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JORDAN MAPPINGS OF SEMIPRIME RINGS II

MATEJ BRESAR

We describe Jordan homomorphisms and Jordan triple homomorphisms onto 2-
torsion free semiprime rings in which the annihilator of any ideal is a direct sum-
mand.

1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to complete some results from our work 3], concerned with
Jordan homomorphisms (that is, additive mappings of rings satisfying 8(ab + ba) =
6(a)8(b) + 6(b)6(a)) and Jordan triple homomorphisms (that is, additive mappings
satisfying 8(aba) = 6(a)f(b)6(a)). First, let us look at two simple examples of Jordan
homomorphisms.

EXAMPLE 1: Let R, U' and V' be rings, and let o: R — U’ and %: R — V' be
a homomorphism and an antihomomorphism, respectively. Define §: R — U' & V' by
6(r) = (¢(r), ¥(r)). Then 8 is a Jordan homomorphism.

The next example is, in fact, the special case of Example 1.

EXAMPLE 2: Let U, V, U’ and V' berings, andlet o: U — U’ and ¢: V —>
V' be a homomorphism and an antihomomorphism, respectively. Then the mapping
0: UV U V', 8(u, v)=(p(u), ¥(v)), is a Jordan homomorphism.

Note the important difference: in Example 2 the image of 8 is an (associative)
subring, while in Example 1 this need not be true.

Let 8 be a Jordan homomorphism of a ring R onto a 2-torsion free semiprime ring
R'. Baxter and Martindale showed that in this case there exists an essential ideal E of
R such that the restriction of 8 to E is of the same form as the mapping 6 in Example
1 {2, Theorem 2.7]. Roughly speaking, in [3, Theorem 2.3] we generalised their result
by showing that this restriction is rather of the form as in Example 2. Baxter and
Martindale also proved that if R' is centrally closed (that is, its centroid coincides with
its extended centroid) then the restriction to an essential ideal is unnecessary, thus 8 is
like in Example 1 [2, Theorem 3.8]. In this paper we show that in the case of centrally
closed semiprime rings 8 is rather like in Example 2. In fact, we prove that this is
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true for a more general class of semiprime rings, that is, semiprime rings in which the
annihilator of any ideal is a direct summand.

Let I be an ideal of a semiprime ring R'. It can be easily shown that the left
and right and two-sided annihilators Ann(I) of I coincide. Next, INAnn(I) =0 and
I ® Ann(I) is an essential ideal of R'. As we have mentioned, we will be concerned
with semiprime rings R' in which the annihilator of any ideal is a direct summand; that
is, Ann(I) ® Ann(Ann(I)) = R’ for every ideal I of R'. Every prime ring trivially
satisfies this condition. Moreover, the same is true for a direct sum of prime rings.
Another important example is a semiprime Baer ring (see {4, Theorem 13]). Next we

have

LEMMA 1. Let R' be a centrally closed semiprime ring. Then the annihilator of
any ideal in R' is a direct summand.

ProoOF: In [1] Amitsur defined the notion of a closed ideal in a semiprime ring
(not to be confused with the notion of a centrally closed semiprime ring): an ideal U
is closed if U = Ann(Ann(U)). We claim that the ideal U in any semiprime ring is
closed if and only if it is the annihilator of some ideal. If U is closed then U is the
annihilator of the ideal Ann(U). Conversely, let U be the annihilator of an ideal V.
Then V C Ann(U) and so Ann(Ann(U)) C Ann(V) =U; hence U is closed.

Now, let R' be a centrally closed semiprime ring, and let J be the annihilator of
some ideal of R'. We want to show that J is a direct summand. By the above argument
J is a closed ideal and so it follows from [1, Corollary 9] that J = R' N Qe where
Qo is the ring of quotients of R' and ¢ is an idempotent contained in the extended
centroid of R' (that is, the centre of @Q,). However, R' is centrally closed and so €
actually lies in the centroid of R', thus R'e C R'. We claim that J = R'e. Clearly
R'e C J. Conversely, since J C Qoe we have z = z¢ for every z € J, and therefore
J € R'e. Of course, R' = R'e® R'(1 — ¢) which means that J = R'¢ is indeed a direct
summand. 0

2. THE RESULTS

Our first theorem is an extension of Theorem 2.3 in [3]. Fortunately the same proof
works, but we include it for the sake of completeness.

THEOREM 1. Let 6 be a Jordan homomorphism of a ring R onto a 2-torsion free
semiprime ring R' in which the annihilator of every ideal is a direct summand. Then
there exist ideals U and V of R and ideals U' and V' of R' such that UNV = Kerf
and U+V =R, U'NV' =0 and U' ® V' = R', the restriction of 8 to U is a
homomorphism of U onto U', and the restriction of § to V is an antihomomorphism
of V onto V'.
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PROOF: We introduce the abbreviations a® = 6(ab) — 6(a)8(b), a» = 6(ad) -
6(5)6(a). By [3, Corollary 2.2] we have

(1) a®R'cy=0 forall a,bc,deR.

Let V{ be an ideal of R' generated by the set {a®|a, b € R}, and set U' = Ann (V}),
V' = Ann (U'). By assumption, U' @ V' = R'. Of course, {ab|a,be R} C Vj C V',
and from (1) we see that {a; | a,b € R} CU'. Let U = §7}(U') and V = 67 1(V").
Take u €U,y € R, 2' € R'. By (1) we have

wz'u¥ = uVz'(u¥ —uy)
= u¥z'(6(y)0(u) — 6(u)8(y))
= u¥z'0(y)8(u) — (u'z'6())b(y)
=0

since #(u) € U' = Ann(Vy). Hence u¥ = 0 by the semiprimeness of R', that is,
O(uy) = 6(u)b(y) for all w € U, y € R. By the definition of Jordan homomorphisms
we then also have 8(yu) = 6(y)0(u). The last two relations imply that U is an ideal
of R'. Clearly 8(U) = U’. Thus we have proved that the restriction of 8 to U is a
homomorphism of U onto U’. In a similar fashion one shows that V is an ideal of R,
and that the restriction of § to V is an antihomomorphism of V onto V'.

It is obvious that Ker§ C U NV . Conversely, (UNV) C §U)NEG(V) =0 and
therefore U NV = Ker§. Let us show that U+ V = R. Given z € R, we have
0(z) =v' +v' where v' € U', ' € V'. Since v' =0(u), ue U, and v' =0(v), veV,
it follows that z—u—v € Ker§ = UNV. Hence U+ V = R. The proof of the theorem
is complete. 0

REMARK. Combining Theorem 1 and Lemma 1 we obtain, as outlined in the introduc-
tion, a generalisation of Theorem 3.8 in {2]. Note also that Theorem 3.9 in {2] can now
be stated in a more general form.

We now want to prove the analogous result for Jordan triple homomorphisms. The
proof is an adaption of the proof of Theorem 3.5 in [3].

THEOREM 2. Let R be a ring with property R? = R, and let R' be a 2-torsion
free semiprime ring in which the annihilator of any ideal is a direct summand. If 8 is a
Jordan triple homomorphism of R onto R' then there exist ideals Uy, Uz, Us, Uy of
R, and ideals Uy, U;, Ug, U] of R' such that

(i) UinU;j=Kerb,i#j,and Uy +U,+Us+ U, =R,
(@) UinU;=0,i#j,andU;0U;0U;0U;=R,
(i) the restriction of 8 to U, is a homomorphism of U; onto Uj,
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(iv) the restriction of 8 to U, is a negative of a homomorphism of U; onto
v;,
(v) the restriction of 8 to Us is an antihomomorphism of Uy onto U},
(vi) the restriction of 8 to U, is a negative of an antihomomorphism of U,
onto Uj.
ProoF: We write S(a, b, ¢) = 8(abc) — 8(a)0(b)8(c) and T(a, b, c) = O(abc) —
6(c)8(b)6(a). By (3, Corollary 3.2] we have

(2) T(ay, az, as)R'S(b1, ba, bs) =0 foralla;, b; €R, i=1,2,3.

Let I} be an ideal of R' generated by the set {S(a, b,c) | a,b, c € R} and let U’ =
Ann(Ij), V' = Ann(U'). By assumption, U' @ V' = R'. Of course, {S(a, b, c) |
a,b,c € R} C V', and by (2) we have {T(a, b,¢) | a,b,c € R} C U'. We set
U=60"YU') and V = §~}(V'). Take z,y, z € R with at least onein U. According
to (2) for any z' € R' we have

S(z, y, 2)2'S(z, v, 2)
= S(z, v, z):c’(S(::, ¥, z2) — T(z, y, 2))
= 5(z, y, 2)z'(6(2)8(y)8(=) — 8(=)8(y)8(z))
=0

since at least one of §(z), 6(y), 8(z) lies in U'. Consequently S(z, y, z) = 0. Since
R? = R we have (UR) = §(URR) = §(U)6(R)8(R) C U' which means that U is a
right ideal of R. Similarly we see that U is a left ideal.

Analogously one shows that V is an ideal of R and that T(v, z, y) = T(z, v, y) =
T(z,y,v) =0 holds forall z,ye R, veV.

Consider §(uzyuz) where z, y € R and u € U. On the one hand we have
O(uzyuz) = 0(u(zyu)z)

= O(u)f(zyu)b(z)

= 0(u)0(z)8(y)8(u)é(z),
and on the other hand,

O(uzyuz) = 0((vz)y(uz))
= 8(uz)8(y)0(uz).

Comparing the last two relations we arrive at P(u, z)8(y)Q(u, y)+Q(u, z)8(y)P(u, z) =
0 where P(r, s) denotes the element 8(rs) — 8(r)6(s), and Q(r, s) denotes 6(rs) +
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6(r)6(s). Since 8 is onto it follows from [3, Lemma 1.1] that P(u, 2)R'Q(u, ) = 0 for
all w € U, ¢ € R. But then {3, Lemma 1.2] tells us that

(3) P(u, z2)RQ(w,y) =0 forall v, we U, z,y € R.

Let I} be an ideal of R' generated by the set {P(u,z) | u € U, z € R}. Since
U is an ideal we see that P(u, z) and Q(u, z) lie in U' if u € U. Therefore I is
contained in U'. Let U] = Ann(I{}NU', U; = Ann(Uj)NUT"'.

We claim that U} @ U; = U'. Clearly U; NU; = 0. By assumption, Ann (I})
is a direct summand, thus R' = Ann(Il}) @ W' for some ideal W' of R'. Then
W' = Ann(Ann(I})) € Ann(Ann(l})NU') = Ann(U}), and, since I} C U,
W' = Ann(Ann(I3)) € Ann(Ann(U')) = Ann (V') = U'. Thus W' C U; (in fact,
W' =U;). Given u' € U', we then have u' = 2' +w' for some 2z' € Ann(I]), w' € W'.
Since W' C U' we then have 2’ € U'; that is, z' € Ann(I]) N U' = U;. Hence

U'=U+U,.
We set Uy = 671(U]) and U, = 671(U}). Take uy, €Uy, z € R, y' € R'. By (3)
we have

P(uy, 2)y' P(u1, z) = P(u1, 2)y' (P(u1, z) — Q(u1, z))
= —2P(u1, z)y'0(u1)6(z)
=0

since #(u1) € U]. Thus P(u;, z) = 0 by the semiprimeness of R'. This means that the
restriction of § to U; is a homomorphism of U; onto U] . The last relation also implies
that U, is a right ideal of R. In order to prove that U, is a left ideal we will show
that P(z, u,) with z € R, u; € U;, is zero as well. Take u; € Uy, z,y, z € R. Since
zu; € U we have 8((zu1)yz) = 6(zu;1)6(y)0(z). But on the other hand, using uy €
U and P(uj,y) = 0 we obtain 8(z(u1y)z) = 6(z)8(uv1y)0(z) = 8(z)0(u1)0(y)o(z).
Comparing, we arrive at (8(zu1) — 6(z)8(u1))0(y)8(z) = 0. But then, since § is onto
and R is semiprime, it follows that 8(zu,) = 6(z)6(u.).

Note that (3) implies {Q(u, z) | v € U, z € R} C U] . Using similar arguments as
above one then verifies that Q(u2, z) = 0 and Q(z, u2) = 0 for all u, € U,, z € R.
This implies that U; is an ideal of R and that the restriction of 8 of U, is a negative
of a homomorphism of U, onto U.",

In an analogous way one shows that there exist ideals U}, U of R’ such that
U@ U; = V', and that Us = 67}(U;), Us = 67 (U}) are ideals of R satisfying
O(usz) = 0(z)8(us), 0(zus) = 0(us)b(z), O(uaz) = —0(z)0(us), O(zus) = —6(us)d(z)
forall z € R, ug € Us, uy € Uy. Then, of course, the restriction of § to Us is an
antihomomorphism of Us onto Uj, and the restriction of 8 to U, is a negative of an
antihomomorphism of Uy onto Uj.
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Clearly U!NU; =0, i#j,and U;®U; @ Uy ® Uy = R'. It remains to prove (i).
It is obvious that Ker 8 C U;, and therefore 8(U; N U;) C 6(U;) N O(U;) = Ul N Uj=0,
i # j, implies U; NU; = Ker#, i # j. Let us show that U + V = R. Given z € R,
the element §(z) can be written in the form u' +v', v' € U’, v' € V'. There exist
u €U, v €V such that §(u) =u' and §(v) =v'. Hence z—u—-v e Ker6 =UNV
which means that U 4+ V = R. Similarly we verify that Uy +U; = U and Us + Uy = V.
Consequently Uy + Uz + Us + Us = R. The proof of the theorem is complete. 0
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