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1. About the behavior of brownian motion at time point oo, there are
many results by P. Levy, A. Khintchine etc. P. Levy cited a theorem by A.
Kolmogoroff as the most precise result in his famous book "Processus stochas-
tiques et mouvement brownian" without proof. In this paper we shall prove
this theorem, using the similar result about the random sequence by W. Feller,1}

and then, applying the theorem of projective invariance by P. Levy, we shall
find also the behavior of brownian motion at time point 0 from the above
theorem.

2. Stating the results. We define the concept of upper class and lower

class with respect to Wiener's brownian motion X{t) Ξ l ( ί , ω)2) at time point

oo as follows:
i) If the set of t such that

X(t, ω)>yll φ(t)

is bounded (unbounded) for almost all ω, then we say that φ(t) belongs to
upper (lower) class with respect to {X(t), 0^t<oo} at time point oo and use
the notation 0(f)eU»(δ«,).

Analogously we define upper class and lower class with respect to {X{t),
0 ̂  / ̂  1} at time point 0 as follows:

ii) If the set of Γ 1 such that

X(t, ω)>y/Ύφ(t)

is bounded (unbounded) for almost all ω9 then we say that φ{t) belongs to
upper (lower) class with respect to {X{t), O^t^l} at time point 0 and use the
notation 0(f)eUo(So).

THEOREM 1 (A. Kolmogoroff). Let {X(t), 0^£< oo} be a brownian motion
of Wiener and φ(t) be a non-negative, monotone increasing function of t such that
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J) Wo Feller: "The law of the iterated logarithm for identically distributed random varia-

bles." Ann. of Math, Vol. 47 (1946).
2) ω is the probability parameter.
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oo).φHt)

If jlψ(ί)β"lΛ/)ι»6β:(Φ), then

where "€=(£(©)" means the convergence {divergence) of the integrals.

Applying theorem 1 for

we have

COR. 1. {2 log21 + 3 log31 + 2 log41 + . - . + 2 logP-i * + (2 + 5) logP*}*
eUco if o > 0 ,

G2» if δ^O.

THEOREM 2. Z^ί {X{t)9 θ£t*=l} be a brownian motion of Wiener and ψ(t)

be non-negative monotone decreasing function of t.

If (\φ{t)e-**Ht)dttΞ<gm, then
Jo

For

+ 2 logp-rj- + (2 + δ) logp-J- }^,

we have

COR. 2. J2 log2 -»- + 3 logs y + 2 log4 -~ + . . .

+ 2 logp-i •— + (2 + 5) logp y }2

eUo if δ>0,

eSo if 5^0.

3. Proof.

Proof of Theorem L

a) The case of convergence.

Let us define the sequence {tk) as follows:

where h is chosen sufficiently large, enough to satisfy the condition tk -» °° as
&-> oo.

Now we put
3> This condition is not any essential restriction, since A. Khintchine has already proved

that £ > 0 « 0 ) implies {(2+ ε) Iog2/}1/2e U»(8»).

https://doi.org/10.1017/S0027763000023059 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023059


ASYMPTOTIC PROPERTIES CONCERNING BROWNIAN MOTION 99

Then, since <j>{t)e~***{t) is monotone decreasing in t, we have

' 1 ( 0 <* » Σ faV"fa0(fa>i)e~>

Hence, the convergence of this integral implies the convergence of "Σpk. By

the monotony of φ(t), we have

max X(t) maxX(t)
max pτ=

V t φ(t) V ίfe-I 0(^-l) V tk-l φ{tk-lY

Using the theorem by P. Levy with respect to the maximum function of brown-

ian motion

max X{t)
Pr(

V πtκ Jytk^ΐfHtjc^i

By the definition of fe, (if k is sufficiently large) we have

—~ — " in.'' Γ~ y— -L ~'"" n~. T~~

tk 1 +1/0 \tk-i) φ \tk-i)

Therefore we obtain

maxmax X(f)

lyίft-i ψ(ί*-i) ί V r. φ{tk-ι

and so
maxY , v . max I ( ί )

ΣPr max -™,- - 1 ^ ΣPr -f^TΓ-T^ l} *CΣ*-

Since the last series converges by the assumption, the events

m a x —τ=r—-—
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arise only for finitely many k with probability 1, by virtue of the lemma of

Borel-Cantelli. In other words, there exists a number k(ω) which is finite with

probability 1 such that

m a x /?(*λx <1 f o r k>k(ω),S ί V t φ(t)

which implies

X(t)<y/Tφ(t) for
Thus we have 0(ί)GU<x>.

b) The case of divergence.
We shall make use of the following theorem of W. Feller:4)

Let {Xn) be a sequence of mutually independent random variables having
the same distribution function Fit) which have the properties:

(*)

t2dF{t)=0 ((log logtfΓ1) (x-» oo).
\t\>x

Then the monotone increasing sequence {φn, φn>0} belongs to lower (upper)
class5) if and only if the series

diverges (converges).
If we put

(w = l, 2,. . . ) ,

then Xn are mutually independent and subject to the standard Gaussian dis-
tribution ΦG(OΛ). Moreover

f fdΦG - J 2~ ffe'^dt = J*-\χe--Ίr + f%"-f Λl = Oix"1)
J\t\>x v π Jx V π L Jx J

Thus {Xn} satisfies the above-cited conditions (*).
Since φit)e~**Ht) is monotone decreasing,

4> loc cit. 1).
5 ) A numerical monotonic sequence {φn} will be said to belong to the lower class 2 if with

probability one the inequality

(A) Sn>s/~nφn, Sn = Xl+ . . . + Xn,

be satisfied for infinitely many n on the contrary, if with probability one (A) be satis-
fied only for finitely many ny then {φn} will be said to belong to the upper class U (the
terminology due to P. LeΎy).
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Thus we see, by the assumption, that the right hand side diverges and by the
above Feller's theorem, this φ(?ί) belongs to lower class, namely that

for infinitely many ^-values with P-measure 1, which implies

Proof of Theorem 2. According to the theorem of projective invariance

by P. Levy for the transformation t-*t~\ 6X{t)/v'T, 0<t£l,' and 'ylTx(~).

0<t^l/ yield the same probability distribution on the space of continuous
functions defined on [0,1], Therefore the following two sets are bounded with
the same probability

, {•!•;

But the latter set coincides with the set

which is bounded with P-measure 1 or 0 by Theorem 1 according as

W{Jϊ)dt L e fo^jΦ^e^Ht)dtG^ or e®

Thus our theorem is proved.

Mathematical Institute,
Nagoya University
and

Institute for Mathematical Statistics,
Kobe University

https://doi.org/10.1017/S0027763000023059 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023059



