869 19 7% 440 187 13 5%

( )
( )
480'213 (14.7%)
( )
( )

480’883 14 7%

480’963 14 7%

438 029 13 4%

478 895 14.2%
478 348 14 l%
458 861 (13 6%

478'842 (14.2%)
)
)
)

459 576 (13.6%)

Cham—ladder reserves 1 921 321 2 Gll 709 3 268 351 3’383’968
Mean unpaid losses (empirical) 2’772°488 2’951°016 3’453’913 3’575°031
Table 13. Expected squared deviation between estimator/2 and true value'/2, given By, for
different triangles sizes.
Estimator I1=9 =12 /=16 =20
J=9 J=12 J=12 J=12
Mack formula 195’358 111°284 74 765 59’651
BBMW formula 195’466 111°307 74 773 59’655
Unblased formula 195’125 111’171 4 705 59’616
Table 14. Probabilities of a high deviation from the true value, given 3y, for different triangles sizes.
1= =12 =16 =20
J=9 J=12 J=12 =12
(™ 1) Vi BB 2 .
P Vo TR >10%|Byp | (empirical) 79% 69% 53% 40%
(—NEW —NEW\1/2
(Pvlo( +EEot —(PViot+EEor) /2
>2% 73% 54% 27% 15%

Reserves at time I

{

Boi| (empirical)

for different model parameter choices (f;) and (ajz), which have been inspired by some real data
triangles in actuarial practice. The studied data 3 are shown in Table 15, and the chosen model
parameters for the different classes of business are shown in Table 16.

The results of the performance analysis (40’000 triangles considered for each model parameter
choice) related to the expected squared deviation between estimator and true value, given By,
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Table 15. The set By by class of business.

i Motor Liability Motor Hull Property Commercial Liability
0 15’043 7980 10’441 19’583

re ; 14899 e 9847 e 11229 B 14991 S
= v15'v2'54” . . v.7,984,. B v12,,805. S 15686

3 14’066 8’609 10’705 12’374

5 iy 10890 e 10206 [ .9,,.7.45 S
7 14’376 15’149 12’573

10 v13'583 : v 5354 ‘ v 12v’54l

11 » >l3’229‘ ‘ » >3’389 ‘ ‘ 10>’124 - >2’866 ‘

13 . . 14253 e 3480 e 13815 [ 2887 S
14 v15’001 : v 4’864 ‘ v19v’456 o v2'866

15 » >l4’589‘ ‘ » >4’650 ‘ ‘ 10>’58>7 - >2’770 ‘

18 26’937 21’987 133’164 3’163

19 . - ,2.8’,7.02,. B ,2.1’163,. B 1‘30}‘333‘ S 3,230 -

are presented in Table 17. Again, it can be empirically observed that the Unbiased formula (35)
slightly outperforms the other formulas.

4.3 Two real data examples

In this section, we analyse two real data examples. Note that in this case, there is also a model risk
involved since we do not know, whether the data do exactly fulfil Model Assumptions 1 or not.
Therefore, adding a loading on the three formulas is generally appropriate. This might also be the
main reason why, based on various empirical studies on real claims data, there seems to hold a
conjecture suggesting that the classical Mack estimator may be rather on the optimistic side.

4.3.1 The Merz-Wiithrich triangle
We consider the Private Liability triangle presented in Merz & Wiithrich (2014) (see Table 18) and
first observe that the regularity condition (25) is fulfilled.

Evaluating the three estimators for the ultimate prediction uncertainty, we get the results
displayed in Table 19 and remark that the formulas lead to very close outcomes.

Since we do not know the true model parameters (f;) and (sz) we cannot compute the true value
PViot + EE(ot. However, based on the estimated parameters at time 16 we can make some rational
guesses for the true model parameters and then compute the true value for the ultimate prediction
uncertainty. By doing this, we observe that PVt + EE¢ot could materially deviate from the esti-
mated values. This is remarkable, because it means that if the cumulative payments will effectively
evolve according to Model Assumptions 1 with model parameters as given by our guesses, then the
true prediction uncertainty would materially deviate from the three available formulas. Moreover
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Table 16. Performance study by class of business: The true model parameters and distribution assumptions.

(Motor Liability) Shifted Gamma distribution with shape parameter o = 1.5, scale parameter 6 = \/(1/1.5) and expected value 0

J 0 1 2 8 4 5 6 7 8 9 10 11 12

fi 1.530 1.124 1.093 1.070 1.051 1.036 1.041 1.024 1.022 1.024 1.023 1.007 1.006

sz 227.4 25.4 19.7 18.6 18.3 13.9 10.6 8.1 6.1 4.7 3.6 2.7 2.1

13

1.013

1.6

14

1.014

1.2

15
1.033
38.6

(Motor Hull) Shifted Gamma distribution with shape parameter « = 8, scale parameter 6 = \/(1/8) and expected value 0

J 0 1 2 3 4 5 6 7 8 9 10 11 12

13

14

15

fi 1.309 1.003 1.004 1.000 1.001

aj? 206.3 0.9 0.5 0.1 0.3

(Property) Shifted Gamma distribution with shape parameter « = 5, scale parameter 6 = \ﬂl/S) and expected value 0

J 0 1 2 3 4 5 6 7 8 9 10 11 12

13

14

15

fi 2.326 1.192 1.050 1.064 1.009 1.003 0.997 0.999 0.999  0.999

ajz 10748.9 666.6 122.1 181.2 93.1 6.2 2.2 2.7 0.5 0.4

(Commercial Liability) Shifted Gamma distribution with shape parameter & = 1.5, scale parameter 6 = \/(1/1.5) and expected value 0

J 0 1 2 3 4 5 6 7 8 9 10 11 12

fi 3.072 1.692 1.374 1.204 1.195 1.075 1.078 1.069 1.065 1.024 1.017 1.018 1.014

sz 8002.2 2302.7 897.5 624.2 356.2 203.2 116.0 66.2 37.8 17.2 14.0 7.0 6.0

13

1.008

1.8

14

1.007

1.0

15
1.054
151.6

ovl
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Table 17. Expected squared deviation between estimator'/? and true value'/2, given By, by class of business.

Estimator Motor Liability Motor Hull Property Commercial Liability
Mack formula 6’044.5 428.062 23'963.1 7718.1

BBMW f ormu[a .................. 6’0446 ............... 423053 ........... 23’9645 ................ 7’71 84 ......
Unb|a5ed formu[a e 60441 e 423061 e 239576 B 77091 R

note that, when believing in the above mentioned empirical conjecture, we might conclude that
our first two guesses are more realistic, because for these choices the true value PVio + EEq is
bigger than the three estimated values, meaning that the real uncertainty is higher than indicated
by the classical Mack formula. Also note that the difficulty in making a rational guess is highly

driven by the sigma’s parameters, since the variances of (sz) are very high for the considered tri-
angle size. In that respect, we remark that when having more accident years data at our disposal,

the guessing procedure would likely be facilitated and the related true values will tend to be closer
to the three formulas, as also indicated by the simulated example in section 4.1 (see Table 13).

4.3.2 The Taylor-Ashe triangle
We consider the triangle presented in Taylor & Ashe (1983) (see Table 20) and first observe that
the regularity condition (25) is fulfilled.

Evaluating the three estimators for the ultimate prediction uncertainty, we get the results
displayed in Table 21 and again remark that the formulas lead to very close outcomes.

Similarly to the previous example, we observe that the true value PVt 4+ EE¢ot computed based
on some rational guesses for the true model parameters could materially deviate from the three
formulas. Moreover, the fact that the true value can be bigger than the estimated values for several
model parameter guesses might also be a driver for the empirical conjecture suggesting that the
classical Mack estimator may be on the optimistic side.

5. Conclusion

Within the chain-ladder model of Mack and under some additional technical assumptions, we
derived a new estimator for the ultimate prediction uncertainty that is unbiased (condition-
ally given the first triangle column). Unluckily, from a theoretical point of view, the unbiased
estimator does also show some peculiar behaviours, in particular with respect to its possible neg-
ativity. However, from a practice point of view, these behaviours do not create difficulties when
considering typical insurance data. Also, the required additional technical assumptions can be
reasonably assumed to hold true, since they are consistent with data typically encountered in actu-
arial practice, and should not be confused with the strong (and possibly inconsistent) assumption
of positivity along all the (finite) trajectories of the claims payments process.

Furthermore, we underline that the three considered formulas (Mack, BBMW and Unbiased)
produce extremely similar results, and the differences may not be significant for applications in
actuarial practice.

Therefore, using the straightforward explained Unbiased formula (which deliver the smallest
result) does not lead to any relevant misestimation of reserve risk compared to the Mack and
BBMW formulas, also in case the true value occurs to be bigger than its estimators.

Indeed, we demonstrated that all three estimators can, with non-negligible probability, mate-
rially fail to quantify the true uncertainty, especially when considering small or average-sized
triangles often available in practice.
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Table 18. The Merz-Wiithrich triangle: Cumulative payments (C; ;), estimated and guessed parameters.

ili 0 1

2

3

4

5

6

7

8

9

10

11

12

i3 14 15

16

13’109 20’355
16’075 22’672
16’551 23’706

14629 21’645
17’585 26’28

17419 25’941

foimiNi iAW IN RO

=
(o

15’471 23’745
23’39

14’540 22’642

T
Rwinim
e

‘g

i

o

@

13'967 21’515

=
S

16 12’539

14457 22’038
15’682 23’464

15439 23’796

16’665 25’370

14’590 22’336

12’930 20°111

21’337
22’627

23’753

24’465

24’627

24’866

22’826
27°623

27°066
26’909

25’117
26’809

23’571

23’440
22’603

22’043

23’114

24’052

25’052

25’573

25’317

23’599

27939

27761

27’611

26’378

27’691

24’127

24’029

22’401
23238

24206

25’529

26’046
26’139

24°992

28’335

28’043

27729
26’971
28’061

24’210

22’658

23’312
24’757
25’708

26’115

26’154
25’434

28’477
27’861
27’396

22’997

23’440

24’786

25’752

26’283

26’175
25’476
28’721
29’830

26205

28’759

23’158

24’807
25’770
26’481

25’549

28’878

29’844
27’480

23’492
23’964
24’823

25’835

26’701

26’764
25’604
29’525

28’948

23’664
23’976

24’888
26’718

25’709

307302

26’075

26’818

23’699
24’048

24’986

26’082

26’724

26’836

23’904

24’111

25’401

26’146

26’728

26’959
25’723

23’960
24252
25’681

26’150

26’735

23992 23’994 24’001
24’540 24’550

24’002

25’705 25’732
26’167

(Parameter estimates)

1511 1.054

ajz 29.499 16.833

1.027
2.648

1.017

5.444

1.013
3.248

1.011

11.424

1.003
0.188

1.011

2.613

1.007
2.086

1.001
0.054

1.006
0.908

1.004
0.540

1.0036
0.720

1.0004 1.0004 1.00004
0.008 0.0002 0.000003

(Guess 1)

fi 1.530 1.055

aj? 25.000 12.000

1.030

4.500

1.018

4.000

3.500

1.013

1.011

2.000

1.011

2.000

1.011

2.000

1.007

1.000

0.900

1.006

1.005

0.800

1.004

0.400

1.003

0.300

0.010 0.0001 0.000001

1.0005 1.0004 1.00005

(Guess 2)

f; 1.500  1.060
sz 35.000 20.000

1.030
3.000

1.025
3.000

1.010
2.000

1.010
2.000

1.0045
1.500

1.0044
1.500

1.002
1.000

1.0015
0.900

1.001
0.800

1.001
0.500

1.0007
0.500

1.0006 1.0004 1.00004
0.020 0.0002 0.0000035

(Guess 3)

i 1532 1.047

(rjz 36.644 19.308

1.027
2.863

1.017
5.536

1.013
1.530

1.005
7.000

1.003
0.188

1.011
2.683

1.004
0.288

1.0024
0.083

1.004
1.247

1.004
0.596

1.004
0.942

1.0005 1.0004 1.00005
0.008 0.0001 0.000003

(414!
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Prediction error/? Process variance/2 Estimation error'/2
Mack formula (39) 3 233 681 (13 4%) 2°467.086 2 090 497
BBMW formula (42) » ‘3 ’233.698 (13 4%) » ‘2’467.086 - » 2 090 524 |
“Unbiased fo formula (35') 3233.606 ( (13.4%) a0l 2090470
True value (Guess 1) 3717576(154%) 2091983 3073.105
True value (Guess 2) 5’ 326 065 (22 1%) 2°053.842 4 914 133
Truevalue (Guess3)  2'756582(114%) 2272219 1'560.694
Table 20. The Taylor-Ashe triangle: Cumulative payments (C; ;), estimated and guessed parameters.
ilj 0 1 2 3 4 5 6 7 8 9
0 357’848 1’ 124 788 1'735°330 2218270 2’745’596 3 319 994 3’466’336 3 606 286 3 833 515 3 901 463
1 352118 1230139 2170033 3353322 3799067 4120063 4647867 4914039 5339°085 '
2 ”29v0"50T 1 292 306 B 2;218’525” 3’235’179 v 3'985’§§5 B 4 132 918” 4’628’916 4 909’ 315
3 310608 1'418’858 2’195°047 3’757°447 4’029’929 4’381'982 4°588°268
é 440'832 1°288’463 2’419’861v 3'483’130
7 359480 1'421’128 2’864’498
. . 344014 e e
(Parameter estimates)
/ﬁ 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018
:7? 160’280 37’737 41’965 15’183 13’731 8’186 447 1’147 447
(Guess 1)
fi 3.300 1.740 1.500 1.200 1.110 1.090 1.065 1.060 1.020
sz 160°000  42°000 38’000 15’000 13’000 9’000 700 600 500
(Guess 2)
)? 3 500 1. 700 1.550 1.220 1. 150 1.100 1.065 1.055 1.010
,Uj.zv. 150 000.,” 55 000 o 43000 15000 .14 000 8000 1000 900 700
(Guess 3)
lj- 3 700 l 750 1.500 1. 180 1. 130 1.100 1.050 1.080 1.020
..0}2.. o 000... se00s . 33’000 e .12 000 e ..10 000 . 5’000 R 600 R 400 S 200 B
Table21. The Taylor-Ashe triangle: The ultimate prediction error for aggregated accident years (as a percentage

of the reserves).

Prediction error/?

Process variance

1/2

Estimation error:

1/2

Mack formula (39)
BBMW formula (42)
Unb|ased formula (35)

True value (Guess l)

True value (Guess 2)

True value (Guess 3)

2'447°095 (13.1%)
2 447 618 (13.1%)

2444848 (13.1%)
2°092°493 (11.2%)

3'312’339 (17.7%)

2'814°234 (15.1%)

1’878'292

1'876°045
1'928’143

1'756°879

1'878°292

2’112°207

1’568’532

1'567°717
812 891

2 198 474

1'569'349

2 551 504
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