
PRIME POWER REPRESENTATIONS 
OF FINITE LINEAR GROUPS 

ROBERT STEINBERG 

1. Introduction. There are five well-known, two-parameter families of 
simple finite groups: the unimodular projective group, the symplectic group,1 

the unitary group,2 and the first and second orthogonal groups, each group 
acting on a vector space of a finite number of elements (2; 3). If k is the 
dimension of this space, we denote these groups by 2k1 ©*, U*, £)k and D*', 
respectively. By analogy, groups D2, ©4 and £)2' (which are not simple) can 
be defined. Our main conern then is the proof of the following result: 

THEOREM. Let ® be one of the groups %k1 ©*, VLkJ £)k or £)k' with k > 2. 
Let p be the characteristic of the base field, let d be the order of a p-Sylow subgroup 
ty of ®, and let m be the index of the normalizer $ in @. Let 2 be any vector 
space of dimension d over afield of characteristic 0 or prime to m. Then & has an 
irreducible representation of degree d with 2 as the representation space. 

The special case @ = 82 was proved by Jordan (7) and Schur (12), inde
pendently; the case @ = 83 by Brinckmann (1); and the case @ = 2n first 
by the present author (13) and then later by Green (5). In (4), Frame proved 
the theorem when © = U3. All of these authors dealt only with the character 
of the representation, not with the representation itself. The methods of the 
present paper are constructive and yield the representation space and the 
representing matrices explicitly. It is hoped that the geometric ideas introduced 
in this construction may be of independent interest. 

In §§2, 3, 4, and 5, the group 8re is dealt with. In §6, the other groups are 
considered. In §7, a few observations are added. 

As a general reference to the definitions and properties of the spaces and 
groups to be considered, we cite (2) and (3). 

2. Preliminary definitions and notations. Throughout §§2, 3, 4 and 5, 
V denotes a vector space of dimension n over a field of q elements and of 
characteristic p. The symbol S r denotes an r-dimensional subspace of V; 
if the superscript is omitted, the dimension is to be taken as 1; subscripts are 
used to distinguish subspaces of the same dimension. The symbol {S\ Sj, . . .} 
denotes the subspace spanned by S\ Sj, . . . . 

Definition 1. An r-simplex is an ordered set of r linearly independent 
1-spaces: [Si, S2, . . . , S r]. Each Sj is called a vertex of the simplex. An n-
simplex is more briefly called a simplex. 
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Definition 2. A composition sequence (abbreviated to c.s.) is a sequence 
of n subspaces [S1, S2, . . . , Sn] such that Sj C Sj+1(J = 1, 2, . . . , « - 1). 

Definition 3. Let A = [Si, 52, . . . , Sn] be a simplex and V = [S1, S2, . . . , 
Sn] a c.s. Suppose that there exists a permutation a of the numbers 1, 2 , . . . , n 
such that 
(1) Sj = {S„(i), 5,(2), • • • , 5ff0)} 0* == 1 , 2 , . . . , n). 

Then V is called a /ace of A : a positively or negatively oriented face according 
as a is even or odd. Each of the n\ faces of A determines an opposite face 
Vx = [Si1, 5i2, . . . , 5in] defined by 

(2) 5i = {5,^), 5,(71-1),. . . , 5<r(n_;+i)} (J = 1, 2 , . . . , ?z). 

Our first result is a useful characterization of opposite faces: 

LEMMA 1. If V = [51, 52, . . . , 5ra] and Vi = [Si1, Si2, . . . , 5in] are two faces 
of a simplex A = [Si, 52, . . . , Sn] then a necessary and sufficient condition for 
V and V i to be opposite is that 

(3) s ' n s r ' = o u = 1,2,...,»-1). 
Tjf V awa7 Vi are two c.s. for which (3) holds, there is a simplex A, uniquely 
determined to within an ordering of its vertices, which has V and Vi as {opposite) 
faces. 

Proof. The assumption that V and Vi are opposite faces of A implies the 
existence of a permutation a such that (1) and (2) hold. But then, since the Sj 
are linearly independent, (3) holds. If V and Vi are faces which are not 
opposite, there exists a permutation r, different from a, such that 

Si = {5T(n), 5T(n_D, . . . , ST(n-j+i)} (j = 1» 2, . . . , n). 

If j is the first index such that <r(j) 9e r(j), then S,^) C Sj r\Sin~3, contra
dicting (3). Suppose finally that V and Vx are c.s. for which (3) holds. Then it 
follows that 

Sj = s}n sri+1 

is 1-dimensional for each j . Thus these Sj are the only possible choices for 
vertices of a simplex A relative to which V and Vi are opposite faces. To 
complete the proof, we note that, for each j , Sj C Sj but Sj (J_ S ;_1. Thus the 
Sj are linearly independent so that A = [Si, 52, . . . , Sn] is a simplex and the 
equations (1) and (2) hold with <J the identity. 

3. The spaces S and 2*. We proceed now to define representation spaces 
and to develop some of their properties. If A is a simplex and V a c.s., we 
introduce an inner product (A, V), defined to be 1, —1 or 0 according as V 
is a positive face, a negative face or not a face of A. If F is an arbitrary but 
fixed field, we can extend this inner product, by linearity, to linear combinations 
of simplexes and to linear combinations of c.s. over F. In this way, relative to 
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this inner product, dual spaces 2 and 2* are determined. Thus an element of 
2 (2*) is a linear combination of simplexes (c.s.), and it is defined to be 0 
if and only if it is orthogonal to all elements of 2* (2). 

If e(cr) is defined to be 1 or — 1 according as a is even or odd, an immediate 
consequence of the definitions is the following: 

LEMMA 2. If [Si, S 2, . . . , Sn] is a simplex and a a permutation, then 

[5,(1), 5^(2), • • • , Sff(n)] = e(a)[Si, 52, . . . , Sn]. 

If A is an (» — l)-simplex and 5 a linearly independent 1-dimensional 
subspace, then [5, A] is used in our next result to denote the »-simplex whose 
vertices are obtained by taking first 5 and then the vertices of A in a positive 
order. 

LEMMA 3. Let {A} be a set of (n — l)-simplexes, all contained in one 
(» — I)-dimensional subspace Sn~1 of V. Let S be a 1-space not in 5*"1. Then 
£ A = 0 implies £ [5, A] = 0. 

Proof. To each face V = [51, 52, . . . , 5W_1] of A we make correspond n 
faces Vi, V2, . . . , Vn of [5, A] defined by 

V, = [51, 52, . . . , 5* - \ {5,5*-M, { 5 , 5 * } , . . . , { 5 , 5 - M ] ; (k = 1 , 2 , . . . , » ) . 
Then one sees that, for each k, ([5, A], Vk) = (— 1)*_1(A, V). The required 
result now follows by summation on A with V and Vk held fast. 

LEMMA 4. Let Si, 52, . . . , Sn+i be 1-spaces, and, for k — 1 , 2 , . . . , » + 1, 
let Ak = [Si, 52, . . . , Sk-i, Sic, Sk+i, . . . , 5n+i], where Sk denotes that this vertex 
is to be omitted. Then 
(4) Z ' ( - 1 ) * A * = 0, 

the summation being over those Ak, which are simplexes. 

Proof. Suppose first that no n of the Sj are linearly dependent. Let V = [51, 
52, . . . , Sn] be any face of An+i. Thus there is a permutation a such that (1) 
holds. I t is easy to see that 

(A„+1, V) = e(o-), (A,(J>), V) = (-l)*-' (n )e(cr), (A„ V) = Oifj ^ n + l,a(n). 

Thus the left side of (4) is orthogonal to each face of Aw+i. Similarly, it is 
orthogonal to each face of Ai, A2, . . . , An (since an interchange of two Sj 
changes the sign of this sum) ; hence it is 0. 

In proving the general case, we may assume that n of the Sjy say 5i, 52, . . . , 
Sn, are linearly independent and that 5w+i is linearly dependent on Sn-k+i, 
Sn-k+2, . . . , Sn but on no smaller number of Sj (j = 1 , 2 , . . . , » ) . Then the 
^-dimensional case of the first part of the proof shows that the analogue of 
(4) holds for the k + 1 ^-simplexes formed from the vertices Sn-k+i, . . . , Sn+i. 
By Lemma 3 (applied » — k times), we may prefix each of these simplexes 
with the vertices Si, 52, . . . , Sn-k and get our result. 
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We now introduce convenient bases for 2 and 2*. 

THEOREM 1. Let V0 = [So1, So2, . . . , So1] be a fixed c.s. Let 33 be the set of 
simplexes A such that (A, V0) = (— l)[*w]. For each Aj in 33, let Vj be the face 
opposite to V0. Let 33* be the set of such faces. Then the sets 33 and 33* are dual 
bases of 2 and 2*. 

Proof. We first prove that 33 spans 2. Let 33 r (r = 0, 1, 2, . . . , n - 1) 
be the set of simplexes A = [Si, S2, . . . , Sn] such that 

So' = {Sx, S 2 , . . . ,S , } C/= l , 2 , . . . , r ) . 

Thus So consists of all simplexes, and 33»-1 = 33. We now show that any 
member of 33r is the signed sum of at most n — r members of 33r+i- Let 

A = [Si, S2, . . . , S r, TV+i, . . . , Tn] 

be in 33r. Let Sr+i be any 1-space in Sor+1 P\ {TT+i,..., Tn}. Then, by Lemma 
4, applied to the (n — r)-space {TT+U • • • , Tn), the (w — r)-simplex [7%+!,.. . , 
Tn] is a signed sum of at most n — r (n — r)-simplexes, each of which has 
ST+i as a vertex. By Lemma 3, A is a signed sum of at most n — r members of 

To complete the proof, we invoke Lemma 1, which implies that, if A;, Vk 

are in 33, 33*, then (A;-, Vk) = ôyfc. Thus 33 is linearly independent, hence is a 
basis of 2, and 33* is the dual basis of 2*. 

COROLLARY. A simplex A is the signed sum of those members Aj of 33 which 
have a face Vj in common with A and which have V0 as the opposite face, the 
signature being positive or negative according as the common face Vj does or does 
not have the same orientations on A and Ay. The sum consists of at most n\ terms. 
If A is not a member of 33, the sum of these signatures is 0. 

Proof. The first two statements follow from the equation A = 2 (A, V;) A^ 
which is valid since 33 and 33* are dual bases. The equations (A ,̂ V0) = ( —1)[^] 

then imply the third statement. 

4. The Sylow subgroup $ . We now turn to the group 8n of unimodular 
projective transformations. Since we are concerned only with the permutations 
of simplexes effected by members of 8n, and since a scalar transformation 
leaves all simplexes fixed, we may work with 2n via representative elements of 
the unimodular group. Similar considerations apply to the other groups dealt 
with in §6. 

The order and existence of a useful £-Sylow subgroup of 2n is given by the 
next two lemmas: 

LEMMA 5. The order of a p-Sylow subgroup of ® = %nis d = g ^ - D . 

LEMMA 6. Let V0 be a given c.s. Let %l be the set of elements of © which leave 
V0 fixed, and let ^ be the subset of 31 composed of elements whose orders are 
powers of p. Then ty is a p-Sylow subgroup of @ and 31 is its normalizer in ©. 
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Proof. For Lemma 5, the order of ® is available (2; 3). To prove 
Lemma 6, we let V0 = [So1, -So2, . . . , S0

n] and then choose an ordered basis 
X = (xi, x2, . . . , xn) of V such that 

(5) So = {xi, x2, . . . , Xj} (j = 1, 2, . . . , »). 

Then, relative to the basis X, 9Î consists of all subdiagonal matrices, and $ 
of those which in addition have only Ts on the main diagonal. All conclusions 
now easily follow. 

We proceed to set up a 1-1 correspondence between the elements of the 
£-Sylow subgroup $ defined in Lemma 6 and the members of the basis S3 of S 
defined in Theorem 1. Again let X be a basis of V satisfying (5). Relative to 
X, each element P of ty is represented by a matrix whose rows si, s2l . . . , sn 

may be interpreted as vectors in V. I t is easy to see that the simplex 

A = (-l) r iw l[{51}> {52} {Sn}] 

is a member of S3 and that the correspondence 6 defined by 6P = A is 1-1 
from $ onto 33. From the fact that each row in the product of two matrices 
is the image of the corresponding row of the first matrix under the transforma
tion corresponding to the second matrix, it follows that (6Pi)P2 = 6(P\P2), 
where P\ and P2 are any two elements of $ . Thus the right multiplication by 
P on the set $ is mapped by 6 onto the application of P to the set S3 ; and this 
mapping is an isomorphism since 6 is 1-1. We may sum up the results of this 
paragraph in the following theorems: 

THEOREM 2. The dimension of 2 {or 2*) is equal to the order of a p-Sylow 
subgroup of ®. 

THEOREM 3. If 6 is the mapping from $ onto S3 defined in the preceding 
paragraph, then 9 induces an isomorphism between the right regular representation 
of ty and the group $ considered as acting on the set S3. The group $ is simply 
transitive on the members of S3. 

5. The representation 9î. Two final geometric results are necessary for 
the proof of the main theorem. 

LEMMA 7. Let m be the index of the normalizer of a p-Sylow subgroup of 
© = 8n. Then 

(i) m is the number of c.s.; 

(ii) m = Q h ç ' - l ) ) / ( g - 1)». 
Proof. The first statement follows from Lemma 6 and the fact that the 

group G is transitive on the c.s. For the second statement, see (13). 

LEMMA 8. Let A0 = [Si, S2, . . . , Sn] be a simplex. Let Va be the face of A0 

corresponding to the permutation a. For each o-, let {Aaj} (j = 1, 2, . . .) be the set 
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of simplexes which have Vff as a positive face. Let m be the integer defined by 
Lemma 7. Then 
(6) E *0) A„ = m A0. 

Proof. An arbitrary simplex A makes one appearance on the left side of 
(6) for each face that A has in common with A0, the signature being positive 
or negative according as this face does or does not have the same orientation 
on A and A0. This face determines a unique opposite face V0 of A. If we keep 
V0 fixed and sum over those terms of (6) which give rise to V0 in this way, 
then, by the corollary to Theorem 1, we get A0. We then sum over Vo to get 
the stated result. 

In the case that © = 8n, we now state our main result: 

THEOREM 4. Let ® = 2n and let 9? be the representation induced1 in the 
space 2 by ®. Further suppose that $ is a p-Sylow subgroup in @, that 33 is the 
basis of 2 defined by Theorem 1, and that d and m are the order of ^ and the index 
of the normalizer of ^}, respectively. (These numbers are given by Lemma 5 and 
Lemma 7.) Then 

(i) in the sense of Theorem 3, 9t restricted to $ is equivalent to the right regular 
representation of $ ; the degree of 9Î is thus d; 

(ii) relative to 33, 9î is represented by a set of matrices each of which has only 
entries of 0, 1 or — 1; in each row, at most n\ non-zero entries occur, and their sum 
is 0, if the row has more than one such entry; 

(iii) if the base field F of the space 2 has characteristic prime to m, then 9? is 
irreducible —in particular, this is so if the characteristic is 0 or p. 

Proof. Statements (i) and (ii) follow from Theorem 3 and the corollary to 
Theorem 1. To prove (iii), we show that the enveloping algebra of 9? consists 
of all linear transformations from 2) to 2. First, choose a basis X of V such 
that (5) holds, and set Sj = [xj] (j = 1, 2, . . . , n). We now note that, 
corresponding to each permutation a of the numbers 1, 2, . . . , n, there 
exists an element Qa of 8» such that SjQa = S«rO). If o* is even, Qff may be 
defined by XjQ^ = xv^)\ if <T is odd, Q« may be defined by XiQff = — X^D, 
XjQe = Xiru), j 9e 1. If we now let A0 be the simplex [Si, S2 , . . . , Sn], it follows, 
by Theorem 3 and Lemma 8, that, for each At in S3, 

(7) AtQ = m Ao, 

where Q = £ e(o-)P:/Ç(r, the summation being over all permutations a and 
all elements Pj of $ . Now, let V be the face of A0 opposite to V0 and let 
53' = {A/} (with Ao' = ( — l)l*wlA0) be the corresponding basis of 2, as given 
by Theorem 1. By Lemma 1, the only member of 93' which has V0 as a 
face is A0'. By the corollary to Theorem 1 and by (7), 

3Since the elements of © leave (A, v) invariant, they induce well-defined linear trans
formations in 2 and 2*. A similar remark applies in the case of Theorem 4'. 
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(8) A'oQ = m AS, A'tQ = 0, * V 0 . 

By Theorem 3, applied to the basis 33', there exists, for each i, an element 
P / of ® such that 

(9) ASP; = A;. 

Now, for each pair i, j , we set 

T^-^P^GP;. 
By (8) and (9), it follows that A / 7 \ , = A/ ; A / P ^ = 0, k ^ i. Since the TtJ 

form a basis for the linear transformations from 2 to 2, the proof of irreduci-
bility is complete. 

6. The symplectic, unitary and orthogonal groups. In this section, we 
consider the modifications necessary in the preceding development if the 
group 8n is replaced by the other classical linear groups. 

In the case of the unitary group, V denotes a vector space over a field of q2 

elements and of characteristic p\ in the other cases, the field is to have q 
elements. 

The symplectic group, ©2 ,̂ has an invariant, skew, bilinear form of pairs 
of vectors, x = (a*), y = (/?*), which may be taken as 

n 

(*) (*, J) = IL ("jPn+J - Oln+jPj)-

For the unitary group, U2n, this is to be replaced by 
n 

(*) (*, y) = 2 («A+i + <*»+•$*jf 

with JH = /3ff; for l ^+ i , a term a2»+i02»+i is added. 
For the first orthogonal group, D2n> we choose the quadratic form 

n 

(*) (?(*)= S a/*n+*; 

a term a2
2n+i is to be added in the case of ©2n+i; an irreducible quadratic form 

in a2n+i and a2n+2 is to be added for D'2w+2, the second orthogonal group. 
In these three cases, we introduce the inner product 

(x,y) = Q(x + y) - Q(x) - Q(y). 

Thus, in all cases, the concept of orthogonality of pairs of vectors exists. 
Unless the contrary is stated, it is assumed in what follows that @ is any one 

of the groups S2n, U2w, U2»+i, £)2n, £ W i or £)'2n+2 with n > 1, the group 
© = 02n+i being excluded if q is even, since then @ is isomorphic to ©2». 

The symbol c(ST) denotes the subspace orthogonal to Sr. 

Definition 4. If V underlies an orthogonal group, and if q is even, a subspace 
is isotropic if each of its vectors annuls the quadratic form Q. In all other 
cases, a subspace is isotropic if every two of its vectors are orthogonal. 
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Definition 5. A special 2r-simplex is an ordered set of 2r isotropic 1-spaces 
[Si, S2, . . . , Sir] for which there exist vectors Sj in Sj such that 

(sj, sk) = 0, (sr+J, sr+k) = 0, (Sj, sr+k) = ôjk (j , & = 1, 2, . . . , r). 

It is clear that the vertices of such a simplex are linearly independent. The 
vertices Sj and Sr+j are termed opposite. We shorten "special 2w-simplex" to 
"simplex". 

The existence of isotropic w-spaces and of simplexes follows at once from the 
equations (*). In each case, the first n basis vectors span an isotropic w-space 
and the 2n 1-spaces generated by the first 2n basis vectors are the vertices of 
a simplex. 

Definition 6. A special composition sequence (s.c.s.) is a sequence of n 
isotropic subspaces [S1, S2, . . . , Sn] such that Sj C Sj+1 (j = 1, 2, . . . , n — 1). 

Definition 7. An admissible permutation (a.p.) of the numbers 1, 2, . . . , 2n 
is a permutation a such that v(n + j) = n + a(j) (mod 2n) (j = 1, 2 , . . . , n). 

It is to be noted that an a.p. is determined by its effect on 1, 2, . . . , n. The 
a.p. form a group of order 2n n\ isomorphic to the hyper-octahedral group 
(15). Each a.p. a induces a permutation d of the n pairs (J, n + j). We set 
«'(*) = *(<r) e(f). 

Definition 8. Let A = [Si, S2, . . . , S27l] be a simplex and V = [S1, S2, . . . , Sn] 
an s.c.s. Suppose that there exists an a.p. a such that 

Sj = {Sff(i)j S<r(2), . . . , S«rO)} ( j = l , 2 , . . . , n). 

Then V is termed a face of A : a positively or negatively oriented face according 
as e'(o-) is 1 or — 1. The face Vi of A which is opposite to V is defined by 

Vi = [Si1 , S i 2 , . . . , S i n ] , S i = (SaOH-i), Sa(n+2), . . . , Svfa+j)} (j = 1, 2 , . . . , w) . 

The spaces S and 2* are defined as in §3. 
Lemmas 1, 2, 3 and 4 have analogues which are: 

LEMMA 1'. If V = [S\ S2, . . . , Sn] and Vi = [Si1, Si2, . . . , Sin] are two 

faces of a simplex A = [Si, S2, . . . , S2re], then a necessary and sufficient condition 
for V and Vi to be opposite is that 

(3') S3nc(S() = 0 , j = 1 , 2 , . . . , * . 

If V and Vi are two s.c.s. for which (3') holds, there exists a simplex A, 
uniquely determined to within an ordering of its vertices, which has V and Vi 
as (opposite) faces. 

LEMMA 2'. If [Si, S2, . . . , S2w] is a simplex and or is an a.p., then 

[Sflr(l), S<r(2), . . . , Sa(2n)\ = *'(<r)[Sl, S 2 , . . . , S 2 n ] . 
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LEMMA 3'. Let [Si, S2] be a special 2-simplex contained in a 2-space S2. 
Let {A} be a collection of special (2n — 2)-simplexes contained in c(S2). For 
each A, let A' be the special 2n-simplex which has S\ and S2 as its first and (n + \)st 
vertices and the vertices of A, taken in positive order, as its remaining vertices. 
Then YL A = 0 implies XI A' = 0. 

LEMMA 4'. Let A be a simplex and S an isotropic 1-space. Then A can be 
expressed as a sum of simplexes each of which has S as a vertex. 

Proof. The proofs of Lemmas 1', 2' and 3' are virtually the same as those of 
Lemmas 1, 2 and 3, and so may be omitted. As a first step in the proof of 
Lemma 4', we check two special cases. If n — 1, A = [Si, S2], S 9e Su S 9^ S2, 
then it is easy to verify that [Su S] and [S, S2] are simplexes (see Definition 5), 
and that 

[SuS2] = [Si, S] + [S, S2]. 

Next suppose that n = 2, A = [Su S2, S3, S4], and that S is orthogonal to 
exactly one vertex of A, say to Si. Then, if 

T = c(S)n {S2,Sz}, U = c(S)n {Sz,S±}, 

the required conclusion may be drawn from the equation 

[Si, s2, s3, s4] = [s, r, s3, u] + [Si, s2, r, s] + [Si, s, u, s4]. 

The rest of the proof consists in showing that any other case can be reduced 
to one of these two cases. We may suppose that n > 2 and that S is not 
orthogonal to a pair of opposite vertices, say Si and Sn+u since, then, the 
restriction to c({Su Sn+i}) and an application of Lemma 3' effectively replaces 
nby n — 1. Thus we may suppose that the two vertices Sn+i and Sn+2 are not 
orthogonal to S. Now set 

T = c(S)n {s„+i,sn+2}, u = c(T)n {sus2}. 
Then the following is a relation among special 4-simplexes, all in one 4-space: 

(10) [Si, S2, Sn+u Sn+2] = [Si, U, T, Sn+2] + [U, S2, Sn+u T]. 

By Lemma 3 r, if the vertices S3, . . . , Sn, Sw+3, • • • , S2n are adjoined to these 
4-simplexes, an expression is obtained for A as a sum of two simplexes each of 
which has at least one vertex orthogonal to S. If n > 3, this construction can 
be repeated, with the indices 1 and 2 replaced by 2 and 3, to yield a second 
vertex orthogonal to S. Finally, if n > 2 and S is orthogonal to two vertices 
of A (which may be taken as non-opposite), say to Si and S2, and not ortho
gonal to Sn+\ and Sn+2, then the same construction yields, on the right side of 
(10), two simplexes, each of which has a pair of opposite vertices orthogonal to 
S; and this case has already been considered. 

In the statement of Theorem 1, the number ( — l)[*n] is to be replaced by 
( —l)w, in the present case; in the corollary to Theorem 1, n\ by 2n n\. No 
changes are required in the proof. 
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The analogue of Lemma 5 is: 

LEMMA 5'. The order of a p-Sylow subgroup of © is 

d = qn\ qni2n-1\ qni2n+1\ qn{n~l\ ^ or qnin+1) 

according as 

© = ©2w, U2w> U2w+1, ©271, 0 2 n + l OT £52w+2-

Proof. See (2; 3) for the order of @. 

The statement of Lemma 6 goes over intact and the proof is similar; so 
both may be omitted. The same remark applies to Theorems 2 and 3. 

We now note an exception that occurs (only) in the case that © = D2n. 
Then the isotropic ^-spaces form two families such that two members of the 
same family (of opposite families) intersect in a space of dimension n — r 
with r even (odd), and such that the elements of £)2w permute these w-spaces 
within their separate families (3, p. 48). The first property implies that at 
most one-half of the 2n isotropic ^-spaces spanned by sets of n vertices of a 
given simplex can fail to intersect a given isotropic w-space; thus, in the 
corollary to Theorem 1, the number n\ may be replaced by 2n~1 n\, in this case. 
The second property implies that the group D2n is not transitive on all of the 
s.c.s., only on one-half of them. Thus the analogue of Lemma 7 takes the 
following form: 

LEMMA 7'. Let m be the index of the normalizer of a p-Sylow subgroup of @. 
Then 

(i) if © = £)2m m is one-half the number of s.c.s. ; if © = ©2n> U2n, U2n+i, 
02w+i or £)/

2w+2, m is the number of s.c.s.; 

(ii) if © = ©2„, U2n, IWi t £X, £ W i or D'an+2, then 

( n (J1 -1))/(2 - D",(n {j - ( - D O ) / (<z2 - D", 
2n+l \ / 

nte'-t-D'v/tf-i)", 
(<f-i)(nV-i))/(2-D". 

(n(^-i)) /(2-D" or («r1+ i)(n («"-!))/(«-ir1. 
Proof. Part (ii) is easily established by counting the number of s.c.s. using 

induction on n. If S is an isotropic 1-space, one may invoke the induction 
hypothesis on the quotient space c(S)/S with the induced definition of isotropy 
We omit the details. 

In the modified statement of Lemma 8, only admissible permutations are 
to be considered; if © = D2n, a further restriction is to be made to even 

m 

( 
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permutations. No essential change occurs in the proof. The analogue of 
Theorem 4 may be stated as follows: 

THEOREM 4'. Let © be one of the groups ©2w, U2n, U2n+i, D2», £ W i or 0 /
2 n + 2 . 

Let 9? be the representation induced* in the space 2 by @. Further suppose that 
$ w a p-Sylow subgroup in ©, /fea/ S3 is /fee fom's 0/ 2 defined by Theorem 1', 
and /fea/ d awd m are the order of $ ^^^ /fee iwdex 0/ /fee normalizer of ty, respect
ively. (These numbers are given by Lemma 5' and Lemma 7'). Then all con
clusions of Theorem 4 are valid if, in (ii), the number n\ is replaced by 2n~1 n\ if 
© = ©2n> and by 2n n\ in all other cases. 

The proof of Theorem 4 carries over without essential change. 
Theorems 4 and 4' imply the theorem stated in the introduction. 

7. Concluding remarks. Our first remarks take the form of two con
jectures which, if true, provide converses to the theorem of the introduction: 

CONJECTURE 1. The group © does not have an irreducible representation of 
degree d over a field whose characteristic divides m. 

We are able to prove the following weaker result: 

THEOREM 5. Using the notations of Theorems 4 and 4', if the characteristic 
of F divides m> then the representation 9Î is reducible. 

Proof. It is convenient to introduce "boundary" operators b and b* on 2 
and 2*: for each simplex A, let 6A be the signed sum of the faces of A, the 
sign of a face being that of its orientation on A; for each c.s. V, let b*V be the 
sum of those simplexes which have V as a positive face; then extend b and b* 
to all of 2 and 2* by linearity. Lemmas 8 and 8' may now be rewritten as: 
b*bA0 = mA0. Thus, if A is a simplex and V a c.s., it follows that (b*b A, V) = 
w(A, V), and this is easily seen to be equivalent to (6*V, 6A) = m (A, V). 
The assumption m = 0 then implies that 6* 2* and &2 are orthogonal. It is 
easy to see that neither of them is 0. Hence b* 2* is a proper non-zero subspace 
of 2. This subspace is invariant under 9Î: if G is an element of © and V is a 
c.s., then (&*V)G = 6*(VG). Thus 9t is reducible. 

CONJECTURE 2. The notation being that of Theorems 4 and 4', any proper 
subgroup S& of © does not have an irreducible representation of degree d. In 
particular, the restriction of $1 to & is reducible. 

If © = 82, 83, U3 or ©4, this statement follows from results of Moore (11), 
Wiman (14), Hartley (6) and Mitchell (9; 10), who have shown that, in these 
cases, every proper subgroup § of © has order less than d2. 

In (13), an alternative method is used to derive the character of 9î in the 
case that © = 8W. There, use is made of a correspondence between 2n and the 
symmetric group of degree n. If © is one of the other groups considered in this 
paper, a similar correspondence exists between © and the hyper-octahedral 
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group of the appropriate degree, and yields the character of 9î. However, this 
method leans heavily on a previous determination of the characters of the 
symmetric and hyper-octahedral groups and does not deal with the representa
tion itself. 

Our final observation is that the special case n = 3 of the corollary to 
Theorem 1 also follows from a theorem on graphs (8, p. 126). 
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