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ON BIORTHOGONAL SYSTEMS AND
MAZUR'S INTERSECTION PROPERTY

JAN RYCHTAR

We give a characterisation of Banach spaces X containing a subspace with a shrinking
Markushevich basis {x7,/7}7 er. This gives a sufficient condition for X to have a
renorming with Mazur's intersection property.

A biorthogonal system in a Banach space X is a subset {z7, /7}7er C X x X*
such that fy(xy) = <57y for 7,7 ' e F. The biorthogonal system {z7,/7}7gr m X is called
fundamental if X — span{a;7; 7 e F}. A Markushevich basis is a fundamental biorthogonal
system {a;7, / 7 } 7 € r in X such that {/7}7er separates points of AT. A Markushevich basis
{x7, /7}7gr C X x X* is called shrinking if X* = span{/7; 7 e F}. In this note we use F
as a cardinal number.

A Banach space X is said to be an Asplund space, if every separable subspace of
X has a separable dual. A Banach space X has Mazur's intersection property if every
bounded closed convex set can be represented as an intersection of closed balls. A density
of a topological space is the least cardinality of a dense set. We refer to [2] for undefined
terms used in this paper.

It is known, [9, Theorem 7.18, Theorem 7.12], that if a dual unit ball of a Banach

space X is a Corson compact, then dens X = u;*-dens X* and the following are equivalent,

(i) X has a shrinking Markushevich basis,

(ii) X is an Asplund space,

(iii) X admits a Frechet smooth norm.

Let us remark that if a norm on X is Frechet smooth, then X has Mazur's intersection
property, [1, Proposition 4.5].

When we do not assume that the dual unit ball is a Corson compact, then the above
is no longer true. For example, the Banach space C(K), where K is a Kunen's compact
(see [8, 5]), is an Asplund space without shrinking Markushevich basis and without
Mazur's intersection property ([6]).
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The aim of this note is to prove a theorem in the spirit of equivalences above but
without assuming anything about a dual unit ball.

THEOREM 1. Let E be a Banach space. Then the following are equivalent.

(i) There is a subspace Y C E with a shrinking Markushevich basis {z7, /7}7er-

(ii) There is an Asplund space X C E with dens A" = to'-dens X* = F.

(iii) There is a subspace Z C E that admits a Frechet smooth norm and such

that dens Z - tu*-dens Z* = T.

Moreover, if one from the above occurs with V = densE*, then

(iv) E admits a norm with the Mazur intersection property.

REMARK. The condition densE = dens27* is necessarily for renorming with Mazur
intersection property due to [3].

PROOF: Implications (i) => (iii) => (ii). If Y has a shrinking Markushevich basis,
then Y admits a Frechet differentiate norm [2, Theorem 11.23]. Thus it is an Asplund
space [2, Theorem 8.24). It remains to show that u>*-densy* = densV = F. Let
{ga;a 6 A} C Y* be a weak* dense set. As the basis {z7,/7}7er is shrinking, we
may assume without loss of generality that {ga;a € A} C span{/7;7 e F}. For a
contradiction, assume that \A\ < F. Thus there is F' < F such that

{ga;aeA} C span{/7;7 e F'}.

Hence, for 7 € F \ F' and all a € A

a contradiction with the density of {ga; a £ A}. D

Implication (i) => (iv). Due to [6, Theorem 2.4], to show that E admits a norm with
the Mazur intersection property, it is enough to construct a fundamental biorthogonal
system {g7)a;7}76r C E* x E. As we assume that Y C E has a shrinking Markushevich
basis, that is a fundamental biorthogonal system {/7,a;7}7er cY'xY, we only need to
show the following.

LEMMA 2 . Let E be a Banach space with dens E* = F and Y C E be a closed

subspace. Assume that there is a fundamental biorthogonal system {/7, x 7 } 7 e r C Y* x Y.

Then there is a fundamental biorthogonal system {<77,z7}76r C E* x E.

PROOF: By a relabeling and rescaling, we may have a fundamental system

{/", ^"Ker.neN CY'xY such that for every 7 € F, limn ||/£|| = 0. By the Hahn-Banach

theorem, consider / " 6 E*. Let {<77}7gr be a dense set of BE~ l~l Yx.

We claim, that A = {gy + /"}7er,neN is linearly dense in E*. Indeed, let G e E"

be such that G(f) = 0 for every f e A. Then G($7) = HmnG(s7 + /") = 0 and thus

G e (Y1-)^- = Y*\ Hence G = 0 as {/"}76r,n6N are linearly dense in Y*.
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Hence {gy + f",x"}j€r,neti C E* x E is a fundamental biorthogonal system. D

REMARK. AS CQ(T) C C([0, F]), Lemma 2 provides a direct proof of the fact that there is
a fundamental biorthogonal system {/Ylz7}76r C C([0,F])* x C([0,r]) . Thus C([O,r])
admits a norm with Mazur's intersection property, see also [6, Lemma 3.5].

Thus it remains to prove the implication (ii) =>• (i).

The proof goes in the spirit of [7, Theorem l.a.5] and [4]. We shall use the concept
of the Jayne-Rogers selector, see [1, Chapter 1]. The Jayne-Rogers selection map Vx on
an Asplund space X is a multi-valued map that satisfies the following.

(i) Vx(x)^{Dx(x);neN}uD^(x)cX%
(ii) Dx, for n G N, are continuous functions from X to X*,

(iii) D£(X) = lim Dx(x) for every x € X,
n—too

(iv) Dx \ \ \ \ 2

(v) X' =

Such selector exists by [1, Theorem 1.5.2].

In order to construct Y C X we shall define, by a transfinite induction, vectors
xa+i G X, subspaces Ya c X and subsets Fa c X', for all a < F. Put Yo = 0 and Fo = 0
and pick arbitrary nonzero x^ G {Fo)± — {x G X;f(x) — 0 for all / G Fo}. Then put
Yi = span{a;i}, and Fi = {Vx(x);x G Yi}. Let Ya and Fa for a < V have been chosen.
Notice that densFQ < F and thus densFQ ^ K0.densyo < F. Thus Fa is not tu*-dense
and we can pick a nonzero vector xa+i G (Fa)±. Set Ya+i — spanjl^ U {xQ+i}} and
Fa+1 = {Vx(x);x€Ya+1}.

If a ^ F is a limit ordinal, define Ya = span U/?«, Yp and Fa — [Vx{x),x G Ya}.

Put Y = span UQ<r 1^. We shall show that Y has a shrinking Markushevich basis
{xa+i> /a+i}a<r; where {a;Q+i}Q<r have been already chosen and their biorthogonals } a + \

will be defined by projections.

Clearly Y = span{xQ+i;a < F}. Let us define projections Pa : Y -> Ya for all a $ F.
First define projections Pa : span{a;Q+i;a < F} —¥ Ya by letting Pa{xp) = xp if /3 ̂  a
and 0 otherwise. Pa are well defined and once we show that they all have norm 1, they
will extend naturally onto desired projections on Y.

Take x G span{xQ+i;a < F} and fix a ^ F. Then by the properties of the Jayne-
Rogers selector and due to the choice of {a;a+i; a < F} we have

||Pa(x)| |2 =

Thus | |Pa | | = 1.

Define fa+l G Y* for a < F such that | | / a + , | | = 1 and fa+l G (Pa+i - Pa)*Y*.

Clearly {x a + i , / a + i} Q <r is a biorthogonal system.
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We shall show that the projection {PQ}o<r are shrinking. From that it follows that

Let a ^ F be a fixed limit ordinal and set Z — PaY. Let / € Z* be arbitrary. We

need to show that there exist a sequence of ordinals /?„ —¥ a and gn € PpnZ* such that

gn -*• f in Z*. Fixe > 0. Denote Vz the restriction of Vx on Z, that is £>f (z) = D£(Z)\Z

for all z € Z. Clearly Vz is the Jayne-Rogers selection map for Z. As Z C X is an

Asplund space, Z* = sp&nVz(Z). Thus

/ -
«=n+l

< £ ,

where ki € N, for i — 1 , . . . , n and zt £ Z, (or i = 1,. ..,m. Because

limit of Dz, there are ki € N,i = n + 1 , . . . ,m such that
is a pointwise

< e.

Because D z are continuous, there is [3 < a such that

II m

for z'i e P0Z.

Thus it remains to show that T>Z(PP{Z)) C P$Z* for /3 < a. Let z € PPZ. By the

choice of {xo+1; a < T) we know that 2?z(z)(z7) = 0 for 7 > ft. Thus

for all x € Z, and it was exactly what we needed to prove.
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