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Abstract. Let S be a closed *-derivation on a commutative C*-algebra M, suppose
that ^ n = f l l = , D(8m) is dense in si for some n = 1, 2 , . . . , oo, and let H:$4n^>si
be a linear operator satisfying the locality condition

supp(H/)cSupp(/), festn.

It is shown that H =JJ
p

m=0 lm8m on s£2m for some finite integer p<n and functions
lm on X. Estimates on the coefficients lm are obtained and applied to flows and
local flows.

1. Introduction
In 1960 Peetre [6] obtained an abstract characterization of partial differential
operators on a bounded open subset U of W in terms of locality conditions. In the
case v=\ he established that a linear operator H: C™(U)-> Cb(U) satisfies the
locality condition

supp(H/)cSupp(/) (*)

for all fe C"( U) if, and only if, it is a differential operator of the form

(Hf)(t)= I L(t)f{m\t) (**)
m=0

for some integer p and continuous functions lm. Here C™( U) denotes the infinitely
often differentiable functions with compact support in U and Cb(R) denotes the
bounded continuous functions over R. Consequently a linear operator H: Cf(U) -»
Cb(R) satisfies the locality condition (*) for a l l /e Cf(U) if, and only if, it is locally
of the form (**) with continuous coefficients lm, i.e. the order p of H and the lm

are locally bounded functions over R which are not necessarily globally bounded.
Recently Bratteli, Elliott and one of the present authors [3] derived analogous

characterizations of differential operators associated with a general flow, or local
flow, and also obtained information on the growth of the corresponding coefficients
lm. For example in the above context it was shown that a linear operator H: CJ'(R) -»
Cb(R) satisfies the locality condition (*) for a l l / e C™(R) if, and only if, it has the
form (**) for some integer p and bounded continuous functions lm. Here C^(R)
denotes the infinitely often differentiable functions which vanish at infinity on R.
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More generally if U is any open subset of R then a linear operator H: C"( U) -> Cb(U)
is local if, and only if, it is a differential operator of finite order with coefficients
lm(t) characterized by polynomial growth in the inverse of the distance of t to the
boundary of U.

In this paper we re-examine these results in the more general context of an
infinitesimal flow. Specifically let si = C0(X) denote the continuous functions which
vanish at infinity on the locally compact Hausdorff space X and let 8 be a closed
derivation of si; then we consider linear operators H defined on sin = D(S"), or
^ a o = P | ^ = 1 D(Sm), and show that in general circumstances locality forces H to
have the form

with continuous coefficients lm of controllable growth. Note that if 8 is the generator
of a strongly continuous one-parameter group of *-automorphisms T of si then we
recover the situation studied in [3]; the C*-dynamical system (si, r, R) determines
a classical dynamical system (X, T, R) where the flow {T, R) satisfies f(T,a>) =
(r,f)(<o) for a l l / e C0(X), coeX, and teU.

A special case of these problems was examined in [1] (see also the summary [2]).
In particular a study was made of derivations H defined on D(S), or si^, and it
was shown that H = /,5 for some function /,. But one can establish that a derivation
defined on D(8), or st^, is automatically local and then this result is a special case
of the results of this paper.

The contents of the paper are summarized as follows. In § 2 we prove automatic
continuity of local operators H:sin-> si by combining the proof of observation 1
in [3] with a technique of [5]. The representation H = £ lmSm then follows in § 3
from approximation results for closed derivations given in [1]. Continuity properties
of the coefficients are also easily obtained. In § 4 we consider estimates on the
growth of the coefficients lm in terms of certain norms of the linear functionals
/-> (Smf)(<o). Up to this point it is not necessary to assume that 5 is associated with
a flow, or a local flow, but in § 5 we show that if this is the case then our estimates
on the /„ reproduce those of [3], and provide some improvement in detail.

To conclude this introduction we comment on the notation and assumptions
which are to be used throughout the sequel.

First X denotes a locally compact Hausdorff space and si = C0(X) the space of
continuous real-valued functions on X vanishing at infinity, equipped Avith the
supremum norm. Second 8: D(S) -* si denotes a closed derivation, sim = D(8m) the
domain of the mth iterate of 8, and ^oo = O^=i -^m- Note that Mn becomes a Banach
space in any of various equivalent norms, for example those used in [3] and [1],

11/11,,= SUP ||S"/II, \\f\U.n= I i l lSTII ,
Osmsn m=0 "» •

and in fact || • ||s „ is an algebra norm. Furthermore siM equipped with either of these
families of norms becomes a Frechet algebra.
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Now suppose s&n is dense in si, for some 1 <«<oo. (If 8 is a generator this
condition is automatically satisfied [3], [4].) Since S is closed, this ensures that the
basic lemmas of § 2 of [1] are applicable, and they will be applied repeatedly in the
sequel.

Finally remark that the above framework of real functions and derivations, and
of local operators as defined below, is equivalent, by complexification, to the
framework of abelian C*-algebras and *-derivations, and a similar notion of local
operators. Unlike [1], however, it is not possible to assume that X is compact, by
passing to the one-point compactification X, because a local operator H on C0(X)
may have no extension to a local operator on C{X).

2. Locality and continuity
Let H:D(H)-*s& denote a linear operator from a subspace D{H) of si into si.
Then H is defined to be local if supp (Hf) c SUpp (/) for each/e D(H). The closed
derivation S is automatically local [1, lemma 2.4] and, by iteration, 5m is local.
Moreover any operator H of the form

is local, where defined, for functions lm:X->U. Alternatively if sdn is dense in si
and H is a derivation from sin into si then H is local by the argument in the second
last paragraph of § 3 of [3].

Our immediate aim is to prove continuity of local operators.

LEMMA 2.1. Assume s£n is dense in si, for some l < n < o o . Let H: sin -» si be a local
operator and F the set of points co e X for which the linear functional f'-» (Hf)((o) is
discontinuous on sin. It follows that F is finite and contains no isolated points of X.

Proof If n = oo then F is finite by the same argument as in observation 1 of [3] (see
also [5]). If n < oo then F is finite by the same argument. In fact in the latter case
the proof simplifies because one may take m = n throughout the argument in [3].

Let a) be an isolated point of X. For any function fe sin with /(o>) = 0, supp if) c
X\{w}, so supp (Hf) c X \ { G > } by locality. Thus (H/)(w) = 0. It follows that there
is an I 0 (W)ER such that

for all fe An. Hence a> £ F. •

THEOREM 2.2. Assume that sin is dense in si, for some 1 < n<oo and let H:sin-* si
be a local operator. It follows that H is continuous.

Proof. The proof is similar to that of theorem 2 of [5]. Let {fr} be a sequence in sin

and suppose fr-*0 in the topology of sin and ||H/"r-g||-»0 for some gesi. If
we X\F, where F is the set of discontinuity introduced in lemma 2.1, then

Thus g vanishes except possibly at certain points which must both belong to F and
be isolated, since F is finite and g is continuous. But no such points exist, by lemma

https://doi.org/10.1017/S0143385700002844 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002844


174 C. J. K. Batty and D. W. Robinson

2.1. Thus g = 0, and H has a closed graph. It now follows from the closed graph
theorem (for Banach spaces if n < oo, or Frechet spaces if n = oo) that H is continuous.

•
Remark 2.3. The same proof shows that if H:Mn^> sim is a local operator whose
range is contained in s&m then H is continuous in the respective topologies of sin

and s£m e.g. if n, m<+oo then there exists a O O such that | |H/| |m< C||/||n for
all fe s&m where || • ||n and || • ||m denote the norms used in [3], and redefined in the
introduction.

3. Local operators as differential operators
Next we establish that each local operator on stn is a 'differential' operator, i.e. it
can be expressed as a finite polynomial in 5.

THEOREM 3.1. Assume sdn is dense in sd, for some l < n < o o and let H:s£n^> st be
a local operator. It follows that there exists a finite integer p < n and functions lm: X -» R,
0 < m < p, such that

{Hf){<o)= i lm(u)(8mf)(o>)
m=O

for all fe s£2n and all weX.

Proof. If n = oo it follows from theorem 2.2 that H is continuous with respect to
|| • ||p for some finite p, and if n < oo we may take p = n and have the same continuity.
Thus in both cases there is a finite integer/? s n and an a > 0 such that ||H/|| < a||/||p.

Next suppose (8mf)(<o) = 0 for m = 0, 1 , . . . , p, for some w e X and fe sd2n. It
follows from proposition 5.2 of [1] that there is a sequence {fj} of functions f}esin

such thatyj=O in a neighbourhood of a> and ||j;-/llp-*O as j-*°o. (If n>p the
statement in [1] does not quite say that fj£sdn but the proof shows that fj can be
chosen to be in sdn.) By locality (Hfj)(<o) = 0. By continuity (Hf)(w) = 0. It follows
that there exist real scalars /„,(«) such that

(Hf)(<»)= I /m(«>)(Sm/)(«) (*)
m=0

for all fe M2n. •

Remark 3.2. If M=OO then $l2n = sln = s&x and theorem 3.1 describes H on the
whole of s&n. If n = 1, so D(H) = sdu then theorem 3.1 only asserts that (*) is valid
on $22- But using proposition 5.1 of [1] instead of proposition 5.2 one can conclude
that (*) is valid for all fe six. If 1 < n < oo then (*) is valid for all / in the closure
of si2n in Mn. As on page 321 of [1], if proposition 5.2 can be strengthened to apply
to all fe sdn with (8mf)(a>) = 0 for m = 0, 1 , . . . , p, then (*) is valid for all fe Mn.

Remark 3.3. If S is associated with a flow { T,} on X as in [3] then s&n is automatically
dense in si and theorem 3.1 applies. But again the conclusion is valid for a l l / e s£n.
This was established in [3] but can also be proved along the above lines by arguing
that for each/e Mn such that (8mf)(w) = 0 for m = 0, 1 , . . . , p, there exists a sequence
f e sdx such that f} = 0 in a neighbourhood of co and ||J5'-/||P -»0 as j•-* oo.
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Remark 3.4. Theorem 3.1 shows that the restriction H' of H to si2n is a local
operator with a representation

(H'f)(<o)= I lm(co)(8mf)(co), fesi2m
m=0

and which is bounded with respect to || • ||p. Under the assumption that si2n is dense
in si (which is automatic if 5 generates a flow), the properties of the coefficients
lm will be studied in the next section, where, for simplicity, H will be written in
place of H' and n in place of 2n. Similarly, by remark 3.2, the results of § 4 apply
to any local operator defined on six.

4. Continuity and growth of coefficients
In this section we consider a local operator H:sin-> si, where l < n < o o and sin is
assumed to be dense in si, which is given by a representation

(Hf)(w) = i lm(co)(8mf)(co), fesim
m=0

where 1 </>< n is a finite integer. We assume H is bounded with respect to || • ||p.
(If n = p the continuity is automatic by the closed graph theorem.) Our aim is to
prove uniqueness and continuity of the coefficient functions lm and to derive bounds
on their growth.

First introduce the 'fixed point' set

X0 = { « e X ; (8f)(co) = 0 for allfesin}.

Note that if 8 is the generator of a flow {T,} on X, as in [3], then

Xo = {w € X; T,co = co for all t e U}.

LEMMA 4.1. For 1 < k < n and co e X\X0 there exists an f'e Mn such that (8mf)(co) = 0
for 0< m < k but (8kf)(co) = 1.

Proof. By assumption there exists a g e i , with (8g)(co) = 1. But by addition of a
function which is constant near co we may arrange that g(co) = 1. Then

l i m — 8
 k

W = 1 ,

but

i-*°o q

for Os m<k. Thus the linear functional/-* (8kf)(co) on sin is not a linear combina-
tion of functionals /-»(5m/)(w), 0< m<L Therefore there exists an fe sin with
the required properties. •

COROLLARY 4.2. If co e X \ X 0 and 0< /c< n then there exists an fk e sin such that
{8kfk)(co) = \ but {8mfk)(w) = 0 for 0 < m < n , m * k.

Proof. First choose goe sin such that g0(co) = 1. Next by lemma 4.1 there exists for
l s j < n a gjesin such that (8Jgj)(co)=l, but (5'g,)(w) = 0 for 0 < ; < / It follows
immediately that one can construct linear combinations fk of g0, g i , . . . , gn with the
desired properties. •
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PROPOSITION 4.3. The function l0 is uniquely determined by H and continuous on X.
For 1 < fc<p the function lk is uniquely determined by H and continuous on X\X0.

Proof. Let w € X and choose f0 e Mn equal to one near w. Then l0 = Hf0 in the same
open neighbourhood of a>. Thus l0 is uniquely determined and continuous at w.

If cjeX\X0 we can, by corollary 4.2, choose a function fk&Mn such that
{8kfk){to) = \ but (Smfk)(a)) = 0 for 0 < m < n , m * k. Then lk(a>) = (Hfk)(a>) and
hence lk is uniquely determined by H on X \ X 0 . Furthermore the linear equations

£ hiu'HsfjHo') = (Hfj){o>') - W«')J5(«')

for /,(&>'), l s / < « , have continuous coefficients and are non-singular at w. Thus
the /, are continuous at a>. •

Next we consider the growth properties of the coefficients lm. By assumption the
local operator H = Xm=o W " from sin into ^/ is bounded with respect to || • ||p on
Mn so there is a constant a such that

for all f&sin and <oe X.

LEMMA 4.4. For w e X and f'e sdn

Proof. Given e > 0 let g:U-*M be a C°°-function with the properties

g(0) = 0;

|g( m )(0|<£, 0<

Then g ° / e sin and

for certain integers JVm independent of e, and of S, f g (see, for example, lemma
2.2 of [1]). Hence

"l /m(a,)(5m(g°/))(a,)
m=0

m = 0

P

m=0
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Taking the limit as e -* 0 one then obtains

|/p(a>)(S/)(W)"|<a||5/||". D

PROPOSITION 4.5. / / |(H/)(w)|< a \\f\\p for allfesdn and <oeX then | /p(«) |<a/or
a//<ueX\X0.
Proof. It follows from lemma 4.4 that |/p(w)(5/)(w)p|<a||8/||p for all weX and
feMn. Now suppose \lp(ai0)\> a for some a>oeX\Xo. Since lp is continuous on
X \ X 0 , by proposition 4.3, there is an open subset U of X\X0 such that |/p(&>)| > a
for all coe U. Next le t /e s£n be a function such that supp (/) £ U and S/V 0. Such
functions exist by functional calculus of the domain of S. Now choose to, e X such
that |(S/)(<u,)| = ||5/||. Since supp (Sf)c U it follows that w,6[ / and

But this is inconsistent with the fact that |/p(w,)|>a. Thus |/p(w)|<a for all we
X \ X 0 .

Remark 4.6. A calculation similar to that in lemma 4.4 and an inductive argument
show that if H = £m=o W " is bounded with respect to || • ||, on sin where <j </?< n
then lm =0 on X \ X 0 for m> q, and /„ is bounded on X \ X 0 by proposition 4.5.

The coefficients lm with 0 < m < p are not as easy to estimate as /p. Let

dm(u>) = sup{\(8mf)(a,)\;fedm ||/||p< 1 and (5"/)(w) = 0for0< 9 < p , q# m}.

Then the bounds |(H/)(w)|<a||/||p immediately imply \lm(a))\dm((o)<a. But for
any weX one can readily deduce that do(u))>O by choosing an / e ^ , which is
constant in an open neighbourhood of &>. Moreover if <oeX\X0 and l < m < p
then dm((o)>0 by corollary 4.2. Therefore under these circumstances one has the
bounds

\lm(<o)\*a/dm(a>).

Unfortunately the dm are difficult to calculate in general because their definition
involves conditions on all derivatives Sqf with 0< q <p, of functions / e sdn. In the
next section we demonstrate that the dm can be efficiently estimated if S is associated
with a flow {T,} on X but to conclude this section we derive alternative bounds for
the lm in terms of the somewhat simpler functions

Cm(w) = sup {|(5m/)(^)|;/€ Mm H/11, < 1}

C^(a>) = sup{|(8m/)(w)|;/e^m ||/||p< 1 and (S'/)(w) = 0for0<<?< m - l } .

The following inequalities simplify the estimation of Cm and C'm.

LEMMA 4.7. If we X and l<m<pthen

mpC'm(w)^m\C\((o)m.

Proof. L e t / , , / 2 e ^ n with | | / , | | p ^ l , | | / 2 | | P ^ 1 . Set

Then | | / | |p<2p + l , / («) = 0, and (S/)(«) = («/1)(«)/2(fl>). Hence

)| < (2P
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Taking the supremum over all possible/ , , / 2 gives the first inequality.
Next suppose h e sim h(io) = 0, and ||h||P < 1. Then

(8qhm)(a>) = 0 f o r O < g < m and (8mhm)(a>) = m\(8h)(w)m.

Moreover | | / im | | p<mp. Hence

ml\(8h)(w)\m£m>'C'm{w).

Taking the supremum over all possible h gives the second inequality. •

PROPOSITION 4.8. Let Y be a subset of X and suppose there exist constants )3m ^ 0
such that fJmC'm(w)>Cm((o) for all <oe Yand 0<m<p. Then

|/m(W)|Cm(a>)<a/3m ft U+/3,)

for all we Y and 0 < m < p.

Proof. Firstly C'p = dp so

\lp(w)\Cp(a>) < pp\lp(a>)\dp(co) < app

Next suppose the assertion is true for all m = k+\, k + 2,...,p where 0<fc<p.
T a k e / e . s 4 with (8qf)(a>) = 0 for 0 < g < k, | | / | | p< 1. Then

£
and hence

p

p

p p

sa+ I a0, n I

Taking the supremum over all possible / gives

|/Jfc(w)|CU«)<a ft (1+0,)

and consequently

|Zfc(w)|Cfc(o,)sa/3k j l (1+jS,).

Thus the assertion is true for all fc = 0, 1 , . . . , p by induction. •

Combining these results one obtains bounds on the lm in terms of the relatively
simple functions Cm on certain subsets of X which are in turn determined by Co

and C,.

COROLLARY 4.9. Let y0, y, > 0 a«d define Y by
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It follows that there exist constants am such that

|/m(W)|Cm(a>)<am

for all we Y and m=O,l,...,p.

Proof. C l e a r l y Cm(a>)< 1. Bu t by l e m m a 4.7

^m\{yoyj(2 + \))

for all a) e Y and m=0,l,...,p. Thus proposition 4.8 is applicable with /3m =
(mp/^!)((2p+l)/ro71)m •r7 •

5. Flows

In this section we assume 5 is associated with a flow {T,} on X, as in [3]. Thus 5
is the generator of the one-parameter group T of *-automorphisms of C0(X) given
by T , / = / ° T,. It follows automatically that sin is dense in sd for all 1 < n <oo, and
the results of the preceding sections apply. Moreover Xo is equal to the fixed point
set of T,

X0 = {weX; T,w = a) for all teU}.

Thus if H:sin->s£ is a local operator there is a finite integer 1 < ^ < M , an a>0
such that || Hf\\ s a ||/||p for all fe Mm and functions lm: X -»R, 0< m < /?, such that

for all / e i , and weX.
The function /0 is uniquely determined by H on X, continuous on X, and satisfies

\lo(a))\<a/do(u>), <oeX.

The other coefficients lm, l < m < p , are uniquely determined by H on X \ X 0 ,
continuous on X \ X 0 , and satisfy

|/m(»)|<a/dm(a»), <oeX\X0.

Our aim is to estimate these bounds in a more explicit fashion, and to reproduce
the polynomial bounds of [3].

First recall from § 4 that

OBSERVATION 5.1. It follows that d0(<o)= 1 for all a>&X.

Proof. Let g:R-»[0, 1] be a C°°-function with compact support K such that

dtg(t)=\,

G i v e n ueX let heM b e s u c h t h a t fc(7>)= 1 for teK a n d | | / i | | = 1. De f ine

/ = J dtg(t)hoT,.
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Thenfestao,f(<o)=l, and (5«/)(w) = 0 for q>\. Moreover | | / | | p=l . Therefore
do(a>)=l. D

The values of dm(a>) for m > 1 are more difficult to calculate and depend critically
on the behaviour of w under the flow T. A simplifying feature is that they are given
by the corresponding coefficients for translations on the line or rotations on the circle.

OBSERVATION 5.2. Let S(a>) denote the stabilizer subgroup of weX\X0, i.e.
S(<o) = {teU; T,w = CJ}. It follows that

dm{w) = sup {|F(m)(0)|; F e C?(R/S(a>)), | |F||p< 1, and 1*0(0) = 0

for 0 < q < p , q^m}

where C™(U/ S(w)) denotes the space of infinitely differentiable functions of compact
support on the quotient group U/S(<o) and

\\F\\P = sup | |F( f c ) | | .
0s(c==p

Remark 5.3. Since w e X \ X 0 is not a fixed point of T there are two possibilities.
Either S(co) = {0}, i.e. the orbit of <o under T is aperiodic, in which case U/S(w) = U.
Then the value of dm(w) corresponds to that associated with translations acting on
C0(IR). OrS(w) = pZ, i.e. the orbit of w is periodic with period p = p(o>), and U/S(w)
is a circle group. Then the value of dm{a>) corresponds to that associated with
rotations acting on C(R/pZ).

Proof. Take fe s£n with \\f\\p < 1 and (Sqf)((o) = 0 for 0< q <p, q * m. There is a
sequence fk e ^ such that \\fk —f\\ „ -* 0. By adding linear combinations of certain
fixed functions, one may assume that (Sqfk)(io) = 0 for 0 < q < p , q^ m. Next let g
be a fixed function in Cf(R/S(w)) such that g(t) = 1 near t = 0 and define Fk by
Fk{t) = g{t/k)fk{T,w). Then Fke C?(R/S(«w)), limsup | |F t | | ps 1, and F(

t
m)(0)-»

(5m/)(o)). Consequently
(m)(0)|; F e C?(R/S(w)), | |F | | , s 1 and F(<"(0) = 0

q<p, ? ^ m}.

Conversely if F e Cf(U/S(io)) then F = X^ 1 G,*H, for some functions G,,,
//, e C?(R/S(o)) by [7]. (In fact if S(«) # {0} then one may take JV = 1 since the
Fourier coefficients tend to zero faster than any power; if S(w) = {0} one may take
N = 2 by [7].) Next let /i, be a function in C0(X) such that hi(T,w) = HM for
te[-l, l] + supp (F)-supp (G,) and define/ by

= !

It follows t h a t / e ^ and/(rrw) = F(f) if te[-l, l] + supp(F). Consequently, by
theorem 2.1 of [3], there exists for any e > 0 an/, e ^ such that ||/i||p< (1 + e)||F||p
and/ , (7>) = F(0 near f = 0. If | |F||P<1 and F(q)(0) = 0 for 0<g</>, qi^m,then
(5y,)(w) = 0 for 0 < ^ < p , q^m, and, by choosing e sufficiently small, one may
arrange that ||/,||p < 1. Thus

This completes the proof. •
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Note that in the periodic case, i.e. S(<w)^{0}, one may alternatively prove this
second inequality by showing that for any trigonometric monomial F there exists
an / e tfn such that / (7>) = F(t).

Observation 5.2 shows that dm(co) depends only on p((o) and therefore we shall
write dm{p) for dm(w) where p = p(w), with the convention that p((o) = <x> if a> is
aperiodic.

OBSERVATION 5.4. It follows that dp{p) = 1 for all 0 < p < oo.

Proof. For any ge C °̂(R) let gk{t) = k~pg(kt). For large k the function gk may be
regarded as a function of period p. Furthermore ||gt||p-» ||g<p)|| and gfcP)(0) = g(p)(0).
Hence

1 > dp{p) > sup {|g(p)(0)|; g € Cf(R), ||g(p)|| < 1, and

= 1 D

For 0< m <p calculation of the exact value of dm(p) is neither straightforward nor
particularly instructive since it depends on the arbitrary choice of the norm || • ||p.
But it is useful to know the asymptotic behaviour of dm.

OBSERVATION 5.5. / / 0 < p < 2 then dm(p) = pp~mdm(l) and if 2<p<oo then
l><Up)>d m ( l ) .

Proof. Assume 0 < p < 2 . If F e C°°(R/pZ), ||F(p)|| < 1, and F(0) = 0, then it follows
that | |F| |P<1. Hence

dm(p) = sup {|F(m)(0)|; Fe C°°(R/pZ), ||F(p)|| < 1, and

Fiq)(0) = 0 for 0< q < p, q * m).

The change of variable t-* t/p immediately gives dm(p) = pp~mdm(l).
Since any function of period p/2 may also be regarded as a function of period

p one has dm(p)>dm(p/2). Therefore if p > 2 one has by iteration

where the first equality follows from the first part. Finally it is evident that dm{p) ^ 1
for all p. •

These observations now give the following bounds on the coefficients lm of the local
operator H.

(1) |/0(a»)|<a, for weX;
(2) |/p(ft>)|sa, fora>eX\X0;
(3) |/m(w)|<a/<Uoo), form = l , 2 , . . . , p - l , i f S ( » ) = {0};
(4) | / » | < ( a / d m ( l ) ) ( l + ( l / p r m ) , for m = l,2,...,p-\, if S(a>) = pZ

where p > 0.
This reproduces the polynomial boundedness results discovered in [3] but with more
specific estimates.
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A number of these observations immediately apply to multi-dimensional flows.
Adopting the multi-index notation of [3] it follows as in the earlier sections that

a local operator H: s£n -* sd satisfies a bound \\Hf\\ < a||/||p for all fe sim and can
be expressed as a polynomial H = X|a|sP W

 m t n e generators of the corresponding
group T. Observations 5.1 and 5.2 readily extend to this case. Thus for ueX
|/o(co)|<a, da((o)\la(o>)\sa, for |a |= 1,2,... , p, and

<4(W) = sup{|(DaF)(0)|; Fe CfiR'/SM), | |F||P< 1

and (DPF)(O) = 0 for |/?| </>, p * a}.

But now there is a variety of possibilities for the stabilizer subgroups S(u). The
simplest case is if T acts freely, i.e. S(o>) = {0} for all w e X. Then it follows from
the above identification that all the coefficients la are bounded. This reproduces
theorem 1.1 A of [3].More generally if S(a>) is discrete and

p = inf{\t\:teS((o),t^O},

then the coefficients la(oj) are uniquely determined, and

for some constant ca depending only on p and a.
The above methods also allow one to obtain estimates on the coefficients of local

operators associated with local flows (see [3, § 5]). The one-dimensional case is
again the simplest. If the local flow is the restriction of the global flow T to some
open subset then one defines the period p = p(w) of a point co as the largest value
of K>0 such that T,w is defined for all te(-K/2, K/2) and r<_K/2 K/2>w is an
injective image of the interval {-K/2, K/2). Then by modification of the above
arguments one finds bounds

\lm(w)\sa/dm(p)
where dm is given by

dm(p) = sup {|F(m)(0)|; F e C?(-P/2, P/2), \\F\\P < 1, and

F<9)(0) = 0 for 0 < q < p, q * m)

for all 0<p<oo. In this case the functions p^>dm(p) are monotonically increasing
and

dm(p) = P
p~mL(i)

for 0 < p < 1 by the argument used to prove observation 5.5. Therefore

| / ( o , ) |< ( a /d ( l ) ) ( l+ ( l / p ) ' ' - m )

Moreover do(a>) = 1 = dp{u>) as above.

Example 5.6. The operator of differentiation S = d/dx on Co(0, oo) is the generator
of the local flow obtained by restricting translations to the half-axis. Then for
XG(0 , oo) one has p(x) = 2x and the coefficients lm of a local operator H satisfy
the bounds |/m(x)|s Cm,p(l +x~p+m) for some Cm,p>0.

Finally we remark that boundedness of the coefficient l0 is a special feature of the
generator case. For non-generators, /0 may be unbounded.
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Example 5.7. Let X = (0,1]. Define 8 and H by

8f=f, D(H) = D{8),

Then H is a local operator from J^, into si but the coefficient /0( t) = t~' is unbounded.
Further if one defines H^.sij-^^- by

then H, is a derivation but the coefficient /](() = t~x is unbounded. (This shows that
the word 'bounded' must be deleted from theorem 5 of [2] when it is applied to
derivations with domain sin for n> 1.)
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