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SUPERCONVERGENCE ANALYSIS OF FLUX
COMPUTATIONS FOR NONLINEAR PROBLEMS

S.-S. CHOW AND R.D. LAZAROV

In this paper we consider the error estimates for some boundary-flux calculation pro-
cedures applied to two-point semilinear and strongly nonlinear elliptic boundary value
problems. The case of semilinear parabolic problems is also studied. We prove that the
computed flux is superconvergent with second and third order of convergence for linear
and quadratic elements respectively. Corresponding estimates for higher order elements
may also be obtained by following the general line of argument.

1. INTRODUCTION

In the application of finite element methods to certain Dirichlet boundary value
problems, one is often interested in estimating the flux on the boundary in addition to
obtaining an approximation to the solution of the boundary value problem. A simple
but effective post-processing procedure was proposed by Wheeler [18] for computing the
flux from the finite element approximation of a two-point boundary value problem. By
multiplying the governing equation of interest by a test function that does not vanish at
both boundary points and performing an integration by parts, an equation for the flux
is obtained. The finite element solution may then be used to replace the weak solution
in the equation. With an appropriate choice of test function, one obtains a formula for
computing the flux at the boundary points.

y As it turns out, this procedure yields boundary flux values that are supercon-
vergent, that is the error of the approximation flux has an order of convergence that
is higher than that of the gradient of the finite element approximations. This observa-
tion was shown to be true rigorously for linear problems by Wheeler [20] and Dupont
[10]. Extension to the two dimensional case for a rectangular domain was proposed and
analysed (again for linear problems) by Douglas, Dupont and Wheeler [9].

A more computationally efficient approach was proposed by Carey [4], The crucial
idea being the choice of a localised test function in the flux formula. This allows
generalisation to two dimensional problems without restriction to rectangular domains.
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466 S.-S. Chow and R.D. Lazarov [2]

(Carey et al [5]). Numerical calculations in these studies again indicated the occurence
of superconvergence in the flux computation procedure, even when applied to semilinear
and strongly nonlinear problems.

In this paper, we consider the error estimates for these flux calculation procedures.
For simplicity of presentation, we will restrict ourselves to two-point semilinear and
strongly nonlinear problems. How these results may be extended to higher elements
will be indicated. The case of semilinear parabolic problems is also studied. We proved
that the flux computed has an error of second and tliird order accuracy for linear and
quadratic elements respectively. For related works, see Barrett and Elliott [2] and
Lazarov et al [12]. For a recent survey of the superconvergence phenomena, see Kfizek
and Neittaanmaki [13].

In the next section we consider semilinear problems with linear finite element solu-
tions, then we study in Section 3 strongly nonlinear problems with linear finite element
solutions. In Section 4 we return to the semilinear problems for the case of quadratic
elements. In the last section we study parabolic semilinear boundary value problems
using results from Sections 2 and 4. Before proceeding, we first intriduce some notation.

Notation.
Throughout this paper, Pfc(fi) denotes the space of polynomials of degree at most

k defined on the domain fi. The Sobolev space W*'P(fi), k £ {0, ±1, ±2, . . } , p £
[1, oo], is equipped with the usual norm and seminorm denoted by ||-||fc n and \-\k n

respectively. We shall omit the index p when p = 2, and the index fi when fi is
the unit interval. We write #*(fi) for VFfc-2(fi) and V for ^ ( f i ) , the subspace of
H'(fi) with elements vanishing on the boundary of fi. Since the distinction should be
clear from the context, we use (•, •) to denote both the L2(il) inner product and the
F- J ( f i ) x //^(fi) duality pairing.

The unit interval is partitioned into N subintervals /y = (XJ_I, Xj), j £ 1, . . . , N,
with x0 = 1 and xyv = 1 and Xj_i < Xj. Let h denote the maximum diameter of the
subintervals. We write Sh for the finite element spacing corresponding to the partition
(Ciarlet [7]) and 5^ for the space VL)Sh. The constant C is generic and is independent
of the parameter h.

The superconvergence phenomenon only occurs when the solution to the boundary
value problem is sufficiently smooth. Thus we assume in the sequel that u has sufficient
regularity for any norm used in the analysis to make sense.

If Sh possesses finite elements of degree r — 1, then for a sufficiently smooth
function v we may define the Lagrangian interpolation uj of v in Sh. Furthermore,
we have the following error estimate (Strang and Fix [15], Ciarlet [7]):

(1) ll«-«/llo,n<C?fcr|Hlr,n-
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[3] Superconvergence analysis for nonlinear problems 467

2. SEMILINEAR PROBLEMS WITH LINEAR ELEMENTS

Let us first consider the application of the flux computation procedure to the

semilinear problem

- ( « ( * ) « ' ( * ) ) ' = / (u ) i n f i = (0,1)

u(0) = a, «(1) = p

where a and /? are constants. Here we assume that a € Wli<x>(n) and is bounded
below and above by some positive constants ao , ai in 0 , that is

(3) 0 < ao ^ a{x) ^ a i < °° a-e- i n n .

The function /(•) is a monotonically decreasing, Lipschitz continuous function such
that for all v, w in V,

- f(v), w - v) < 7 | v\\\l .
We further assume that for all w, v in V, there exists a constant 6 > 0 such that

(4) a 0 \w - v\l - j \ \ w - v\\l ^ 6\w - v\l.

This condition limits the size of 7 and guarantees the strict convexity of the associated

energy functional, thus ensuring the existence and uniqueness of the solution to the

following weak problem:

(5) a(u, v) — (f(u), v) for all v in V,

where a(u, v) = (a(x)u'(a;), v'(x)).

We define the finite element approximation u^ of u via

(6) a(ufc, vfc) = {f(uk), vh) for all vk in 5Q .

From standard finite element theory (Douglas and Dupont [8], Noor and Whiteman
[14]), we have the error bound

(7) \\u-Ull\\o^Chr\\u\\r.

Once the finite element approximation u/, is available, we may proceed to compute
the approximate flux using the integration by parts formula. Recall that the true flux
q = —au' satisfies the equation

(8) -qv |J= a(u, v) - (/(u), v) for all v in Hl{Q,).
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Thus we approximate q by q^, by evaluating

(9) -qhVh \l= a(uh, vh) - (/(uh), vh) for all vh in vh.

In order to estimate the error \(q — 9k)(0)| + \(q — g/,)(l)|, we subtract (9) from (8) and
introduce the interpolate Ui of it in Sh to get

(10) |J= a(u-vu vh) + a(uj-uh, vh) + (f(uh) - f(u), vk)

for all I)/, in S .

Restricting ourselves for now to the special case of linear elements, so r = 2 in (7), and

assuming u is sufficiently smooth, we now estimate each of the three terms on the right

hand side of (10) and show that they are bounded by an O(/i2) term.

For the last term in (10), since / is Lipschitz continuous, we have

(11) - / ( « ) , v/i)l^ / l/(«fc)~ f{u)\\vh\dx
Jn

^ C I \uh - u\ \vh\dx
Jn

To estimate the first term, we write it as a sum of integrals over Ij and apply

integration by parts, while noting that v'^ is constant over each /;- and that uj agrees

with u at the nodes Xj. Thus using (1) we have

(12) |a(u -
N

o(u — w/) v'hdx

N
a'(u — uj)dx

Before estimating the remaining term, we note that in view of (3), the bilinear

form a(-, •) is coercive and continuous. Also from (5) and (6) we have for all v^ in 5Q ,

vh) = a(u, vh) - , vh).
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[5] Superconvergence analysis for nonlinear problems 469

Thus applying (11) and (12), and noting that u j - it/, is in- it/, is in SQ ,

C ||uj - Ufc||j ^ a(ui - uh, uj - uh)

= a{ui -u,uj- uh) + (f(u) - /(lift), uj - uh)

< Ch2 ||u||3 \uT - u^ + Ch2 ||u||2 Hii/ - uk| |0

and thus

(13) |«/ - uk |x < ||u, - 2

Consequently,

(14) |o(u, - «fc, vh)\ < C |u/ -

Note that the inequality (13) is in itself a superconvergence result, well-known for linear
problems. It establishes the fact that uj and Uh., both elements of Sh, are asymp-
totically closer to one another than they are to u. This interior superconvergence
phenomenon is used heavily in estimating the order of convergence of the flux approx-
imations for the nonlinear problems considered here and in two dimensional problems
(Larazov et al [12]).

Combining (11), (12) and (14) we obtain

THEOREM 1. The approximate flux qh of the seinilinear problem (2) using linear
dements satisfies the inequality

for all vh£ Sh.

Setting Vh = x and 1 — x respectively as in Wheeler [20], we have

COROLLARY 1. The approximate flux corresponding to (2) using linear elements

is second order accurate, that is

(15) 1(9 - 9fc)(0)| + |(g - 9 f c )( l) | < Cfc2 | |u| |3 .

Observe that if we set vj, to be the piecewise linear finite element basis functions
ip0, y3/y associated with the elements on the boundary, as in Carey [4], then since
\vh\i = O(/i~1/'2) , we ordy have al first sight an O(h3/2) estimate for the flux, which is
still superconvergent but suboptimal when compared with the O(/i2) estimate in (15),
and is not in agreement with numerical experience. On closer examination, we see that
since

a(u - Uh, Wh) = 0 for all Wk in 5*,
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so by setting for example w^ = <ppj — x, we may replace the a(u —u^, <PN) term by
a(u — Ufc, x) to get

(?fc ~ <l)VN |J= a(w - uh, x)

which then yields the desired optimal superconvergent result. Similarly we may replace
a{u - uh, <p0) by a(u -uh, 1 - x).

3. STRONGLY NONLINEAR PROBLEMS WITH LINEAR ELEMENTS

Next we turn to the strongly nonlinear problem

l i b )
u(0) = 0, «(1) = 0,

where k(t) is a continuous function of < > 0 with the following properties

(i) m < k(t), (k(t)t)' < M for aU t ^ 0

(ii)

Here m, Al and Mi denote finite positive constants.

A typical example is k(t) = a 4- ct/[bt + d) with a, b, c, d all being positive
constants. Problems with this type of nonlinearity occur in many applications, one of
which is the design of turbo machinery (Glowinski and Marrocco [11]). The assumed
properties of k allow us to study the problem of well-posedness of (16) with the aid of
the theory of monotone operators (Vainberg [17], Browder [3]). Error estimates for the
finite element approximation may also be derived by exploiting the stated properties of
k and the monotonicity and continuity properties of the operator associated with the
problem (Glowinski and Marrocco [11], Chow [6]).

Writing k for &(|it'|), k[ for fedw^l) and k^ for fc(|«JJ) in this section, where u,
u/ and Ufc. are the weak solution of (16), the piecewise linear interpolant of u in Sh

and the finite element approximation of u in S respectively, the flux q = —ku' and
the approximate flux q^ satisfy respectively the equations

(17) -qv |J = (Au, v) - (/ , v) for all v in H^

= I ku'v'dx — I fvdx
Jo Jo

and -qhVh lo = (-4w/i, «/,) - ( / , vh) for all vA in Sk.

Subtracting the above equations and introducing ui as before, we get

(18) (qh - q)vh. |J= {Au - Aui, vk) + (yluj - Auh, vh).
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[7] Superconvergence analysis for nonlinear problems 471

Under the regularity assumption that the weak solution u of (16) belongs to W2'°°(Cl),

we now show that the right hand terms in (18) are of C*(/i2) when we take Sh to be

the linear finite element space.

Applying the mean value theorem, and noting that v'h and u'j are piecewise con-

stant functions, we have
N

(Au — Aui
N f'i

K{s)ds(u' - u'Jdx
_1 JO

where K(s) = (k(\t\)t)' | t = 5 U - + ( 1 _ . K .

Since over each subinterval, u" = 0, \(d/dx)K(s)\ = \K'(s)su"\ < Mis|u"|, so pro-
ceeding as in the semilinear case, we have

-v'h f ' f ^-K{s)ds{u-ui)dz
JXJ_I JO ®X

(19)

^ C/»2 |tt|2>0o ||u||2 K d .

To estimate the second term we need to utilise the strongly monotone property of
the operator A generated by property (i) (Chow [6]). Thus using (19) and the fact that
w/ — tifc is in 5^ we get

C |uj - uh\l < (Aur - Auh, ti/ - uh)

- Au, u/ - uh)

and hence we have the interior superconvergence result

\ur - uh\x ^ Ch2 |«|2iOO | H | 2 . •

Using this result, we may now obtain a bound on the second term using the Lipschitz
continuity of k[t)t:

(20) \{Auj - Auh, vh)\ ^ f Ifcju'/ - fcku'fcl \v'h\ dx
Jo

< C\ui-uh\1 \vh\i

On combining (19) and (20) we obtain
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THEOREM 2. The approximate flux q^ for (16) using linear elements satisfies the
estimate

|(<7 - qh)vh lo| ^ Ch2 |u|2iOO ||u||2 \vk\t for all vh in Sk.

And, setting v^ = x and 1 — x respectively, we arrive at the desired result.

COROLLARY 2. The approximate flux qh. (or (16) using linear elements is second
order accurate, that is

l(<7 - ?*)(0)| + \(q - qh)(l)\ < Ch2 \u\2iOo \\u\\2 .

4. SEMILINEAR PROBLEMS WITH QUADRATIC ELEMENTS

Let us now turn our attention to the flux approximation of the semilinear problem
(2) in Section 2 using quadratic elements. The result obtained previously relies on
the fact that, for linear element, the derivatives of the corresponding test function is
piecewise constant. This is certainly not so for quadratic elements. Moreover, interior
superconvergence phenomena are often observed at specific points, for example Gauss
points, rather than globally over the whole domain as indicated in the linear element
case. So we introduce numerical integration in our finite element formulation in the
following analysis of the flux approximation.

We shall proceed in much the same manner as in the proof of the linear case, while
utilising some ideas outlined in the works of Zlamal [21] and Andreev and Lazarov [1]
on the interior superconvergence estimates of the gradient for quadratic elements. Thus
we first define an integration scheme /,.(/) that is exact for all cubic polynomials / ,
for evaluating the integral Je f dx:

(21) /«(/) = 5>fc/(**). ** e e.
k

For our purpose, we take, as the desired quadrature formula. Note that in this case the
coefficients w/, are all positive.

We denote by afc(uji, v^) a bilinear form that approximates a(ufc, v^) under the
numerical integration scheme (21):

N

, vh) =

where ej is the j t h finite element over [XJ-\, Xj). As it is often more convenient to
perform the computation over a reference element defined over Cl = [—1, 1], we also
write

I[a——]
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where I denotes the integration scheme (21) applied over fi with wk = (2/hj)wk-

Here hj is the diameter of e,- and x = (/i ;/2)(£ + 1) + Ej- i for x € ej.

The approximate flux q^ is then obtained from

(22) -qhVh |J = ah{uh, vh) - {f{uh), vh).

Note that we have assumed the semilinear term may be evaluated exactly. The analysis
for the case where numerical integration is also applied to this term is not difficult and
is therefore omitted (Strang and Fix [15], Ciarlet [7]).

Proceeding as before, we introduce the interpolant ui of u after subtracting (22)
from (8). Thus for vh € Sk,

(23) (qK - q)vh \] = ah(u - uj, vh) f ah(ui - «&, vh)

- ( / (u) - / ( ^ A ) , vh) + (a- ah)(u, vh).

The last term in the above expression is the error term for the quadrature formula,
and we have the following estimate (Andreev and Lazarov [1], Ciarlet [7])

(24) |(o-ok)(u>t>fc)I^C'fc3H|4|i;k|1.

The term involving / is treated as in Section 3 to yield

(25) |(/(u) - /(ttfc), vh)\ <C\\u- uh\\0

For the first term, we perform the estimation by freezing the coefficient a(x) at
the centroid. Letting oj = a((xj_i + Xj)/2) when working with element ej, we write

N

(26) ah{u - u/, vk) =

and proceed to establish bounds for the /ej(-) terms as follows.

Assuming u G H*(il), first consider It. ((u — u/) v'^j over a reference element. Us-
ing standard approximation theory (Ciarlet [7]), norm equivalence on finite dimensional
space and the Sobolev embedding theorem, we have

wk | (u - u/)'
k
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The last inequality holds since in one dimension, u 6 £f4(fi) implies that u'" is con-
tinuous in D,. If we let

k

then from the last estimate, we see that L is a bounded linear operator on u 6 H4

with

(27) |X«|< \Vwk) \\u\\ifl \vh\lfl.

Since the integration scheme is exact for polynomials of degree 3, we have Lp — 0 for
p g F*3 (O) . Thus by the Bramble- Hilbert lemma (Ciarlet [7]), we may replace that
||-||4 ^ norm in (27) by the seminorm |-|4 ft . Transforming back to the physical elements,
we obtain

(28) \Lu\^c

For the second term in (26), we have over the reference element

wk(a - ao)(u - U/)
k

wk\\a-
k

k

And, after transforming back to the physical elements,

(26) ^ C [ £ wk]h |a|loo 1^1, {h2 ||u'"||0 + h3 K ' l J ,
it

^cfc'iMiji/fci,.

Combining (28) and (29), we get

(30) M « - «/, «k)l < Cfcs ||u||4 H , .

Finally for the second term in (23), we observe that for each «/, 6 5

aiu, vh) - a^(uh, vh) - {f(u) - f{uh), vA),
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and so ah(uj - vh, Vh) = ah(ui - u, Vh) + (oh - a)(u, vh) + (/(«) - /(«h), vh). From
(24) to (26) we see that, with the aid of the Poincare inequality,

\ah(ui - lift, vh)\ < Ch3 ||tt||4 Ivftlj .

Observing now that a,h{v, v) ' is a norm on Sh uniformly equivalent to the norm
\v\t (Andreev and Lavzrov [1]), we have, upon setting «/, = uj —Uh, the interior
superconvergence result,

(31) luz-Ufcl^CTi'lMU.

For Vh £ S but not vanishing on dil, we have

ah(ui - uh, Vh) < a-h{ui - Uh, w/ - uh) a/,(vA, v^)1'2

< C\ui -ufc|j Iwfcd

and so from (31),

(32) |ok(u/ - uk, vh)\ ^ Ch3 ||tt||4 \vh\x.

Summarising we have the following results from (24), (25), (31) and (32).

THEOREM 3. Let qh be the approximate flux for the semilinear problem (2) using
quadratic elements. Then for any Vh £ S ,

Further, by settling Vh — x and 1 — x respectively, we have

COROLLARY 3. The approximate flux qh for (2) using quadratic element is third
order accurate, that is

When f(u) is linear, the above corollary yields a suboptimal estimate as the opti-
mal error is O(/i4) (see Wheeler [20] and Dupont [10]). One obvious factor that seems
to contribute to the lower order of convergence is the use of numerical quadrature in our
calculation of the finite element approximations. However, even if we assume all quadra-
tures are evaluated exactly, the estimate remains suboptimal when compared with the
linear case. The major advantage of our approach is that extension to higher dimen-
sional problems is relatively easy compared with the other methods used in deriving
optimal results for Linear problems in one dimension.
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Actually Theorem 3 may also be shown to hold if we choose the two point Gauss rule

as our quadrature formula. To show that (24) and (28) hold in this case we need to verify

that for p € P3(fi) , Lp = 0. For p = ?, Pl = (. Thus Lp = £ (t3 - t)'v'k

fc=l

For higher order elements, the line of argument is similar. For example, for cubic

elements, we may employ the standard three point Gauss rule to obtain an 0(/i4)

estimate for the flux error. For quartic and higher order elements, we must also be

careful in selecting the interpolation points that define u j . For example, we use the

points 0, ± y 3 / 7 , ±1 in the interpolation process when quartic elements are used (see

Zlarnal [21]).

5. PARABOLIC BOUNDARY VALUE PROBLEM

The results obtained in the previous sections may also be extended to parabolic

problems. We first study the semilinear problem

ut = (a(x)ux)x + f(u)

(33) u(0, t ) = 0, u ( l , i ) = 0

u(x, 0) = uo(x)

with a(x) and f(u) possessing properties described in Section 2. We further assume

that the initial data «o(s) is sufficiently smooth

In weak form, we have

(34) (ufl v) + (aux, v,) = (/(u), v) for t > 0

where v = v(x) is a smooth function which vanishes at x = 0, 1 and [v, w) denotes

as before the inner product Jo vwdx in L2(0, 1). The semidiscrete finite element

approximation u/i(t) may then be computed by solving the following problem:

(35) («fcl> vk) + {auhx, vhx) = (/(ttfc), vh) for all vh in Sh, t > 0

with the initial condition given by u/,(0) = u$h.

(36) (a«ofc»i vkx) = {auOx, vhx) for all vh in 50
h.

Introducing the elliptic projection P1 onto Sj} for u € /fo(^) v*a

(a(P1u)i , vhx) = (our, vkx) for all vh in 5*,
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[13] Superconvergence analysis for nonlinear problems 477

we may study the error u^ — u in terms of UH — Pit = 6 and P\U = p. Note that

Piu0. Applying the standard techniques (Wheeler [19], Thomee [16]), in estimating 9

and p while taking some care in treating the nonlinear f(u) term, we have the following

estimates:

(37) IHOHo + h\\Px(t)\\0 ^ C/T{|K||r + / ' \\ut\\rds}, t > 0
Jo

(38) j t ||0||o < ||p«||0 + 7 HPII, ^ Cfc-{||u,||p + £ \\ut\\T ds)

where r — 1 is the degree of the finite element space. Furthermore, by setting x = &t

in the equation

{0t, X) + (aOx, Xx) = -{pt, X) + ( / K ) - / (« ) , X) for all X in 50
fc,

we obtain

^(a<?r,^)^| |^ | |J + 27
2|HlS+27

2||<?||^

which gives, after integration and using (4) and the fact from (36) that 0(0) = 0, the

interior superconvergence result for 0x :

(39) IIMOIIo < C^ Hu'Hr. ll«o||r)/i
r, t > 0

The flux q(t) satisfies the relation

(40) -qv \l= (ut, v) + a(u, v) - (/(u)v) for all v in H^

and so the approximate flux q^ is defined via

(41) -qhVh |J= {uht, vh) + a(ufc, vh) - f(uh, vh) for all vh in Sh.

Thus subtracting these expressions, and introducing the elliptic projection P j , we have

(qh - q)vh lo = (Pt, vh) + {0t, vn) + a{p, vh) + a(9, vk)

+ ( /(«) - / («k) , vh) for all vh in Sh.

From (38) we have \{pt, vh) + (0t, vh)\ ^ ChT \\ut\\r \\vh\\0. The estimate (39) gives us

the bound |a(0, t;fc)| < C{\\u\\r)h
T \vh\. The last term is bounded by C \\u - uk% ||vh||0

which in turn may be bounded by applying (37), (38) to yield |(/(tt) — f{v.h), vh)\ ^

C7(||ti||r, | |«o||r)'ir ||v/t||0. Here C7(||-||) signifies that the constant is dependent on the

norm ||-||. To treat the term a(p, v^), we introduce the interpolant u/(<) of u(t) at
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time t in Sh. Note here that a(p, Vh) = 0 only for v/, € 5^, and not necessarily so for
a general v^ in Sh. Thus we write

a(p, vh) = " (A« - «/, vh) + a(u - ui, vh)

and proceed to estimate the terms on the right hand side.
For the second term, we may proceed as in either the case of linear elements (12)

or quadratic elements (30), while taking into account the effect of numerical integration
in the latter case, to obtain the bound

(42) \a(u - Ul)vh\ < Chr H ^ u K|, , r = 2, 3.

Since both P\u and it/ are in SQ , we make use of the coercivity and boundedness
of the bilinear form a(-, •) on V and (40) to extimate a(Piu — uj , v^). Since

aw \P\u — uj\ ^ a{P\u —

= a(u — uj

<C^il«li2(r-l)lAti-W/|1,T--2, 3

and (Pxu-uj^h) ^C\PiU-uI\l\vh\1,

we have a(PjU - u/, vK) < C/ir !|w||2(,—i) lvfcli > r = 2. 3.

Combining the results in this section we have

THEOREM 4. Let q be the flux defined in (40) and q^ the approximate Hux defined
in (41) and let r — 1 be the degree of the finite element with r — 2 or 3. Tii&n for all
vh G Sh and t ̂  0,

|(9-?fcKlJ|<C7fc>kli

where C is dependent on various norms of u and uo •

Selling Vh = x and 1 — x respectively we have

COROLLARY 4. T i e error \(q - g/l)(0)| + \(q - ?/l)(l)| of the parabolic problem
(33) is 0{hr),r = 2 , 3 .
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