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Squared Chromatic Number Without Claws
or Large Cliques

Wouter Cames van Batenburg and Ross J. Kang

Abstract. LetG be a claw-free graph on n verticeswith clique numberω, and consider the chromatic
number χ(G2

) of the squareG2 ofG. Writing χ′s(d) for the supremumof χ(L2
) over the line graphs

L of simple graphs ofmaximum degree at most d, we prove that χ(G2
) ≤ χ′s(ω) for ω ∈ {3, 4}. For

ω = 3, this implies the sharp bound χ(G2
) ≤ 10. For ω = 4, this implies χ(G2

) ≤ 22,which iswithin
2 of the conjectured best bound. _is work is motivated by a strengthened form of a conjecture of
Erdős and Nešetřil.

1 Introduction

Let G be a claw-free graph, that is, a graph without the complete bipartite graph K1,3
as an induced subgraph. We consider the square G2 of G, formed by the addition
of edges between those pairs of vertices connected by some two-edge path in G. We
seek to optimise the chromaticnumber χ(G2) ofG2 with respect to the cliquenumber
ω(G). We focus on claw-free graphs G having small ω(G).

_e second author with de Joannis de Verclos and Pastor [5] recently conjectured
the following. As the class of claw-free graphs is richer than the class of line graphs
(cf. e.g., [2]), this is a signiûcant strengthening of a famous conjecture of Erdős and
Nešetřil (cf. [6]).

Conjecture 1.1 (de Joannis deVerclos, Kang and Pastor [5]) For any claw-free graph
G, χ(G2) ≤ 1

4 (5ω(G)2 − 2ω(G)+ 1) if ω(G) is odd, and χ(G2) ≤ 5
4ω(G)2 otherwise.

If true, this would be sharp, by the consideration of a suitable blow-up of a ûve-
vertex cycle and taking G to be its line graph. _e conjecture of Erdős and Nešetřil
is the special case in Conjecture 1.1 where G is the line graph of a (simple) graph. To
support the more general assertion and at the same time extend a notable result of
Molloy and Reed [9], it was proved in [5] that there is an absolute constant ε > 0 such
that χ(G2) ≤ (2 − ε)ω(G)2 for any claw-free graph G.

In this note, our primary goal is to supply additional evidence for Conjecture 1.1
whenω(G) is small. We aõrmit forω(G) = 3 and come towithin 2 of the conjectured
value when ω(G) = 4. Note that Conjecture 1.1 is trivially true when ω(G) ≤ 2.
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We write χ′s(ω) for the supremum of χ(L2) over the line graphs L of all simple
graphs of maximum degree ω. Moreover, χ′s ,m(ω) denotes the supremum of χ(L2)
over the line graphs L of all multigraphs ofmaximum degree ω.

_eorem 1.2 Let G be a claw-free graph.

(i) If ω(G) = 3, then χ(G2) ≤ 10.
(ii) If ω(G) = 4, then χ(G2) ≤ 22; moreover, χ(G2) ≤ χ′s(4).

Note that the suitable blown-up ûve-vertex cycles mentioned earlier certify that
_eorem 1.2((i)) is sharp and that χ′s(4) ≥ 20. _eorem 1.2((i)) extends a result
obtained independently by Andersen [1] and Horák, Qing, and Trotter [8]. _eo-
rem 1.2((ii)) extends a result of Cranston [4]. _ese earlier results proved the uncon-
ditional bounds of_eorem 1.2 in the special case where G is the line graph L(F) of
some (multi)graph F.

It isworth contrasting thework here and in [5]with the extremal study of χ(G) in
terms of ω(G) where, in general, the situation for claw-free G is markedly diòerent
from andmore complex than when G is the line graph of some (multi)graph; cf. [3].

In fact, for both ω(G) ∈ {3, 4}, we show that Conjecture 1.1 reduces to the special
case where G is the line graph of a simple graph. _e techniques we use for bounding
χ(G2) are purely combinatorial. _ey also apply when ω(G) > 4 (as we describe just
below), but seem to be most useful when ω(G) is small. It is natural that diòerent
methods are applicable in the small ω(G) versus large ω(G) cases, especially since
this is also true of progress to date in the Erdős–Nešetřil conjecture.

Naturally, one could ask: For what (small) values of ω(G) does it remain true that
Conjecture 1.1 is “equivalent” to the original conjecture of Erdős andNešetřil? In light
of the work in [5], it is conceivable that structural methods such as in [2, 3] will be
helpful for this question. As an extremelymodest step in thisdirection,wehave shown
the following reduction for ω(G) ≥ 5.

_eorem 1.3 Fixω ≥ 5. _en χ(G2) ≤ max{χ′s(ω), 2ω(ω−1)−3} for every claw-free
graph G with ω(G) = ω.

To be transparent, let us compare this with one of the results from [5].

_eorem 1.4 (de Joannis deVerclos,Kang, and Pastor [5]) Fix ω ≥ 5. _en χ(G2) ≤
max{χ′s ,m(ω), 31} for every claw-free graph G with ω(G) = ω.

Combined with _eorem 1.2, this implies that, in terms of reducing Conjecture 1.1
to those G that are multigraph line graphs, only the case ω(G) = 5 remains with
margin 2.

We remark that, for the conjecture of Erdős and Nešetřil itself when ω(G) ∈
{5, 6, 7}, there has been little progress; a trivial bound based on the maximum de-
gree of G2 yields 41, 61, 85, Cranston [4] speculates that 37, 56, 79 are within reach,
and the conjectured values are 29, 45, 58.

It gives insight to notice that the claw-free graphs with clique number at most ω
are precisely those graphs each of whose neighbourhoods induces a subgraph with
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no clique of size ω − 1 and no stable set of size 3. So a good understanding of the
graphs that certify small oò-diagonal Ramsey numbers can be useful for this class of
problems.

Organisation In Sections 2 and 3, we introduce some basic tools. In Section 4, we
treat the case ω(G) = 3 and prove _eorem 1.2((i)). In Section 5, we treat the case
ω(G) = 4 and prove_eorem 1.2((ii)). In Section 6, we brie�y consider the extension
of our methods to the case ω(G) ≥ 5 and prove_eorem 1.3.

2 Notation and Preliminaries

We use standard graph theoretic notation. For instance, if v is a vertex of a graph G,
then the neighbourhood of v is denoted by NG(v) and its degree by degG(v). For a
subset S of vertices, we denote the neighbourhood of S by NG(S) and this is always
assumed to be open, i.e., NG(S) = ⋃s∈S NG(s) ∖ S. We omit the subscripts if this
causes no confusion. We frequently make use of the following simple lemmas.

Recall that the Ramsey number R(k, ℓ) is theminimum n such that in any graph
on n vertices there is guaranteed to be a clique of k vertices or a stable set of ℓ vertices.

Lemma 2.1 LetG = (V , E) be a claw-free graph. For any v ∈ V , the induced subgraph
G[N(v)] containsno clique ofω(G) vertices andno stable set of 3 vertices. In particular,
deg(v) < R(ω(G), 3).

Proof If not, then with v there is either a clique of ω(G) + 1 vertices or a claw.

Lemma 2.2 Let G = (V , E) be a claw-free graph. For any v ,w ∈ V and vw ∈ E, any
two distinct x , y ∈ N(w) ∖ ({v} ∪ N(v)) are adjacent. In particular,

∣N(w) ∖ ({v} ∪ N(v))∣ ≤ ω(G) − 1.

Proof If not, then v, w, x, y form a claw. So {w} ∪ N(w) ∖ ({v} ∪ N(v)) is a
clique.

For the next lemma, it is not required next that x , y ∈ N(v), but it is the typical
context in which it is used.

Lemma 2.3 Let G = (V , E) be a claw-free graph. For any v ∈ V and w ∈ N(v), if
N(v) ∩ N(w) contains two non-adjacent vertices x and y, then for any

z ∈ N(w) ∖ ({v} ∪ N(v)),
either xz ∈ E or yz ∈ E.

Proof If not, then w, x, y, z form a claw.

3 A Greedy Procedure

In this section, we describe a general inductive procedure to use vertices of small
square degree to colour squares in a class of graphs. _is slightly reûnes a procedure
in [5] so that it is suitable for our speciûc purposes.
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Lemma 3.1 Let K be a non-negative integer. Suppose C1 and C2 are graph classes such
that C1 is non-empty and closed under vertex deletion, and every graph G ∈ C2 satisûes
χ(G2) ≤ K + 1. Furthermore, suppose there exists K′ ≤ K such that every graph G ∈ C1
satisûes one of the following:

(i) G belongs to C2;
(ii) there is a vertex v ∈ V(G) such that degG2(v) ≤ K′, there is a vertex x∗ ∈ NG(v)

with degG2(x∗) ≤ K′ + 1, and the set of all vertices x ∈ NG(v) with degG2(x) >
K′ + 2 induces a clique in (G ∖ v)2; or

(iii) there is a vertex v ∈ V(G) such that degG2(v) ≤ K′ and the set of all vertices
x ∈ NG(v) with degG2(x) > K′ + 1 induces a clique in (G ∖ v)2.

_en for any G ∈ C1, χ(G2) ≤ K + 1.

Proof We proceed by induction on the number of vertices. Since K is non-negative
and the singleton graph is in C1, the base case of the induction holds. LetG be a graph
in C1 with at least two vertices and suppose that the claim holds for any graph of C1
with fewer vertices than G has. If G ∈ C2, then we are done by the assumption on C2.
So it only remains to consider the second and third possibilities.

We now prove the bound under assumption of case ((ii)). Let v be the vertex guar-
anteed in this case andwrite B for the set of vertices x ∈ NG(v)with degG2(x) > K′+2
and S = N(v) ∖ B. Since C1 is closed under vertex deletion, by induction there is a
proper colouring φ of (G ∖ v)2 with at most K + 1 colours. Since B is a clique, all ele-
ments in B are assigned diòerent colours under φ. From φ, we will now obtain a new
proper (K+ 1)−colouring φ′ of (G/v)2 such that all elements of NG(v) have diòerent
colours.
First we uncolour all vertices in S. We then wish to recolour them with pairwise

distinct colours as follows. Given s ∈ S,we say a colour in {1, . . . ,K + 1} is available to
s if it is distinct from any colour assigned by φ to the vertices in NG2(s) ∖ ({v} ∪ S).
Since degG2(s) ≤ K′ + 2 ≤ K + 2 and {v} ∪ S ∖ {s} ⊆ NG2(s), the number of colours
available to s is at leastK+1−(degG2(s)−∣{v}∪S∖{s}∣) ≤ K+1−((K+2)−∣S∣) = ∣S∣−1.
Furthermore, since x∗ ∈ S and degG2(x∗) ≤ K′ + 1 ≤ K + 1, the number of colours
available to x∗ is at least ∣S∣. Since the complete graph on ∣S∣ vertices is (greedily) list
colourable for any list assignmentwith ∣S∣−1 lists of size ∣S∣−1 and one list of size ∣S∣, it
follows that we can recolour the vertices of S with pairwise distinct available colours.

_is new colouring φ′ is a proper (K + 1)-colouring of (G ∖ v)2 such that all ele-
ments in NG(v) have diòerent colours. Since degG2(v) ≤ K′ ≤ K, there is at least one
colour not appearing in NG2(v) that we can assign to v so that, together with φ′, we
obtain a proper (K + 1)-colouring of G2.

_e proof under assumption ((iii)) is nearly the same as under ((ii)). Deûning B
for the set of vertices x ∈ NG(v) with degG2(x) > K′ + 1 and S = N(v)/B, we obtain
that every s ∈ S has ∣S∣ available colours. _is allows us to complete the colouring as
before.
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4 Clique Number Three

In this section, we prove_eorem 1.2((i)). We actually prove the following result.

_eorem 4.1 Let G = (V , E) be a connected claw-free graph with ω(G) = 3. _en
one of the following is true:
(i) G is the icosahedron;
(ii) G is the line graph L(F) of a 3-regular graph F;
(iii) there exists v ∈ V with degG2(v) ≤ 9 such that degG2(x) ≤ 11 for all x ∈ NG(v).

Furthermore, either there exists x∗ ∈ NG(v) with degG2(x∗) ≤ 10, or NG(v)
induces a clique in (G/v)2.

Let us ûrst see how this easily implies _eorem 1.2((i)).

Proof of_eorem 1.2((i)) Let C1 be the class of claw-free graphs G with ω(G) ≤ 3.
Clearly, C1 is non-empty and closed under vertex deletion.

LetC2 be the class of graphs formed by taking all claw-free graphsGwithω(G) ≤ 2,
the icosahedron, and the line graphs L(F) of all 3-regular graphs F. If G is a claw-
free graph with ω(G) ≤ 2, then χ(G2) ≤ 5. If G is the icosahedron, then χ(G2) ≤ 6
is certiûed by giving every pair of antipodal points the same colour. If G is the line
graph of a 3-regular graph, then χ(G2) ≤ 10 by the strong edge-colouring result due,
independently, to Andersen [1] and to Horák, Qing, and Trotter [8].

_eorem 4.1 certiûes that we can apply Lemma 3.1 with K = K′ = 9.

Proof of_eorem 4.1 First we show that either case ((i)) or ((ii)) applies, or that
there exists a vertex v ∈ V with degG2(v) ≤ 9. At the end, we show that, for all such v,
it also holds that degG2(x) ≤ 11 for all x ∈ NG(v) and that furthermore these vertices
either induce a clique in (G/v)2, or contain a vertex x∗ with degG2(x∗) at most 10.
First note that the maximum degree ∆(G) of G is at most 5. _is follows from

Lemma 2.1 and the fact that R(3, 3) = 6. Moreover, note that, for any v ∈ V with
deg(v) = 5, G[N(v)] must be a 5-cycle by Lemma 2.1.
For v ∈ V with deg(v) ≤ 2, we have degG2(v) ≤ 2 + 2 ⋅ 2 = 6 by Lemma 2.2. For

v ∈ V with deg(v) = 3, we have degG2(v) ≤ 3+ 3 ⋅ 2 = 9 by Lemma 2.2. So in terms of
proving the existence of a vertex v with degG2(v) ≤ 9, we can assume herea�er that
theminimum degree of G satisûes δ(G) ≥ 4.
For v ∈ V with deg(v) = 4, we call v good if the subgraph G[N(v)] induced by

N(v) is not the disjoint union of two edges. Assume for themoment that G contains
no good vertex.

If δ(G) = ∆(G) = 4, then every neighbourhood induces the disjoint union of
two cliques (each of exactly two vertices). Recall that a graph is the line graph of a
graph if its edges can be partitioned into maximal cliques so that no vertex belongs
to more than two such cliques and additionally, no two vertices are both in the same
two cliques. We can designate themaximal cliques as follows: for v ∈ V and a clique
C that is maximal in N(v), designate v ∪C as amaximal clique for the requisite edge
partition. Indeed, every edge v1v2 is designated as part of one of the cliques, either
from the perspective of v1 or of v2. Moreover, the clique to which v1v2 is designated
does not diòer depending on the endpoint from which the perspective is taken, since
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every neighbourhood induces the disjoint union of two cliques. As each of the des-
ignated cliques has exactly three vertices, it follows that G is the line graph L(F) of a
3-regular graph F.

If, on the other hand, there exists v ∈ V with deg(v) = 5, then consider x ∈ N(v).
SinceG[N(v)] is a 5-cycle, x has three neighbours y1 , v , y3 that induce a 3-vertex path
y1vy3. _is means that G[N(x)] is not the union of two cliques. By our assumption
that no vertex is good, it follows that x has degree 5. So G is the icosahedron, the
unique connected graph in which every neighbourhood induces a 5-cycle. (Unique-
ness can be easily seen by constructing the graph up to distance 2 from v in the only
possibleway respecting induced 5-cycles, and then noting that the vertices at distance
2 from v induce a 5-cycle and that they all need to be adjacent to a 12th and ûnal ver-
tex.)
From now on, let v ∈ V be a good vertex. We next show that ∣N(N(v)) ∖ {v}∣ ≤ 5

(which implies degG2(v) ≤ 9).
Since G[N(v)] has no stable set of three vertices and v is good, G[N(v)] has at

least three edges. Moreover, since G[N(v)] has no clique of three vertices, we can
write N(v) = {x1 , x2 , x3 , x4} such that x1x2 , x2x3 , x3x4 ∈ E and x1x3 , x2x4 ∉ E. By
Lemma 2.2, both x1 and x4 have atmost 2neighbours outside {v}∪N(v). So it suõces
to show that {x2 , x3} cannot have two neighbours outside {v} ∪ N(v) which are not
neighbours of {x1 , x4}. By contradiction, let p, q be these vertices. Without loss of
generality, p is a neighbour of x2. _en p is adjacent to x3, for otherwise x1x2x3p
would be a claw. Similarly, q is adjacent to both x2 and x3. But then pq is an edge
(otherwise x1pqx2 would be a claw), so that x2x3pq is a K4, which is a contradiction.
_is concludes the proof that there exists a vertex v with degG2(v) ≤ 9.
From now on, let v be one of the vertices for which we showed above that

degG2(v) ≤ 9. In particular, if v has degree 4 then it is a good vertex.
Let us call a vertex x extremely bad if degG2(x) ≥ 12. We already observed that no

vertex x with deg(x) ≤ 3 is extremely bad. If deg(x) = 5, then N(x) induces a 5-cycle
and so by Lemma 2.3, every vertex in N(N(x)) ∖ {x} has at least two neighbours in
N(x), so ∣N(N(x)) ∖ {x}∣ ≤ 5. So a vertex x can only be very bad if deg(x) = 4 and
it is not good. In particular, by Lemma 2.2, not only does the neighbourhood of x
induce a disjoint union of two edges, but the same is also true for every neighbour of
x. _is implies that N(v) does not contain an extremely bad vertex.

Let us call a vertex x very bad if degG2(x) = 11. We are done if there exists x∗ ∈
NG(v)with degG2(x∗) ≤ 10. Sowe can assume fromnow on that all vertices inNG(v)
are very bad, andwe need to show that they induce a clique in (G∖v)2. Assume for a
contradiction that they do not. Since theneighbourhood of a degree 5 vertex induces a
5-cycle, of which the square is a clique, we can assume that deg(v) ≤ 4. If deg(v) = 3,
then there are x1 , x2 , x3 ∈ N(v) such that x1x2 , x2x3 ∉ E(G), so degG(x2) ≤ 3, so
degG2(x2) ≤ 9, contradicting that x2 is very bad. Similarly, if deg(v) ≤ 2. _us, we
have reduced to the case that v is a good vertex (of degree 4). As argued before,we can
then write N(v) = {x1 , x2 , x3 , x4} such that x1x2 , x2x3 , x3x4 ∈ E and x1x3 , x2x4 ∉ E.
Since N(v) does not induce a clique in (G ∖ v)2, it follows that also x1x4 ∉ (E).
_erefore, deg2

G(x1) ≤ 10, contradicting that x1 is very bad. _is completes the proof.
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5 Clique Number Four

_e proof of_eorem 4.1 suggests the following rougher but more general phenom-
enon. _is follows from Lemmas 2.2 and 2.3 together with a double-counting argu-
ment.
For G = (V , E) and v ∈ V , we deûne the following subset of N(v):

Z(v) ∶= {w ∈ N(v) ∣ ∃x , y ∈ N(v) such that xw ,wy ∈ E and xy ∉ E}.

Lemma 5.1 Let G = (V , E) be a claw-free graph. For any v ∈ V ,

∣N(N(v)) ∖ {v}∣

≤ ∑
w∈N(v)∖Z(v)

∣N(w) ∖ ({v} ∪ N(v))∣ + 1
2 ∑

w∈Z(v)
∣N(w) ∖ ({v} ∪ N(v))∣

≤ ( deg(v) − 1
2 ∣Z(v)∣)(ω(G) − 1).

Proof Let w ∈ Z(v). By Lemma 2.3, any x ∈ N(w) ∖ ({v} ∪ N(v)) also satisûes
x ∈ N(y) ∖ ({v} ∪ N(v)) for some y ∈ N(v) ∖ {w}. So

∣N(N(v)) ∖ {v}∣ = ∑
w∈N(v)

∑
x∈N(w)∖({v}∪N(v))

1
∣{u ∈ N(v) ∣ x ∈ N(u)}∣

is at most

∑
w∈N(v)∖Z(v)

∣N(w) ∖ ({v} ∪ N(v))∣ + 1
2 ∑

w∈Z(v)
∣N(w) ∖ ({v} ∪ N(v))∣.

Now apply Lemma 2.2.

_is has the following immediate consequence.

Corollary 5.2 Let G = (V , E) be a claw-free graph. For any v ∈ V with deg(v) ≥
2ω(G) − 1, we have Z(v) = N(v), and therefore

∣N(N(v)) ∖ {v}∣ ≤ 1
2 ∑

w∈N(v)
∣N(w) ∖ ({v} ∪ N(v)) ∣ ≤ 1

2
deg(v)(ω(G) − 1) .

Proof Let w ∈ N(v) and consider NG[N(v)](w). By Lemma 2.2, degG[N(v)](w) ≥
deg(v) − (ω(G) − 1) − 1 ≥ ω(G) − 1. _en NG[N(v)](w) contains a pair of non-
adjacent vertices, or else {v ,w} ∪ NG[N(v)](w) is a clique of ω(G) + 1 vertices. As
w was arbitrary, we have just shown that Z(v) = N(v). So the result follows from
Lemma 5.1.

We now prove the following result. Similarly to what we saw if ω(G) = 3, this
implies for any claw-freeG with ω(G) = 4 that χ(G2) ≤ 22 by Lemma 3.1with K = 21
and K′ = 19, due to a result of Cranston [4]. Furthermore, since χ′s(4) ≥ 20, we
can make the choice K = χ′s(4) − 1 and K′ = 19 to obtain _eorem 1.2((ii)), i.e., that
Conjecture 1.1 for ω(G) = 4 reduces to the corresponding case of the Erdős–Nešetřil
conjecture.
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_eorem 5.3 Let G = (V , E) be a connected claw-free graph with ω(G) = 4. _en
one of the following is true:

(i) G is the line graph L(F) of a graph F ofmaximum degree 4;
(ii) there exists v ∈ V with degG2(v) ≤ 19 such that the set of all vertices x ∈ NG(v)

with degG2(x) ≥ 21 induces a clique in (G ∖ v)2.

Proof First we show that either case ((i)) applies or there exists a vertex v ∈ V with
degG2(v) ≤ 19. At the end, we show that, for all such v, it also holds that the set of
vertices x ∈ NG(v) with degG2(x) ≥ 21 induces a clique in (G ∖ v)2.
First note that the maximum degree ∆(G) of G is at most 8. _is follows from

Lemma 2.1 and the fact that R(4, 3) = 9.
For v ∈ V with deg(v) ≤ 4, we have degG2(v) ≤ 4 + 4 ⋅ 3 = 16 by Lemma 2.2.
Note that, for v ∈ V with deg(v) = 5,wehave degG2(v) ≤ 5+5⋅3 = 20 byLemma 5.1,

but equality cannot occur here unless Z(v) = ∅.
For v ∈ V with deg(v) = 5 and Z(v) = ∅, G[N(v)] is the disjoint union of cliques,

and in particular it must be the disjoint union of an edge and a triangle.
For v ∈ V with deg(v) = 7, we have degG2(v) ≤ 7 + 21/2 = 17.5 by Corollary 5.2.
Let v ∈ V with deg(v) = 8. By Corollary 5.2, Z(v) = N(v) and so we already have

degG2(v) ≤ 8 + 24/2 = 20, but we want one better. Let w ∈ N(v). By Lemma 2.2,
N(v) ∖ (NG[N(v)](w) ∪ {w}) is a clique, so degG[N(v)](w) ≥ deg(v) − ω(G) = 4.
Now NG[N(v)](w) contains no clique or stable set of three vertices, or else G con-
tains a clique of 5 vertices or a claw. We can therefore ûnd four vertices x1 , x2 , x3 , x4 ∈
NG[N(v)](w) such that x1x2 , x3x4 ∉ E. (_ere is at leastonenon-edge among x1 , x2 , x3,
say, x1x2. SinceG is claw-free at least one of x1x3 and x2x3 is an edge, say, x2x3. Among
x2 , x3 , x4, there is at least one non-edge, which together with x1x2 or x1x3 forms a
two-edge matching in the complement, which is what we wanted, a�er relabelling.)
By Lemma 2.3, for every y ∈ N(w) ∖ ({v} ∪ N(v)), either x1 y ∈ E or x2 y ∈ E and
x3 y ∈ E or x4 y ∈ E. We have just shown that every vertex in N(N(v)) ∖ {v} has at
least three neighbours inN(v). _erefore, ∣N(N(v))∖{v}∣ ≤ 1

3 deg(v)(ω(G)−1) = 8
and degG2(v) ≤ 16.

Let v ∈ V with deg(v) = 6. By Lemma 2.2, theminimum degree of G[N(v)] satis-
ûes δ(G[N(v)]) ≥ deg(v)−ω(G) = 2. SinceG contains no clique of 5 vertices, every
vertex with degree at least 3 in G[N(v)] must also be in Z(v). So we know there are
at most two such vertices, or else by Lemma 5.1, degG2(v) ≤ 6 + ⌊(6 − 3/2) ⋅ 3⌋ = 19.
First suppose there is a vertex w with degree 5 in G[N(v)]. Since NG[N(v)](w) con-
tains no clique or stable set of three vertices, it must be that G[N(v)] consists of w
adjacent to all vertices of a 5-cycle, in which case all six vertices have degree at least 3
in G[N(v)]. _is contradicts that at most two vertices of degree at least 3 are allowed
in G[N(v)]. Next suppose that there is a vertex w with degree 4 in G[N(v)]. _en
there exists w′ ∈ N(v) with ww′ ∉ E. As we argued in the last paragraph, there exist
x1 , x2 , x3 , x4 ∈ NG[N(v)](w) such that x1x2 , x3x4 ∉ E. Since G is claw-free, it must
be that w′ is adjacent to one of x1 and x2 and also to one of x3 and x4; without loss
of generality suppose x1w′ , x3w′ ∈ E. It follows that x1 , x3 ,w are three vertices with
degree at least 3 in G[N(v)], which was not allowed. So now we have reduced to the
case where 2 ≤ δ(G[N(v)]) ≤ ∆(G[N(v)]) ≤ 3 and there are at most two vertices
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with degree 3 inG[N(v)]. SinceG is claw-free, there are only two possibilities for the
structure of G[N(v)]: either it is a disjoint union of two triangles, or it is that graph
with the inclusion of exactly one additional edge.

We call a vertex v good if its neighbourhood structure does not satisfy any of the
following:

● G[N(v)] is the disjoint union of a singleton and a triangle;
● G[N(v)] is the disjoint union of an edge and a triangle;
● G[N(v)] is the disjoint union of an edge and a triangle plus onemore edge;
● G[N(v)] is the disjoint union of two triangles;
● G[N(v)] is the disjoint union of two triangles plus onemore edge;
● G[N(v)] is the disjoint unionof two trianglesplus twomorenon-incident edges.

Recall that a graph is the line graph of a graph if its edges can be partitioned intomax-
imal cliques so that no vertex belongs tomore than two such cliques and additionally,
no two vertices are both in the same two cliques. If no vertex v ∈ V is good, then
we can designate the maximal cliques as follows: for each v ∈ V and for any C one
of the two maximum cliques of G[N(v)] speciûed in one of the cases above (this is
well-deûned), we designate v ∪C as amaximal clique for the requisite edge partition.
Indeed, every edge v1v2 is designated as part of one of the cliques, either from the
perspective of v1 or of v2. Moreover, the clique to which v1v2 is designated does not
diòer depending on the endpoint fromwhich the perspective is taken, by a brief con-
sideration of the six impermissible neighbourhood structures deûning a good vertex.
As each of the designated cliques has at most four vertices, it follows that in this case,
G is the line graph L(F) of a graph F ofmaximum degree 4.

Our case analysis has shown that either no vertex of G is good, in which case G
is the line graph of a graph of maximum degree 4, or there is some good v ∈ V with
degG2(v) ≤ 19. From now on, we ûx one such good vertex v.

Let us call a vertex x very bad if degG2(x) ≥ 21. We already observed that x must
then have deg(x) = 6. By the case analysis above, the neighbourhood of x either
induces a disjoint union of two triangles or is that graph plus onemore edge. However,
the latter case is excluded, as we will now demonstrate. Suppose the neighbourhood
of a vertex x induces two triangles w1w2w3 and w4w5w6 plus one more edge w1w4.
Our goal is to then derive that degG2(x) ≤ 20, so that x cannot be very bad. By
Lemma 2.2,w i has atmost three neighbours outside {v}∪N(v), for all i ∈ {2, 3, 5, 6}.
So it suõces to show that {w1 ,w4} cannot have three neighbours outside {v}∪N(v)
that are not a neighbour of {w2 ,w3 ,w5 ,w6}. By contradiction, let p, q, r be these
neighbours. Without loss of generality, p is a neighbour ofw1. _en p is also adjacent
tow4 (otherwise claw). _e same argument applies to q and r, so that {p, q, r}must be
complete to {w1 ,w4}. Furthermore, by claw-freeness, pqrmust be a triangle. But then
{w1 ,w4 , p, q, r} induces a K5, which is a contradiction. _is completes the proof that
the neighbourhood of a very bad vertex induces the disjoint union of two triangles.

Let x1 be a very bad vertex in N(v). Since N(x1) induces two disjoint triangles
(one containing v), it follows that x1 is part of a triangle x1x2x3 in N(v) and there is
no edge between x1 andN(v)∖{x1 , x2 , x3}. _us, each vertex in N(v)∖{x1 , x2 , x3} is
at distance exactly 2 from x1 (with respect to G) so that N(v)∖{x1 , x2 , x3} is a clique
by Lemma 2.2.
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Suppose now that the very bad vertices in N(v) do not form a clique in (G ∖ v)2.
Writing N(v) ∶= {x1 , . . . , x6}, there exist two very bad vertices x1 , x6, say, that are at
distance greater than 2 in G ∖ v. By the previous paragraph, N(v) is covered by two
disjoint triangles. Because v is good, it follows (up to symmetry of x1 and x6) that the
following is a subgraph of the graph induced by N(v): two disjoint triangles x1x2x3
and x4x5x6 plus two edges x2x4 , x3x4. Note that x2 , x3, and v are neighbours of x1 that
have a common neighbour at distance 2 from x1, namely x4, and separately from that,
x2 and x3 have a common neighbour in N(N(x1)) ∩ N(N(v)) ∖ {v , x1}. It follows
that degG2(x1) ≤ 20, contradicting that x1 is very bad. We have shown that the very
bad vertices in N(v) form a clique in (G ∖ v)2, and this concludes the proof.

6 Clique Number at Least Five

_e proof of_eorem 5.3 suggests the following reûnement of Lemma 5.1. _is could
be useful towards reductions to the line graph setting for ω(G) ≥ 5.
For G = (V , E) and v ∈ V and w ∈ N(v), we deûne q(w) to be the matching

number of the complement of G[NG[N(v)](w)]. Note that q(w) ≥ 1 if and only if
w ∈ Z(v).

Lemma 6.1 Let G = (V , E) be a claw-free graph. For any v ∈ V ,

∣N(N(v)) ∖ {v}∣ ≤ ∑
w∈N(v)

∣N(w) ∖ ({v} ∪ N(v))∣
q(w) + 1

≤ (ω(G) − 1) ∑
w∈N(v)

1
q(w) + 1

.

Proof Let a1b1 , a2b2 , . . . , aq(w)bq(w) be edges of amaximum matching in the com-
plement of G[NG[N(v)](w)]. Note that w and a1 , b1 , . . . , aq(w) , bq(w) are all distinct
vertices in N(v) ∩ N(w). Let x ∈ N(w) ∖ {v}. For all i ∈ {1, . . . , q(w)}, it holds that
wa i ,wb i ∈ E and a ib i ∉ E, so by Lemma 2.3, x is not only a neighbour of w, but also
a neighbour of a i or b i . _is implies that ∣{u ∈ N(v) ∣ x ∈ N(u)}∣ ≥ q(w) + 1. So

∣N(N(v)) ∖ {v}∣ = ∑
w∈N(v)

∑
x∈N(w)∖({v}∪N(v))

1
∣{u ∈ N(v) ∣ x ∈ N(u)}∣

is at most∑w∈N(v) ∣N(w) ∖ ({v} ∪ N(v))∣/(q(w) + 1). Now apply Lemma 2.2.

Lemma 6.1 yields the following corollary.

Corollary 6.2 Let G = (V , E) be a claw-free graph with ω(G) ≥ 4. For any v ∈ V
with deg(v) ≥ 2ω(G) − 1,

∣N(N(v)) ∖ {v}∣ ≤ deg(v)(ω(G) − 1)
⌈(deg(v) + 1)/2⌉ + 2 − ω(G) .

Proof Let w ∈ N(v). It suõces to establish a suitable lower bound for q(w). By
Lemma 2.2, degG[N(v)](w) ≥ deg(v) − ω(G) ≥ ω(G) − 1, and so in any subset of
NG[N(v)](w) with at least ω(G) − 1 vertices, theremust be at least one non-edge (or
else G has a clique of ω(G) + 1 vertices). So we can iteratively extract two vertices
from NG[N(v)](w) that form an edge of the complement of G[NG[N(v)](w)] until at
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most ω(G) − 2 vertices remain. It follows that

q(w) ≥ ⌈ 1
2
( degG[N(v)](w) − (ω(G) − 2))⌉

≥ ⌈ 1
2
( deg(v) − ω(G) − (ω(G) − 2))⌉

= ⌈ deg(v)/2⌉ + 1 − ω(G).

If deg(v) is even, then a�er we have extracted ⌈deg(v)/2⌉ − ω(G) pairs as above at
least ω(G) vertices remain, call them x1 , . . . , xω(G). Among x1 , . . . , xω(G)−1 there is
at least one non-edge, say, x1x2 ∉ E without loss of generality.

Since ω(G) ≥ 4, there is at least one non-edge ab among x2 , . . . , xω(G), and at least
one non-edge cd among x1 , x3 , . . . xω(G). _e non-edges x1x2 , ab, and cd may not
form a stable set of size three, since otherwise therewould be a claw. _erefore, at least
two of them comprise a two-edgematching in the complement ofG[{x1 , . . . , xω(G)}].
So indeed we have for any parity of deg(v) that

q(w) ≥ ⌈(deg(v) + 1)/2⌉ + 1 − ω(G).

As w was arbitrary, the result now follows from Lemma 6.1.

Let us nowmake explicit some general consequence of Corollary 6.2. An awkward
but routine optimisation checks that for k ≥ 5 and x ∈ {2k− 1, 2k, . . .}, the expression

f (x) ∶= x + x(k − 1)
⌈(x + 1)/2⌉ + 2 − k

is maximised with x = 2k − 1 or with x ∈ {y, y + 1} for y as large as possible. (_is
follows e.g., from the facts that f (2k − 1) > f (2k) and that there is some x0 > 2k − 1
such that the derivative of

f ∗(x) ∶= x + x(k − 1)
(x + 1)/2 + 2 − k

is negative for all 2k − 1 ≤ x < x0 and positive for all x > x0.) By Lemma 2.1,
R(ω(G), 3) − 1 and R(ω(G), 3) − 2 are the two largest allowed values of deg(v). So
by Corollary 6.2, if v is a vertex of a claw-free graph G with deg(v) ≥ 2ω(G)− 1, then
degG2(v) ≤ max{ f (2ω(G) − 1), f (R(ω(G), 3) − 1), f (R(ω(G), 3) − 2)}, yielding

(6.1)

degG2(v) ≤ max{2ω(G) − 1 + (ω(G) − 1/2)(ω(G) − 1),

R(ω(G), 3) − 2 + (R(ω(G), 3) − 2)(ω(G) − 1)
(R(ω(G), 3) − 1)/2 + 2 − ω(G) ,

R(ω(G), 3) − 1 + (R(ω(G), 3) − 1)(ω(G) − 1)
R(ω(G), 3)/2 + 2 − ω(G) } .

Moreover, (6.1) remains valid when we substitute R(ω(G), 3) with any upper bound.
It is known [7] that R(ω(G), 3) ≤ (ω(G)+1

2 ). With this and some routine calculus, (6.1)
implies that degG2(v) ≤ 2ω(G)(ω(G) − 1), provided ω(G) ≥ 3. Since those v with
deg(v) ≤ 2ω(G) − 2 have degG2(v) ≤ 2ω(G)(ω(G) − 1) by Lemma 2.2, we have the
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following “trivial” bound on χ(G2). _is was proved not via ∆(G2) but by a diòerent
method in [5].

Corollary 6.3 If G is a claw-free graph, then

χ(G2) ≤ ∆(G2) + 1 ≤ 2ω(G)(ω(G) − 1) + 1.

Also (6.1) implies that if v is a vertex of a claw-free graphG with deg(v) ≥ 2ω(G)−
1, then degG2(v) ≤ 1

4 (5ω(G)2 − 2ω(G) + 1) − 1, provided ω(G) ≥ 5. We use this for
the following theorem.

_eorem 6.4 Let G = (V , E) be a connected claw-free graph with ω(G) = ω ≥ 5.
_en one of the following is true:
(i) G is the line graph L(F) of a graph F ofmaximum degree ω;
(ii) there exists v ∈ V with degG2(v) ≤ 2ω(ω − 1) − 4 such that

degG2(x) ≤ 2ω(ω − 1) − 3
for all x ∈ NG(v).

Proof By the last remark (which followed from Corollary 6.2), for v ∈ V with
deg(v) ≥ 2ω − 1, we have that degG2(v) ≤ 1

4 (5ω
2 − 2ω + 1) − 1 ≤ 2ω(ω − 1) − 4,

since ω ≥ 5.
For v ∈ V with deg(v) ≤ 2ω−3,we have by Lemma 2.2 that degG2(v) ≤ ω(2ω−3) ≤

2ω(ω − 1) − 4, since ω ≥ 5.
Let v ∈ V with deg(v) = 2ω − 2. If G[N(v)] is not the disjoint union of two

cliques, then ∣Z(v)∣ ≥ 2. (Clearly, ∣Z(v)∣ > 0 if G[N(v)] is not the disjoint union of
two cliques, but if on the contrary ∣Z(v)∣ = 1, then let w ∈ N(v) be the unique vertex
such that there exist x , y ∈ N(v) for which xw ,wy ∈ E, xy ∉ E. By the uniqueness
of w, x does not have any neighbours in N(v) in common with y. Moreover, ({x} ∪
N(x))∩N(v) is a clique, because otherwisewewould either have a claw or x ∈ Z(v).
By the uniqueness of w, ({x} ∪ N(x)) ∩ N(v) ⊆ N(w) ∪ {w}. _e same arguments
hold with the roles of x and y exchanged. It follows that G[N(v)] is the union of two
cliques with exactly one vertex in common. Since each clique in G[N(v)] is of size at
most ω − 1, this is a contradiction to deg(v) = 2ω − 2.) It then follows by Lemma 5.1
that degG2(v) ≤ (2ω − 1)(ω − 1) ≤ 2ω(ω − 1) − 4, since ω ≥ 5.

We have shown that one of the following two possibilities must hold for G:
(a) for every v ∈ V it holds that G[N(v)] is the disjoint union of two cliques of size

ω − 1 or that same graph with one extra edge between the two cliques, or the
disjoint union of two cliques one of size ω − 2 the other of size ω − 1; or

(b) there is some v ∈ V with degG2(v) ≤ 2ω(ω − 1) − 4.
In the former situation, G is the line graph of a graph ofmaximum degree ω.

Let us call a vertex v very bad if degG2(v) ≥ 2ω(ω−1)−2. We already observed that
v must then have deg(v) = 2ω − 2. As argued just above, Lemma 5.1 implies that the
neighbourhood of v induces a disjoint union of two cliques of size ω − 1. Moreover,
using Lemma 2.2, we have that for every neighbour x of v, the neighbourhood of x
induces the disjoint union of two cliques of size ω − 1, or that same graph plus one
more edge, or the disjoint union of two cliques one of size ω − 2 the other of size
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ω− 1. _is implies that, for every vertex v forwhichwe showed above that degG2(v) ≤
2ω(ω− 1)−4 (not including those cases corresponding to the promised line graph of
maximum degree ω), it also holds that N(v) does not contain a very bad vertex. _is
completes the proof.

Proof of_eorem 1.3 Togetherwith the trivial bound,_eorem 6.4 certiûes thatwe
can apply Lemma 3.1 with K = K′ = max{χ′s(ω), 2ω(ω − 1) − 3} − 1.

Wewanted to illustrate how our methods could extend to larger values of ω(G). It
is likely that _eorem 6.4 can be improved, particularly since we did not use the full
strength of Lemma 3.1. On the other hand, since the Erdős–Nešetřil conjecture itself
is open apart from the case of graphs ofmaximum degree at most 3, we leave this to
further investigation.
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