
J. Appl. Prob. 44, 492–505 (2007)
Printed in England

© Applied Probability Trust 2007

SOME CONTRIBUTIONS TO THE
THEORY OF NEAR-CRITICAL
BISEXUAL BRANCHING PROCESSES

M. MOLINA,∗ ∗∗

M. MOTA ∗ and

A. RAMOS,∗ University of Extremadura

Abstract

We investigate the probabilistic evolution of a near-critical bisexual branching process
with mating depending on the number of couples in the population. We determine
sufficient conditions which guarantee either the almost sure extinction of such a process or
its survival with positive probability. We also establish some limiting results concerning
the sequences of couples, females, and males, suitably normalized. In particular, gamma,
normal, and degenerate distributions are proved to be limit laws. The results also hold
for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of
near-critical bisexual branching processes.
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1. Introduction

We consider the bisexual process with mating depending on the number of couples
(introduced in [18]) as a two-type branching model {(Fn,Mn)}n≥1 initiated with Z0 = N ≥ 1
couples (female–male mating units) and defined, for n = 0, 1, . . . , recursively by

(Fn+1,Mn+1) =
Zn∑
i=1

(fn,i , mn,i), Zn+1 = LZn(Fn+1,Mn+1), (1.1)

where the empty sum is taken as (0, 0), {(fn,i , mn,i)}n≥0,i≥1 is a sequence of independent and
identically distributed nonnegative, integer-valued random vectors, and {Lk}k≥0 is a sequence
of nonnegative real functions on R

+ × R
+. Each Lk is assumed to be nondecreasing in each

argument, integer-valued on the integers, and such that Lk(x, 0) = Lk(0, y) = 0, x, y ∈ R
+,

k ∈ Z
+, with R

+ and Z
+ denoting the nonnegative real numbers and nonnegative integer

numbers respectively. From an intuitive viewpoint, (fn,i , mn,i) denotes the number of females
and males descending from the ith couple of generation n. It follows that (Fn+1,Mn+1)

represents the number of females and males in the (n + 1)th generation, which form Zn+1
couples according to the mating functionLZn . These couples reproduce independently through
the same offspring distribution for each generation. It can be verified that {(Zn−1, Fn,Mn)}n≥1
and {Zn}n≥0 are homogeneous Markov chains. The motivation behind this stochastic process
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A near-critical bisexual branching process 493

is an interest in developing mathematical models to describe the probabilistic evolution of two-
sex populations in which, because of environmental, social or other factors, matings between
females and males could be influenced by the number of their progenitor couples.

When the mating functions do not depend on the number of couples, namely Lk(x, y) =
L(x, y), x, y ∈ R

+, k ∈ Z
+, then the process is the classical bisexual Bienaymé–Galton–

Watson process introduced in [5] which has received considerable attention in the literature;
see, for example, [1]–[4], [6]–[10], and [17]. For a survey about this model we refer the reader
to [11].

Note that if Zn = 0 for some n, then the process (1.1) will become extinct. Let qN =
P(Zn → 0 | Z0 = N) be the extinction probability when initially there are N couples in the
population. Assuming the classical extinction–explosion duality in branching process theory

P(Zn → 0 | Z0 = N)+ P(Zn → ∞ | Z0 = N) = 1, (1.2)

and imposing some requirements on the sequence of mating functions, necessary and sufficient
conditions for its almost sure extinction and results concerning its limiting behaviour were
established in [18] and [19]. In particular, it was proved that the asymptotic rate r = limk↗∞ rk
exists and r = supk≥1 rk where, for k = 1, 2, . . . ,

rk = E[Z−1
n Zn+1 | Zn = k] = k−1 E

[
Lk

( k∑
i=1

fn,i ,

k∑
i=1

mn,i

)]
.

Note that rk represents the expected proportional change in the number of couples from one
generation to the next if the current number of couples is k. Considering that the function
L(k, x, y) = Lk(x, y), k ∈ Z

+, x, y ∈ R
+, is superadditive, it was also proved, assuming

finite µ = (E[f0,1],E[m0,1]), that if limN↗∞N−1LN(Nµ) < ∞ then

qN = 1, N = 1, 2, . . . , if and only if r ≤ 1. (1.3)

In analogy with asexual branching process theory, this result induces a classification for the
bisexual processes given in (1.1) into supercritical (r > 1), critical (r = 1), and subcritical
(r < 1) cases. We remark that in order to derive (1.3), since r = supk≥1 rk , it is required that
rk ≤ r , k = 1, 2, . . . ; in particular, for the critical case, it is necessary that rk ≤ 1, k = 1, 2, . . . .
Let us call the process near-critical if the sequence {rk}k≥1 approaches the asymptotic rate of
a critical process as the number of couples goes to infinity, namely limk↗∞ rk = 1, in such a
way that rk > 1 for some k. This situation has not been studied in bisexual process theory. We
now present an example.

Example 1.1. It is well known that salmon live in the oceans of the northern hemisphere
and enter the mouths of European and North American rivers at regular times. At the time
of reproduction, the salmon return to the rivers where they hatched. The spawning process
involves the mature salmon (male and female) swimming upstream overcoming strong river
currents, waterfalls, and other obstacles to reach their home spawning ground. Then, the female
releases her eggs and the male fertilizes them. After spawning, the adult salmon die. Taking
into account this special conduct, in a first approximation it may be appropriate to describe
the probabilistic evolution of the number of female and male salmon in a habitat in terms of a
bisexual process (1.1).

Consider an offspring probability distribution such that P(f0,1 = 0)P(m0,1 = 0) > 0 and
E[f0,1 +m0,1] = 2, and assume the sequence of mating functions {Lk}k≥0, with

Lk(x, y) = ⌊ 1
2 (x + y)+ bk

⌋
1{x,y>0}, x, y ∈ R

+,
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where �·	 denotes the integer-part function, 1{·} is the indicator function, and {bk}k≥0 is a
sequence of real numbers such that bk ≥ 1, k = 1, 2, . . . , and limk↗∞ k−1bk = 0. Clearly,

rk = k−1 E[�Tn,k + bk	 1{∑k
i=1 fn,i>0,

∑k
i=1 mn,i>0}], k = 1, 2, . . . ,

where Tn,k = 1/2
∑k
i=1(fn,i + mn,i). It can be verified that rk > 1, k ≥ k0, for some

k0 > 0. We now prove that limk↗∞ rk = 1. To this end, we introduce the modified rates
r̃k = k−1 E[�Tn,k + bk	]. Since, for n ∈ Z

+,

E[Tn,k] + bk − 1 ≤ k̃rk ≤ E[Tn,k] + bk + 1, k = 1, 2, . . . ,

using E[Tn,k] = k, we can deduce that limk↗∞ r̃k = 1. Now, r̃k − k−1Ck ≤ rk ≤ r̃k ,
k = 1, 2, . . . , where Ck = E[�Tn,k + bk	(Fn,k +Mn,k)] with Fn,k = ∏k

i=1 1{fn,i=0} and
Mn,k = ∏k

i=1 1{mn,i=0}. It is matter of some straightforward calculations to verify that
E[(Tn,k + bk)(Fn,k + Mn,k)] = (k + bk)(P(f0,1 = 0)k + P(m0,1 = 0)k), so it follows that
Ck = O(kmax{P(f0,1 = 0),P(m0,1 = 0)}k), and we conclude that limk↗∞ rk = 1.

In this paper we assume a process (1.1) such that (1.2) holds. The aim is to investigate, for
the near-critical case, questions about its limiting evolution. The paper is organized as follows.
In Section 2, using different probabilistic approaches based on martingale theory or stochastic
difference equations, we provide some sufficient conditions which guarantee either the almost
sure extinction of the process (Theorems 2.1 and 2.2) or its survival with positive probability
(Theorem 2.3). Section 3 is devoted to investigating different kinds of limiting behaviour
for {Zn}n≥0 (Theorem 3.1), {Fn}n≥1, and {Mn}n≥1 (Theorem 3.2), suitably normalized. In
particular, gamma, normal, or degenerate distributions are derived as asymptotic laws. The
results obtained in Sections 2 and 3 also hold for bisexual Bienaymé–Galton–Watson processes,
and could be adapted to other classes of near-critical bisexual branching processes. Finally, in
order to allow a more comprehensible reading, the proofs are relegated to Section 4.

2. Extinction probability

Our first result implies a slight improvement of the sufficient condition given in (1.3), because
a finite number of rk are allowed to be greater than 1.

Theorem 2.1. Assume that rk ≤ 1, k ≥ k0, where k0 is a positive integer. Then, qN = 1,
N = 1, 2, . . . .

Remark 2.1. Theorem 2.1 holds assuming that lim supk↗∞ rk ≤ 1. Furthermore, along the
lines of its proof, writing

rπk = E[π(Zn)−1π(Zn+1) | Zn = k], k = 1, 2, . . . ,

where π is a nondecreasing and unbounded function on R
+, we deduce that the existence of

k0 > 0 such that rπk ≤ 1, k ≥ k0, implies P(π(Zn) → ∞ | Z0 = N) = 0, or, equivalently,
P(Zn → ∞ | Z0 = N) = 0. Hence, by (1.2), qN = 1, N = 1, 2, . . . . Using this reasoning,
sufficient conditions for almost sure extinction can be determined even if an infinite number
of rk are greater than 1. To this end, we will apply some probabilistic techniques considered
in [13] for stochastic difference equations suitably adapted to the class of bisexual processes
(1.1).
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Note that {Zn}n≥0 satisfies, almost surely, the relation

Zn+1 = Zn + ZnεZn + ξn+1, n ∈ Z
+, (2.1)

where εZn = rZn − 1 and ξn+1 = Zn+1 − E[Zn+1 | Zn].
Assuming var[Zn+1 | Zn = k] < ∞, k = 1, 2, . . . , it is easy to verify that {ξn}n≥1 is a

square-integrable martingale difference with respect to the sequence of σ -algebras {Fn}n≥0,
where Fn = σ(Z0, . . . , Zn). Let us introduce, for k = 1, 2, . . . and α > 0, the α-order
absolute variation rates:

Rk,α = E[|Z−1
n (Zn+1 − E[Zn+1 | Zn])|α | Zn = k] = k−α E[|ξn+1|α | Zn = k].

In particular, var[Zn+1 | Zn = k] = k2Rk,2, k = 1, 2, . . . .

Theorem 2.2. Assume that

(i) lim supk↗∞ 2εkR
−1
k,2 < 1,

(ii) limk↗∞ ε−1
k Rk,2+δ = 0, for some 0 < δ ≤ 1.

Then qN = 1, N = 1, 2, . . . .

We now state some sufficient conditions which guarantee a positive probability of survival.

Theorem 2.3. Assume that there exists k0 > 0 such that rk > 1, k ≥ k0, and

(i) lim infk↗∞ 2εkR
−1
k,2 > 1,

(ii) limk↗∞(log k)1+αR−1
k,2Rk,2+δ = 0, for some 0 < δ ≤ 1 and α > 0.

Then qN < 1, N ≥ k0.

Remark 2.2. Taking into account that limk↗∞ εk = 0, if there exist k0 > 0 and M > 0 such
that

Rk,2+δ ≤ MRk,2|(log k)−(1+α)εk|, k ≥ k0,

then condition (ii) in Theorem 2.3 holds.

Remark 2.3. Sufficient conditions for a positive probability of survival can be also established
considering as a mathematical tool the following transition probability generating functions:

hk(s) = E[sZn+1 | Zn = k], 0 ≤ s ≤ 1, k ∈ Z
+,

For example, using some analytic techniques, it can be proved that if
∫ 1

0 hk(s) ds ≤ (1 + k)−1

except for finitely many k, then qN < 1, N = 1, 2, . . . .

3. Asymptotic behaviour

Assuming that P(Zn → ∞ | Z0 = N) > 0, in this section we investigate the limiting
evolution of the sequences {Zn}n≥0, {Fn}n≥1, and {Mn}n≥1, all suitably normalized. We will
prove their convergence in distribution to gamma, Gaussian, or degenerate laws.

One of the hypotheses that we will require is limk→∞ k1−αεk = c > 0, for some α < 1.
Therefore, the function g(k) = kεk , k = 1, 2, . . . , is such that g(k) = ckα + o(kα). For
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technical reasons, we will extend g to a twice continuously differentiable function on R as
follows:

g(x) =
{
cxα + o(xα) if x > 0,

0 otherwise.

Let us introduce the sequence of real numbers {an}n≥0 in the recursive form

a0 = 1, an+1 = an + g(an), n ∈ Z
+.

The next result summarizes the probabilistic limiting evolution of {Zn}n≥0.

Theorem 3.1. Assume that the following conditions hold:

(i) limk→∞ k1−αεk = c > 0, for some 0 < α < 1, εk > 0,

(ii) limk→∞ k2−βRk,2 = d > 0, for some β ≤ 1 + α,

(iii) there exist constants k0 and M > 0 such that Rk,2+δ ≤ MRδk,2, k ≥ k0, δ > 0, M > 0.

Then we have the following results.

(a) If β = 1 + α and d < 2c, we have

lim
n↗∞ P(n−1Z1−α

n ≤ x | Zk → ∞) = �a,b(x), x ∈ R,

where �a,b denotes the gamma distribution function with parameters

a = 2c − dα

(1 − α)d
and b = d(1 − α)2

2
.

(b) If 0 < α < 1 and β < 1 + α then, on {Zk → ∞}, the following results hold.

(i) For β < 3α − 1, the sequence {a−1
n Zn}n≥0 converges almost surely to 1 and

{(Zn − an)/g(an)}n≥0 is almost surely convergent.

(ii) For β ≥ 3α − 1, the sequence {a−1
n Zn}n≥0 converges in probability to 1 and

lim
n↗∞ P(	−1/2

n g(an)
−1(Zn − an) ≤ x | Zk → ∞) = 
(x), x ∈ R,

where 
 is the standard normal distribution function and

	n =

⎧⎪⎨⎪⎩
dc−3(1 − α)−1 log n if β = 3α − 1,

d(β − 3α + 1)−1c(β−2)/(1−α)

×((1 − α)n)(β−3α+1)/(1−α) if β > 3α − 1.

Remark 3.1. Theorem 3.1 makes sense because, under its hypotheses, it can be verified that
P(Zn → ∞ | Z0 = N) > 0. In fact, from Theorem 3.1(i) we have

lim inf
k↗∞ 2εkR

−1
k,2 = lim inf

k↗∞
2ck1+α−β(1 + o(1))

d + o(1)
=

{
2cd−1 if β = 1 + α,

∞ if β < 1 + α,

so condition (i) of Theorem 2.3 holds. Furthermore, considering Theorem 3.1(ii), (iii), and
Remark 2.2, condition (ii) of Theorem 2.3 is also satisfied, so we can deduce that qN < 1
irrespective of whether β = 1 + α, d < 2c, or β < 1 + α, 0 < α < 1.
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Since Zk → ∞ cannot be easily checked, the following consequence of Theorem 3.1 is
interesting from a practical viewpoint.

Corollary 3.1. Under the hypotheses considered in Theorem 3.1, the following results hold.

(a) If β = 1 + α and d < 2c then, for x ∈ R,

(i) limn↗∞ P(n−1Z1−α
n ≤ x) = qN 1{x≥0} +(1 − qN)�a,b(x),

(ii) limn↗∞ P(n−1Z1−α
n ≤ x | Zn > 0) = �a,b(x).

(b) If β ≥ 3α − 1 then, for x ∈ R,

lim
n↗∞ P(	−1/2

n g(an)
−1(Zn − an) ≤ x | Zn > 0) = 
(x).

Before investigating the limiting behaviour of {Fn}n≥1 and {Mn}n≥1, we establish the
following proposition.

Proposition 3.1. Under the hypotheses considered in Theorem 3.1, we have

lim sup
n↗∞

E[n−1Z1−α
n ] < ∞.

Theorem 3.2. Under the hypotheses considered in Theorem 3.1, if β = 1 + α and d < 2c,
then

lim
n→∞ P(n−1F 1−α

n ≤ x | Zk → ∞) = �
a,µ1−α

1 b
(x), x ∈ R,

where µ1 = E[f0,1].
Corollary 3.2. Under the hypotheses considered in Theorem 3.1, if β < 3α − 1 then, on
{Zk → ∞}, we obtain that {a−1

n Fn}n≥1 converges in probability to µ1.

Similar results to Theorem 3.2 and Corollary 3.2 can be derived for {Mn}n≥1.

4. Proofs

Proof of Theorem 2.1. Assume that rk ≤ 1, k ≥ k0, where k0 is a positive integer. Let us
introduce, for n0 > 0 fixed, the stopping time

Tn0(k0) =
{

inf{n ≥ n0 : Zn < k0} if minn≥n0 Zn < k0,

∞ otherwise,

and consider {Yn}n≥0, with Yn = Zn0+n 1{Tn0 (k0)≥n0+n} +ZTn0 (k0) 1{Tn0 (k0)<n0+n}. Clearly, Yn
is Fn0+n-measurable, n ≥ 0, where we recall that Fn = σ(Z0, . . . , Zn).

If Zn0 ≥ k0, . . . , Zn0+n ≥ k0, n ≥ 0, then Tn0(k0) ≥ n0 + n + 1; hence, using
the fact that E[Zn+1 | Zn] = ZnrZn ≤ Zn almost surely on {Zn ≥ k0}, it follows on
{Zn0 ≥ k0, . . . , Zn0+n ≥ k0} that

E[Yn+1 | Fn0+n] = E[Zn0+n+1 | Fn0+n] ≤ Zn0+n = Yn almost surely (a.s.).

If for some k ∈ {1, . . . , n}, n ≥ 1, Zn0 ≥ k0, . . . , Zn0+k−1 ≥ k0 and Zn0+k < k0, then
Tn0(k0) = n0 + k < n0 +n+ 1, and on {Zn0 ≥ k0, . . . , Zn0+k−1 ≥ k0, Zn0+k < k0} we obtain

E[Yn+1 | Fn0+n] = E[Zn0+k | Fn0+n] = Yn a.s.
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Finally, if Zn0 < k0 then Tn0(k0) = n0. Hence, on {Zn0 < k0}, we have

E[Yn+1 | Fn0+n] = E[Zn0 | Fn0+n] = Yn a.s.

Thus, {Yn}n≥0 is a nonnegative supermartingale with respect to {Fn0+n}n≥0 and, by the mar-
tingale convergence theorem (see [20]), we derive the almost sure convergence of {Yn}n≥0 to
the nonnegative and finite limit

Y∞ = lim
k↗∞Zk 1{infn≥n0 Zn≥k0} +ZTn0 (k0) 1{infn≥n0 Zn<k0} .

Thus, for N = 1, 2, . . . ,

P(Zn → ∞ | Z0 = N) = P

( ∞⋃
n0=1

{
inf
n≥n0

Zn ≥ k0

}
∩ {Zn → ∞}

∣∣∣∣ Z0 = N

)
= 0.

Taking into account (1.2), the proof is complete.

Proof of Theorem 2.2. Suppose thatx �= 0, x+h > 0, and 0 < δ ≤ 1, such that condition (ii)
holds. We can derive

log(x + h) ≤ log x + h

x
− 1

2

(
h

x

)2

+ 1

2

∣∣∣∣hx
∣∣∣∣2+δ

. (4.1)

Taking x = Zn + 1 and h = ZnεZn + ξn+1, from (2.1) we deduce that x + h = Zn+1 + 1.
Hence, applying (4.1) and taking expectations, we obtain

E[log(Zn+1 + 1) | Zn = k] ≤ log(k + 1)+ E

[
ZnεZn + ξn+1

Zn + 1

∣∣∣∣ Zn = k

]
− 1

2
E

[(
ZnεZn + ξn+1

Zn + 1

)2 ∣∣∣∣ Zn = k

]
+ 1

2
E

[∣∣∣∣ZnεZn + ξn+1

Zn + 1

∣∣∣∣2+δ ∣∣∣∣ Zn = k

]
.

Using the properties of {ξn}n≥1 and that |a + b|r ≤ Cr(|a|r + |b|r ), r > 0, for some Cr > 0
(see [16, p. 157]), there exists C > 0 such that

E[log(Zn+1 + 1) | Zn = k] ≤ log(k + 1)+ 2εk − ε2
k + Rk,2

2
+ C(ε2+δ

k + Rk,2+δ)

≤ log(k + 1)+ εk(1 + o(1))− 1
2Rk,2(1 + o(1)).

Hence, from (i) and (ii) for k large enough, we derive

E[log(Zn+1 + 1) | Zn = k] ≤ log(k + 1)

or, equivalently,
E[(log(Zn + 1))−1 log(Zn+1 + 1) | Zn = k] ≤ 1.

Using Remark 2.1 with π(x) = log(x + 1) and Theorem 2.1, the proof is complete.

For the proof of Theorem 2.3, we need the following auxiliary result.
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Lemma 4.1. Let {Xn}n≥0 be a sequence of nonnegative random variables and let {Fn}n≥0 be
a nondecreasing sequence of σ -algebras such that Xn is Fn-measurable for each n. Suppose
that for any constant C∗ there exists a positive integer n such that P(Xn > C∗) > 0 and,
moreover, P(Xn → 0)+ P(Xn → ∞) = 1. If f is a positive and decreasing function on R

+
and for some constant A > 0, we have

E[f (Xn+1) | Fn] ≤ f (Xn) a.s. on {Xn > A}, n ∈ Z
+,

then P(Xn → ∞) > 0.

Proof. Let Y ∗
n = min{f (Xn), f (A)}, n ∈ Z

+. It can be verified that

E[Y ∗
n+1 | Fn] ≤ min{E[f (Xn+1) | Fn], f (A)} ≤ Y ∗

n a.s., n ∈ Z
+.

Thus, {Y ∗
n }n≥0 is a nonnegative supermartingale with respect to {Fn}n≥0 and, by the martin-

gale convergence theorem, it is almost surely convergent to a finite and nonnegative random
variable Y ∗. Because {Y ∗

n }n≥0 is bounded, we also derive its L1-convergence. Suppose that
P(Xn → ∞) = 0. Then P(Xn → 0) = 1, and it follows that E[Y ∗] = f (A). Since {E[Y ∗

n ]}n≥0
is decreasing, E[Y ∗

n ] ≥ f (A), n = 0, 1, . . . . Now, Y ∗
n ≤ f (A), n = 0, 1, . . . . Hence, we

deduce that, for every n, Y ∗
n = f (A) almost surely and, consequently, since f is decreasing,

we deduce that Xn ≤ A almost surely, n = 0, 1, . . . , contradicting the first assumption.

Proof of Theorem 2.3. Let x ≥ 3, x + h > 3, 0 < δ ≤ 1, and α > 0. Write f (x) =
(log x)−α . It was proved in [13, Theorem 2] that, for some C1 > 0,

f (x + h) ≤ f (x)+ f ′(x)h+ 1

2
f ′′(x)h2 + C1

|h|2+δ

x2+δ(log x)α+1 + 1(−∞,−2h](x). (4.2)

Let x = Zn+ 3 and h = ZnεZn + ξn+1. From (2.1) we deduce that x+h = Zn+1 + 3. Hence,
applying (4.2) and taking expectations, for k > 0 we obtain

E[f (Zn+1 + 3) | Zn = k] ≤ f (k + 3)+ f ′(k + 3)E[ZnεZn + ξn+1 | Zn = k]
+ 1

2f
′′(k + 3)E[(ZnεZn + ξn+1)

2 | Zn = k]

+ C1 E

[ |ZnεZn + ξn+1|2+δ

(Zn + 3)2+δ[log(Zn + 3)]α+1

∣∣∣∣ Zn = k

]
+ P(Zn + 3 ≤ −2(ZnεZn + ξn+1) | Zn = k).

Using the properties of {ξn}n≥1, we have

E[f (Zn+1 + 3) | Zn = k] ≤ f (k + 3)+ f ′(k + 3)kεk + f ′′(k + 3)k2(ε2
k + Rk,2)

2

+ C1
k2+δ(ε2+δ

k + Rk,2+δ)
(k + 3)2+δ[log(k + 3)]α+1

+ P(Zn + 3 ≤ −2(ZnεZn + ξn+1) | Zn = k).

Since {εk}k≥1 is bounded (by the Markov inequality), for k large enough we obtain

P(2(ZnεZn + ξn+1) ≤ −Zn − 3 | Zn = k) ≤ P

( |ξn+1|
Zn

≥ C̃2

∣∣∣∣ Zn = k

)
≤ C2Rk,2+δ,
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where C̃2 and C2 are positive constants independent of k. In this situation, given δ and α such
that condition (ii) of Theorem 2.3 holds, since f ′(x) = −αx−1(log x)−α−1 and f ′′(x) =
αx−2(log x)−α−1(1 + o(1)), we have

E[f (Zn+1 + 3) | Zn = k] ≤ f (k + 3)− αεk

[log(k + 3)]α+1 (1 + o(1))

+ αRk,2

2[log(k + 3)]α+1 (1 + o(1)).

Now, from Theorem 2.3(i), we have

− εk(1 + o(1))

[log(k + 3)]α+1 + Rk,2(1 + o(1))

2[log(k + 3)]α+1 ≤ 0.

Thus, for Zn large enough,

E[f (Zn+1 + 3) | Zn] ≤ f (Zn + 3) a.s.

Now, rk > 1, k ≥ N , implies that E[Zn+1 | Zn = k] > k, k ≥ N . Thus, there exists
N∗ > N such that P(Zn+1 = N∗ | Zn = N) > 0. As a consequence, for C > 0 there
exists n0 ≥ 1 such that P(Zn+n0 > C | Zn = N) > 0. By Lemma 4.1, it follows that
P(Zn → ∞ | Z0 = N) > 0.

Proof of Theorem 3.1. Let us consider the function

G(x) =
∫ x

1

1

g(y)
dy, x ≥ 1.

By Theorem 3.1(i) and l’Hôpital’s rule, we deduce that G(x) ∼ (c(1 − α))−1x1−α , x ↗ ∞.
From (2.1) and the hypotheses of the theorem, it is easy to check that

Zn+1 = Zn + g(Zn)+ ξn+1 a.s., n ∈ Z
+.

Note that
E[ξ2

n+1 | Fn] = Z2
nRZn,2 a.s.

and
lim
x↗∞ g

′(x)G(x) = α(1 − α)−1.

Let us prove part (a). Since β = 1 + α, we have

lim
k↗∞

E[ξ2
n+1 | Zn = k]
g2(k)G(k)

= c−1d(1 − α).

Let λ = (1 − α)−1 and γ = c−1d(1 − α). We therefore have λγ = dc−1 < 2. Hence, by
[14, Theorem 1],

lim
n↗∞ P(n−1G(Zn) ≤ x | Zk → ∞) = �2γ−1−λ+1,γ /2(x), x ∈ R.

Also, since G(x) ∼ (c(1 − α))−1x1−α , x ↗ ∞, we obtain

lim
n↗∞ λc

−1Z1−α
n G(Zn)

−1 = 1 a.s., on {Zk → ∞}.
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Now we will prove part (b). Considering (2.1) and the hypotheses of the theorem, we have

Zn+1 = Zn + ZnεZn(1 + ηn+1) a.s., n ∈ Z
+, (4.3)

where
ηn+1 = ξn+1(ZnεZn)

−1 on {ZnεZn �= 0}.
It is clear that E[ηn+1 | Zn = k] = 0 and E[η2

n+1 | Zn = k] = Rk,2ε
−2
k . For simplicity, let

us write h(k) = E[ξ2
n+1 | Zn = k] and ϕ(k) = E[η2

n+1 | Zn = k]. Also, let us introduce the
positive real function ϕ̂2(x) = g−2(x)h(x), for x > 0 andg(x) �= 0. Obviously, ϕ̂2(k) = ϕ2(k)

for all integers k �= 0, and ϕ̂2(x) ∼ dc−2xβ−2α , x ↗ ∞. Considering

ψ(x) =
∫ x

1

ϕ̂2(y)

g(y)
dy, x ≥ 1,

by conditions (i) and (ii), if β < 3α − 1 then ψ(∞) < ∞. Otherwise,

ψ(x) ∼

⎧⎪⎪⎨⎪⎪⎩
d

c3

1

β − 3α + 1
xβ−3α+1 if β > 3α − 1, x ↗ ∞,

d

c3 log x if β = 3α − 1, x ↗ ∞,

(4.4)

and therefore ψ(∞) = ∞ if β ≥ 3α − 1.
To conclude the proof, it is sufficient to apply [12, Theorem 3]. To this end, it will be

necessary to check that its requirements are satisfied. In fact, from (4.3) and [12, Conditions
(A1)–(A3)], [12, Theorem 3] holds. Also, [12, Conditions (A4)–(A7)] are satisfied. From the
conditions of [12], we have the following.

(A4) Since the process is critical, limx↗∞ x−1g(x) = 0. Moreover, the functiong is ultimately
concave and, since 0 < α < 1, g′ is also ultimately convex.

(A5) Let G−1 be the inverse function of G. Then we can verify, as x ↗ ∞, that G−1(x) ∼
(c(1 − α)x)1/1−α . Hence, (ϕ̂2 ◦G−1)(x) ∼ (d/c2)(c(1 − α)x)(β−2α)/(1−α). Moreover,
since β < 1 + α, it is ultimately convex. We conclude that

lim
t↗∞

∫ t

1
x−2(ϕ̂2 ◦G−1)(x) dx = lim

t↗∞ dc
−2(c(1 − α))(β−2α)/(1−α)

∫ t

1
x(β−2)/(1−α) dx

< ∞.

(A6) Ifψ(∞) = ∞ then β ≥ 3α−1. Moreover, |ϕ̂−2(x)g′′(x)g(x)| ∼ Ax4α−β−2 as x ↗ ∞,
for some constant A > 0, and therefore is ultimately decreasing since 4α − β − 2 < 0.
Also, if ψ(∞) < ∞ then |g′′(x)g(x)| ∼ Bx2(α−1) as x ↗ ∞, for some constant B > 0,
and therefore is ultimately decreasing since α < 1.

(A7) Using the fact that g′(x) ∼ cαxα−1 as x ↗ ∞ and (4.4), we deduce that

lim
x↗∞ g

′(x)ψ1/2(x) = 0.

If ψ̂(x) = (ψ ◦ G−1)(x) then, for β < 3α − 1, ψ̂(∞) < ∞ is satisfied. Hence, by
[12, Theorem 3], we obtain part (b)(i).
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On the other hand, if β ≥ 3α − 1 then

ψ̂(x) = (ψ ◦G−1)(x)

∼

⎧⎪⎪⎨⎪⎪⎩
d

β − 3α + 1
c(β−2)/(1−α)((1 − α)x)(β−3α+1)/(1−α) if β > 3α − 1,

d

c3(1 − α)
log x if β = 3α − 1,

(4.5)

and ψ̂(∞) = ∞. Again, applying [12, Theorem 3], it follows that

lim
n↗∞ P(ψ̂−1/2(n)g(an)

−1(Zn − an) ≤ x | Zk → ∞) = 
(x).

Finally, part (b)(ii) is obtained from (4.5) and Slutsky’s theorem.

Proof of Proposition 3.1. On {Zn > 0} we define Z̃n+1 = Z−1
n (Zn+1 − Zn), n ∈ Z

+. We
have

Z1−α
n+1 = Z1−α

n (1 + Z̃n+1)
1−α = Z1−α

n (1 + (1 − α)Z̃n+1 + T2(Z̃n+1)),

where T2(x) denotes the remainder of the first-order Taylor expansion of the function (1+x)1−α
around 0.

Using the fact that εk = rk − 1, k = 1, 2, . . . , we obtain

Z1−α
n+1 = Z1−α

n (1 + (1 − α)(εZn + Z−1
n (Zn+1 − E[Zn+1 | Zn]))+ T2(Z̃n+1)) a.s.

and, therefore,

E[Z1−α
n+1 | Zn] = Z1−α

n (1 + (1 − α)εZn + E[T2(Z̃n+1) | Zn]) a.s.

Taking into account [15, p. 182], we have |T2(x)| ≤ C|x|2, x > 0, for some C > 0. Hence,
we deduce that

| E[T2(Z̃n+1) | Zn]| ≤ CZ−2
n E[(Zn+1 − Zn)

2 | Zn] = C(RZn,2 + ε2
Zn
) a.s.

Since we are assuming that conditions (i) and (ii) of Theorem 3.1 hold, k1−αεk = c + ηk and
k2−βRk,2 = d + η∗

k , for c, d > 0, α < 1, and β ≤ 1 + α, with limk↗∞ ηk = limk↗∞ η∗
k = 0.

If β = 1 + α then

|Z1−α
n E[T2(Z̃n+1) | Zn]| ≤ C(d + η∗

Zn
+ Zα−1

n (c + ηZn)
2) a.s.

and, consequently,

E[Z1−α
n+1 | Zn] ≤ Z1−α

n + (1 − α)(c + ηZn)+ C(d + η∗
Zn

+ Zα−1
n (c + ηZn)

2)

= Z1−α
n + (1 − α)c + Cd + η̃Zn a.s.,

where η̃k = (1 − α)ηk + Cη∗
k + Ckα−1(c + ηk)

2. Clearly, limk→∞ η̃k = 0. Thus,

E[Z1−α
n+1 ] ≤ E[Z1−α

n ] + ((1 − α)c + Cd)P(Zn > 0)+ E[̃ηZn 1{Zn>0}]
and, by induction on n, we have

E[Z1−α
n+1 ] ≤ ((1 − α)c + Cd)

n∑
k=1

P(Zk > 0)+
n∑
k=1

E[̃ηZk 1{Zk>0}] +N.
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Thus, we derive

E

[
Z1−α
n+1

n+ 1

]
≤ 1

n

(
((1 − α)c + Cd)

n∑
k=1

P(Zk > 0)+
n∑
k=1

E[̃ηZk 1{Zk>0}] +N

)
.

By Cesaro’s lemma, limn↗∞ n−1 ∑n
k=1 P(Zk > 0) = limn↗∞ P(Zn > 0) = 1 − qN . Since

η̃k is bounded, by the dominated convergence theorem we have

lim
n↗∞ n

−1
n∑
k=1

E[̃ηZk 1{Zk>0}] = lim
n↗∞ E[̃ηZn 1{Zn>0}] = E[ lim

n↗∞ η̃Zn 1{Zn>0}] = 0

because, on {Zk → 0}, limn↗∞ η̃Zn 1{Zn>0} = 0 and, on {Zk → ∞},
lim
n↗∞ η̃Zn 1{Zn>0} = ( lim

n↗∞ η̃Zn) 1{Zk→∞} = 0.

Therefore, we conclude that

lim sup
n↗∞

E[(n+ 1)−1Z1−α
n+1 ] ≤ ((1 − α)c + Cd)(1 − qN) < ∞.

On the other hand, if β < 1 + α then

|Z1−α
n E[T2(Z̃n+1) | Zn]| ≤ C(Z−1−α+β

n (d + η∗
Zn
)+ Zα−1

n (c + ηZn)
2) a.s.;

hence,
E[Z1−α

n+1 | Zn] ≤ Z1−α
n + (1 − α)c + ηZn a.s.,

where ηk = C(k−1−α+β)(d + η∗
k )+ kα−1(c + ηk)

2). Clearly, limk↗∞ ηk = 0. Finally, using
a similar reasoning to the previous case, we obtain

lim sup
n↗∞

E[(n+ 1)−1Z1−α
n+1 ] = (1 − α)c(1 − qN) < ∞.

Proof of Theorem 3.2. On {Zn > 0}, we define F̃n+1 = (µ1Zn)
−1(Fn+1−µ1Zn), n ∈ Z

+.
We have

F 1−α
n+1 = (µ1Zn)

1−α(1 + F̃n+1)
1−α

= (µ1Zn)
1−α(1 + (1 − α)F̃n+1 + T2(F̃n+1))

= (µ1Zn)
1−α + (1 − α)(µ1Zn)

−α(Fn+1 − µ1Zn)+ (µ1Zn)
1−αT2(F̃n+1), (4.6)

where T2(x) is as defined in the proof of Proposition 3.1.
Let Wn+1 = (µ1Zn)

−α(Fn+1 − µ1Zn) 1{Zn>0}, n ∈ Z
+. We have that E[Wn+1 | Zn] = 0

almost surely. Hence, E[Wn+1] = 0. Also,

E[W 2
n+1 | Zn] = µ−2α

1 Z1−2α
n ρ2

1 1{Zn>0} a.s.,

where ρ2
1 = var[f0,1], so E[W 2

n+1] = µ−2α
1 ρ2

1 E[Z1−2α
n 1{Zn>0}].

If 2α ≥ 1 then Z1−2α
n 1{Zn>0} ≤ 1{Zn>0}. Thus, E[W 2

n+1] ≤ µ−2α
1 ρ2

1 P(Zn > 0), which

converges to µ−2α
1 ρ2

1 (1 − qN) < ∞ as n ↗ ∞. Consequently,

lim
n↗∞ E[(n+ 1)−2W 2

n+1] = lim
n↗∞(n+ 1)−2 E[W 2

n+1] = 0.

https://doi.org/10.1239/jap/1183667416 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667416


504 M. MOLINA ET AL.

Hence, {(n+ 1)−1Wn+1}n≥0 converges in L2 to 0, and therefore converges in probability to 0.
In particular, {(n+ 1)−1(µ1Zn)

−α(Fn+1 −µ1Zn)}n≥0, conditioned on {Zk → ∞}, converges
in probability to 0.

On the other hand, if 0 < 2α < 1 then E[Z1−2α
n ] ≤ E[Z1−α

n ], and, therefore, taking into
account Proposition 3.1, we have

lim sup
n↗∞

E[n−1Z1−2α
n ] ≤ lim sup

n↗∞
E[n−1Z1−α

n ] < ∞.

Thus, {E[n−1Z1−2α
n ]}n≥0 is bounded, so there exists a positive constant K such that

lim
n↗∞ E[(n+ 1)−2W 2

n+1] ≤ K lim
n↗∞ n

−1µ−2α
1 ρ2

1 = 0,

and it follows that {(n + 1)−1Wn+1}n≥0 converges in L2 to 0, and, therefore, conditioned on
{Zk → ∞}, also converges in probability to 0.

Now, by [15, p. 182], on {Zn > 0} we have for some C > 0 that

(µ1Zn)
1−αT2(F̃n+1) ≤ C(µ1Zn)

−1−α(Fn+1 − µ1Zn)
2.

Let us consider Yn+1 = (µ1Zn)
−1−α(Fn+1 −µ1Zn)

2 1{Zn>0}, n ∈ Z
+. It can be verified that

E[|Yn+1|] = µ−1−α
1 ρ2

1 E[Z−α
n 1{Zn>0}] ≤ µ−1−α

1 ρ2
1 P(Zn > 0).

The last term converges to µ−1−α
1 ρ2

1 (1 − qN) < ∞ as n ↗ ∞, and therefore

{E[|(n+ 1)−1Yn+1|]}n≥0

converges to 0. Hence, {(n+ 1)−1Yn+1}n≥0 converges in probability to 0. As a consequence,
conditioned on {Zk → ∞}, it is easy to verify that the sequence

{(n+ 1)−1(µ1Zn)
1−αT2(F̃n+1)}n≥0

converges in probability to 0.
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Finally, from (4.6) we have

F 1−α
n+1

n+ 1
= n

n+ 1

(µ1Zn)
1−α

n
+ (1 − α)(µ1Zn)

−α(Fn+1 − µ1Zn)

n+ 1
+ (µ1Zn)

1−αT2(F̃n+1)

n+ 1
.

We have proved that, conditioned on {Zk → ∞}, the two last terms of the above sum converge
in probability to 0. By Theorem 3.1, conditioned on {Zk → ∞}, we have that {n−1Z1−α

n }n≥1
converges in distribution to a gamma law with parameters a = (2c − dα)/(1 − α)d and
b = d(1 − α)2/2. We conclude the proof using Slutsky’s theorem.
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