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Restricted Euler dynamics along trajectories
of small inertial particles in turbulence

Perry L. Johnson1,† and Charles Meneveau1

1Department of Mechanical Engineering and Center for Environmental and Applied Fluid
Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA

(Received 10 January 2017; revised 13 February 2017; accepted 14 February 2017;
first published online 6 March 2017)

The fate of small particles in turbulent flows depends strongly on the velocity gradient
properties of the surrounding fluid, such as rotation and strain rates. For non-inertial
(fluid) particles, the restricted Euler model provides a simple low-dimensional
dynamical system representation of Lagrangian evolution of velocity gradients in
fluid turbulence, at least for short times. Here, we derive a new restricted Euler
dynamical system for the velocity gradient evolution of inertial particles, such as
solid particles in a gas, or droplets and bubbles in turbulent liquid flows. The model
is derived in the limit of small (sub-Kolmogorov-scale) particles and low Stokes
number. The system exhibits interesting fixed points, stability and invariant properties.
Comparisons with data from direct numerical simulations show that the model predicts
realistic trends such as the tendency of increased straining over rotation along heavy
particle trajectories and, for light particles such as bubbles, the tendency of reduced
self-stretching of the strain rate.
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1. Introduction

Small particles embedded in a turbulent flow have interesting behaviours when the
particle density, ρp, is different from the density of the surrounding fluid, ρf . For
example, within a certain parameter range, heavy particles tend to cluster in regions
where the strain rate is higher than the rotation rate (Maxey 1987; Wang & Maxey
1993a; Eaton & Fessler 1994; Monchaux, Bourgoin & Cartellier 2012), while the
opposite is true of lighter particles (Biferale, Scagliarini & Toschi 2010) such as
bubbles (Wang & Maxey 1993b; Calzavarini et al. 2008) and oil droplets (Gopalan,
Malkiel & Katz 2008). This clustering effect (Balkovsky, Falkovich & Fouxon 2001;
Bec 2003) can enhance collision rates (Sundaram & Collins 1997; Reade & Collins
2000; Wang, Wexler & Zhou 2000; Falkovich, Fouxon & Stepanov 2002; Bewley, Saw
& Bodenschatz 2013). The rate of clustering can be related to the velocity gradient

† Email address for correspondence: pjohns86@jhu.edu

c© Cambridge University Press 2017 816 R2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-7929-9396
mailto:pjohns86@jhu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.112&domain=pdf
https://doi.org/10.1017/jfm.2017.112


P. L. Johnson and C. Meneveau

structure of the surrounding fluid experienced by particles along their trajectories
(Maxey 1987; Balkovsky et al. 2001). Other important aspects of multiphase flows
in various applications, such as particle rotation and orientation (Pumir & Wilkinson
2011; Parsa et al. 2012; Chevillard & Meneveau 2013), droplet or bubble deformation
(Maffettone & Minale 1998; Biferale, Meneveau & Verzicco 2014) and nutrient uptake
(Batchelor 1980; Karp-Boss, Boss & Jumars 1996), similarly depend on the local
velocity gradient structure. Much of the recent research on particle evolution in fluid
turbulence (Toschi & Bodenschatz 2009) is based on direct numerical simulations
(DNS). However, the high dimensionality of the Navier–Stokes equations especially
for high-Reynolds-number turbulence (Ishihara, Gotoh & Kaneda 2009; Ireland, Bragg
& Collins 2016) complicates basic analysis and the development of physical insights.

Dynamical systems models for the velocity gradient along Lagrangian paths provide
an interesting possibility for reducing turbulent dynamics to a low-dimensional
representation. Vieillefosse (1982, 1984) and Cantwell (1992) developed and studied
the so-called restricted Euler system, which is obtained by taking the spatial gradient
of the Navier–Stokes equations and neglecting the viscous and anisotropic pressure
Hessian contributions. The model consists of a system of 3 × 3 nonlinear coupled
ordinary differential equations for velocity gradient tensor elements,

DAij

Dt
=−AikAkj + 1

3
Ak`A`kδij, i, j= 1, 2, 3, (1.1)

where Aij = ∂ui/∂xj is the fluid velocity gradient, ui(x, t) is the velocity field and
D/Dt = ∂/∂t + uk∂/∂xk represents the Lagrangian time derivative following a fluid
element in the flow.

The restricted Euler system can be projected to just two degrees of freedom
and was shown to display important features seen in turbulent flows, such as the
preferential alignment of the vorticity vector in the direction of the eigenvector
associated with the median eigenvalue of the strain rate (Kerr 1985; Ashurst et al.
1987), negative skewness in longitudinal velocity gradients, as well as the tendency to
produce extreme velocity gradient events (Meneveau 2011), which are clustered along
the Vieillefosse tail. Without the neglected unclosed terms, however, the restricted
Euler system eventually yields finite-time singularities for almost all initial conditions.
The restricted Euler system played an important role in motivating subsequent work
on modelling the unclosed terms (Girimaji & Pope 1990; Jeong & Girimaji 2003;
Chevillard & Meneveau 2006; Biferale et al. 2007; Chevillard et al. 2008; Wilczek
& Meneveau 2014; Johnson & Meneveau 2016) and related work on the perceived
velocity gradient (Chertkov, Pumir & Shraiman 1999; Pumir, Bodenschatz & Xu
2013) at various scales, which has resulted in models capable of reproducing certain
turbulent statistics with good quantitative accuracy, although extension to arbitrarily
high Reynolds numbers remains an open challenge (Martins Afonso & Meneveau
2010; Meneveau 2011).

In this paper, we derive an extension to the restricted Euler system that considers
the effect of inertia on the velocity gradient dynamics when following an inertial
particle, yet can likewise be projected into a dynamical system with just two
degrees of freedom, namely the two tensor invariants Q = −(1/2)Tr(A2) and
R=−(1/3)Tr(A3). We explore whether the behaviour in the full RQ plane observed in
DNS (Benzi et al. 2009) can be explained by the new model. The model is developed
from governing equations in § 2, followed by an exploration of its behaviour compared
with DNS in § 3. Model properties such as fixed points and stability are investigated
analytically in § 4, before conclusions are drawn in § 5.
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FIGURE 1. Sketch of the fluid and inertial particle trajectories. In this paper, we consider
the time history of fluid velocity gradients, Aij(t), along these trajectories.

2. Model construction

As illustrated in figure 1, while fluid tracers (position x(t)) move according to
dxi/dt = ui(x, t), inertial particle trajectories (y(t)) evolve following the particle
velocity v(t) according to dyi/dt= vi(t), where, in general, vi(t) 6= ui(y, t). When the
particle radius a� η= ν3/4〈ε〉−1/4 (η is the Kolmogorov length scale, where ν is the
kinematic viscosity of the surrounding fluid and 〈ε〉 is the average dissipation rate of
the fluid flow) and Rea = a|v − u|/ν� 1 (particle Reynolds number), the dynamical
equation of the inertial particle trajectory (Maxey & Riley 1983) in the absence of
gravitational settling can be simplified to (Maxey 1987; Balkovsky et al. 2001)

dvi

dt
= βDui

Dt
+ ui − vi

τp
, (2.1)

where β = 3ρf /(2ρp + ρf ) is the added mass parameter and τp = a2/3νβ is the
relaxation time for the trajectory of a spherical particle of radius a. For small Stokes
number based on the Kolmogorov time scale (τη= ν1/2〈ε〉−1/2), St= τp/τη� 1, Maxey
(1987) constructed a perturbation solution to linear order in St which yields the
following approximation:

vi = ui − (1− β)τp
Dui

Dt
. (2.2)

This solution admits an interpretation in terms of a particle velocity field, vi(x, t), such
that the velocity of a particle at location yi(t) can be approximated by vi(t)=vi(y(t), t).
In this way, the time derivative of the particle can be interpreted as d/dt = ∂/∂t +
vk∂/∂xk. While at finite Stokes number the particle velocity field could be multi-valued
as two particles can have different velocities at the same point, the linear perturbation
expansion for St� 1 gives a single-valued particle velocity field. Since this velocity
field has non-zero divergence, it can describe clustering effects due to particle inertia.

In this paper, we consider the evolution of the fluid velocity gradient, Aij= ∂ui/∂xj,
along the particle trajectory, as sketched in figure 1. Considering a particle velocity
field vi(x, t), the evolution equation for the velocity gradient can be related to the
Lagrangian evolution by dAij/dt=DAij/Dt+ (vk− uk)∂Aij/∂xk, which upon substitution
of the gradient of Navier–Stokes yields

dAij

dt
=−AikAkj − ∂2p

∂xi∂xj
− ∂vk

∂xk
Aij − ∂Tijk

∂xk
, (2.3)
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where p is the pressure divided by density and Tijk represents spatial fluxes
of velocity gradient due to viscosity and inertial effects according to Tijk =
−ν∂Aij/∂xk + Aij(1 − β)τpDuk/Dt. A key step is to evaluate the divergence of the
particle velocity field using (2.2) for a divergence-free fluid velocity field (Balkovsky
et al. 2001), i.e. ∂vk/∂xk = −(1 − β)τpAk`A`k. The final steps in deriving the new
inertial restricted Euler system are, similarly to the classical restricted Euler model,
(i) to replace the pressure Hessian ∂i∂jp by its isotropic part ∇2p (δij/3) and to invoke
the pressure Poisson equation ∇2p = −Ak`A`k and (ii) to neglect any spatial fluxes,
i.e. set Tijk = 0, where we make the strong assumption of neglecting fluxes due to
viscosity and inertia effects.

The resulting system reads as follows:

dAij

dt
=−AikAkj + 1

3
Ak`A`kδij + (1− β)τpAk`A`kAij, (2.4)

thus extending the restricted Euler system of equations to include inertial trajectory
effects. The original restricted Euler equation is recovered by considering particles
with equal density to the surrounding fluid, ρp= ρf , hence β = 1. Equation (2.4) thus
shows, within the limitations of the restricted Euler assumptions, how the inertia of
a particle impacts the rate of change for each of the velocity gradient components
it experiences along its trajectory. It is important to note that the effect of viscosity
essential to studying inertial particles, Stokes drag, is represented in (2.4), while the
less crucial effect of spatial diffusion of fluid velocity gradient is neglected. These
simplifications enable us to focus on the terms that can be represented exactly in a
low-dimensional dynamical system.

The inertial restricted Euler dynamics given by (2.4) can be projected into the
two-dimensional space of tensor invariants Q and R, and yields the following
two-dimensional dynamical system:

dQ
dt
=−3R− 2

3
αQ2,

dR
dt
= 2

3
Q2 − αQR, (2.5a,b)

where α = 6(1 − β)τp is the time scale representing inertial effects. The second
invariant, Q= (ΩijΩij− SijSij)/2, represents the relative balance between local rotation,
Ωij = (Aij − Aji)/2 = −εijkωk/2, and straining, Sij = (Aij + Aji)/2. The third invariant,
R = −SijSjkSki/3 − ωiSijωj/4, represents the balance between strain production and
enstrophy production (Tsinober 2001).

For particles that are heavier than the surrounding fluid, 0 < β < 1 and α > 0.
For particles lighter than the surrounding fluid, 1 < β < 3 and α < 0. For heavy
particles (α > 0), the inertial term in the evolution equation for Q tends to oppose
rotation-dominant states (Q > 0) and reinforce strain-dominant states (Q < 0). The
exact opposite is true for light particles, where the inertial term opposes highly
straining states and favours highly rotating states. In this way, heavy particles cluster
in straining regions (Q < 0) and lighter particles cluster in rotating regions (Q > 0),
qualitatively mimicking well-known preferential concentration trends. In homogeneous
turbulence, 〈Q〉 = 0 and 〈R〉 = 0, where angle brackets denote ensemble averaging
(Betchov 1956), but when averaging over inertial trajectory ensembles, one observes
that 〈Q〉< 0 for heavy particles and 〈Q〉> 0 for light particles (Ireland et al. 2016).
The qualitative features of RQ space are sketched in figure 2, including this qualitative
effect of inertia on 〈Q〉, which is valid for any random velocity field, but in (2.5) is
combined with turbulence-like dynamics in a manner consistent with first principles.
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FIGURE 2. Sketch outlining the features of the RQ invariant space, including
representative local flow topology cubes. The Vieillefosse tail (dashed line) represents the
boundary between real and complex eigenvalues of the velocity gradient tensor.

3. Results

We now pursue a more detailed exploration of inertial effects in Navier–Stokes
turbulence according to the restricted Euler model developed in § 2. Figure 3 shows
the RQ phase-space portrait for non-inertial (fluid tracer), heavy and light particles
computed numerically from (2.5). Also shown is the stationary joint probability
density function (PDF) of Q and R computed from DNS at Reλ = 185 (Bec et al.
2010). Although statistical stationarity (and hence direct comparison of the joint
PDF) cannot be achieved in the system of (2.5) without introducing models for the
neglected terms, the qualitative comparison of streamlines with the joint PDF in
RQ space for heavy particles from DNS is informative. In particular, (a) shows the
original restricted Euler system (α= 0), for which trajectories move from left to right
along lines of constant Q3 + (27/4)R2, eventually proceeding towards the finite-time
singularity in the fourth quadrant (Vieillefosse 1982, 1984; Cantwell 1992). The
sheared teardrop shape in the joint PDF in (b) highlights the dynamical significance
of the Vieillefosse tail for the full (Navier–Stokes) dynamics of the velocity gradient
tensor (Soria et al. 1994; Blackburn, Mansour & Cantwell 1996; Chong et al. 1998;
Ooi et al. 1999).

In figure 3(c,d), the inertial restricted Euler phase-space portrait is shown for the
case of heavy particles (α > 0). The finite-time singularity down the Vieillefosse line
in the fourth quadrant remains and is strengthened. In addition, some initial conditions
proceed to a finite-time singularity down the other branch of the Vieillefosse line
in the third quadrant. However, it is a very unstable manifold in the third quadrant,
meaning that any noise in the system will prevent particles from proceeding to that
singularity. In the first quadrant, the downward ‘flow’ of particles is enhanced while
the left-to-right ‘flow’ is suppressed. The DNS results for heavy particles indeed show
the tendency down the Vieillefosse tail in the fourth quadrant, as well as reduced
probabilities in the upper half (Q> 0).
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FIGURE 3. Restricted Euler streamlines (a,c,e) and DNS-computed joint PDF isocontours
(b,d, f ) for Lagrangian trajectories (a,b), heavy-particle trajectories with β=0, St=0.3, α=
1.8
√
ν/〈ε〉 (c,d) and light-particle trajectories with β = 3, St = 0.1, α = −1.2

√
ν/〈ε〉

(e, f ). The time scale |α| is used to normalize the axes on the streamline plots, while√
2ν/〈ε〉 is used to normalize the axes for the DNS results, where 〈ε〉 is the average

turbulent dissipation rate from the simulation. The red circles show fixed points of the
RQ dynamics, providing a visual connection between the two normalizations. The DNS
data are from a pseudo-spectral simulation performed at Reλ= 185 with a grid resolution
of 5123 (Bec et al. 2010). The PDF isocontours are spaced logarithmically with levels
10z, z= 1, 0,−1,−2,−3,−4.
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Finally, the phase-space trajectories for light particles (α < 0) are shown in
figure 3(e, f ). The restricted Euler trajectories tend to proceed towards the fixed
point in the fourth quadrant. There, a rapid collapse towards the Vieillefosse tail
is followed by slower evolution along it towards the fixed point. The restricted
Euler dynamics imposes more resistance to (e.g. noise-driven) movement away from
the tail than movement along the tail. Trajectories no longer exhibit a finite-time
singularity down the Vieillefosse tail. However, some trajectories in the second and
third quadrants (e.g. R(0)|α|3 < −3.2 with Q(0)|α|2 = 0) do blow up in finite time
with Q > 0 along inverted Vieillefosse-like manifolds with Q ∼ R2/3. The joint PDF
from DNS data indeed suggests that the Viellefosse tail is still dynamically important
for light particles, but that light particles do not tend to reach extreme states as
far down the Viellefosse tail compared with neutral and heavy particles, an effect
that may be qualitatively linked to the fixed point in the restricted Euler dynamics.
The fixed point here takes on a clear physical interpretation, that inertial effects
prevent light particles from sampling regions of the flow with more extreme values
down the Vieillefosse tail. In general, the lower probabilities in the Q < 0 region
are offset by higher probabilities in the Q > 0 region. Additionally, the upward and
left-to-right movement in the first quadrant (towards R� 0) of the inertial restricted
Euler streamlines is consistent with the enhanced probabilities observed in the DNS
results.

While the qualitative comparisons between streamlines of the inertial restricted
Euler system and joint PDFs from DNS are encouraging for both heavy and light
particles, quantitative comparison of stationary statistics cannot be accomplished
without models for the neglected unclosed terms, as was also the case for the
original restricted Euler system (Meneveau 2011). Besides the pressure Hessian and
viscous Laplacian, additional modelling work is probably necessary for the additional
terms introduced for inertial trajectories, namely ∂[(vi − ui)Aij]/∂xk. It is important
to note that the finite-time singularities in the original and inertial restricted Euler
systems are not physical and exist only because of the absence of the neglected
terms.

The St numbers used in figure 3 are evidently low enough for good qualitative
agreement, and increasing accuracy of the linear perturbation solution with further
decreasing St could be further investigated with the careful development of reliable
statistical closure schemes for the neglected terms to enable quantitative comparisons.
For larger St (or larger |α|), the model predicts that the equilibrium points will move
ever closer to the origin, thus increasing the deviations of the joint PDF with those
along tracer particles. This can be appreciated by comparing with the DNS of Benzi
et al. (2009), which were for larger St than the present results.

4. Analysis

Due to its inherent simplicity, many of the features of the inertial restricted Euler
system can be investigated analytically. A salient feature of the original restricted
Euler equation (α = 0) is the invariant Q3 + (27/4)R2 (Vieillefosse 1982; Cantwell
1992). For the extended system given by (2.5),

d
dt

(
Q3 + 27

4
R2

)
=−2αQ

(
Q3 + 27

4
R2

)
, (4.1)

so that for the particular choice Q3 + (27/4)R2 = 0, this remains an invariant of the
dynamics. Strikingly, this means that the Vieillefosse tail, Qv(R)=−(27/4)1/3R2/3, is
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an invariant manifold for all values of α, an important observation clearly supported
by the DNS evidence in figure 3.

It is straightforward to show that (2.5) has two fixed points, one at the origin and
another at R0 = −2/α3, Q0 = −3/α2, which lies on the Vieillefosse tail, i.e. Q3

0 +
(27/4)R2

0 = 0, as clearly seen in figure 3. Linear stability analysis of this fixed point
reveals eigenvalues of λ1= 6/α and λ2= 1/α with (unnormalized) eigenvectors e(1)=
(1,−(3/2)α)T and e(2) = (1, α)T . The fixed point is unstable for heavy particles and
stable for light particles, as seen in figure 3. The slope of the Vieillefosse tail at the
fixed point is dQv/dR|Q0 =α, so that the eigenvector associated with the more weakly
stable/unstable eigenvector points along the Vieillefosse manifold.

Along the Vieillefosse manifold, the dynamics is given by dR/dt = (3/21/3)R4/3 +
(3/22/3)αR5/3, which for α 6= 0 can be written as

dR
dt
= 6
α4

[(
R
R0

)4/3

−
(

R
R0

)5/3
]
. (4.2)

This shows the reinforcement of the original finite-time singularity behaviour in the
fourth quadrant for heavy particles as well as a similar path to singularity in the third
quadrant, for R<R0 < 0. It also shows that there is no longer a finite-time singularity
along the Vieillefosse manifold for light particles due to the stable fixed point. This
stable fixed point for light particles highlights the role of inertia in counteracting the
tendency towards more heavily strain-dominated regions down the Vieillefosse tail.
This tendency, meanwhile, is strengthened for heavy particles.

The linear stability of the Vieillefosse manifold is examined by considering the
trajectory Q(R) = Qv(R) + ε(R). Using d ln ε/dt = d ln ε/dR dR/dt, the linearized
behaviour of ε can be shown to be

d ln ε
dt
= 21/3αR1/3

(
R1/3 −

(
16
α3

)1/3
)
. (4.3)

When d ln ε/dt> 0, the Vieillefosse line is an unstable manifold. When d ln ε/dt< 0,
it is a stable manifold. The stability of the manifold changes sign twice, once at the
origin, and also at the point

(Rs,Qs)=
(

16
α3
,−12

α2

)
. (4.4)

For α > 0 (heavy particles), the Vieillefosse manifold is stable for 0< R< Rs, while
it is unstable if R< 0 or R>Rs. Meanwhile, for α < 0 (light particles), it is stable for
R<Rs or R> 0 and unstable for Rs <R< 0. The point of neutral stability, Rs, has an
opposite sign to the fixed point, R0, and is also eight times larger in magnitude. Thus,
it is unlikely to be of much relevance to the stationary statistics at low St number, as
shown in figure 3.

5. Conclusions

With only two degrees of freedom, the extension of the restricted Euler system
for inertial particle paths yields qualitative agreement with basic trends seen from
DNS in the RQ plane. The trends observed follow directly from first principles, i.e.
from the ‘self-stretching’ properties of the nonlinear term in the Navier–Stokes and

816 R2-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.112


Inertial restricted Euler dynamics

particle transport equations, whose effects are elucidated here by neglecting all of
the ‘non-local’ spatial flux terms. While the restricted Euler system cannot itself
offer quantitative predictions in most cases, the qualitative success in representing
basic inertial effects suggests that it can be a good starting point for developing
more complete models for velocity gradients along inertial particle trajectories for
applications such as preferential (fractal) concentration (Bec 2003; Bec et al. 2006;
Esmaily-Moghadam & Mani 2016) of heavy and light anisotropic particles (Parsa
et al. 2012; Chevillard & Meneveau 2013) and deformation of liquid droplets (Biferale
et al. 2014) or bubbles.
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