BULL, AUSTRAL, MATH, SOC, VOL. 34 (1986) 87-92.

SEQUENCES AND BASES IN P-BANACH SPACES

M. A. ARIÑO

Necessary and sufficient conditions are given for an infinite dimensional subspace of a p-Banach space X with basis to contain a basic sequence which can be extended to a basis of X. In [1] it is proved that if X is a Banach space with a basis and $(y_n)_{n=1}^{\infty}$ is a regular sequence which converges to zero coordinatewise, then $(y_n)_{n=1}^{\infty}$ has a subsequence which can be extended to a basis of Xand so every infinite dimensional subspace Y of X contains a basic sequence which can be extended to a basis of study these properties in p-Banach spaces.

If X is a real linear space and $0 , a p-norm <math>||\cdot||$ on X is a map from X into $[0, +\infty)$ which satisfies the following conditions:

a) ||x|| = 0 if and only if x = 0.

- b) $||tx|| = |t|^p ||x||$ if $x \in X$ and $t \in \mathbb{R}$.
- c) $||x+y|| \leq ||x|| + ||y||$ if $x, y \in X$.

Received 1 October 1985. The author would like to thank Professor Augustyn Ortyński for his suggestions.

Copyright Clearance Centre, Inc. Serial-fee: 0004-9727/86 \$A2.00 + 0.00. 87 With the distance d(x,y) = ||x-y||, X becomes a metric space and if $(X, ||\cdot||)$ is complete, it is called p-Banach space (Banach space if p=1). The p-th root of a p-norm is a quasi-norm $|||\cdot|||$ and satisfies

- a) |||x||| = 0 if and only if x = 0.
- b) |||tx||| = |t| |||x||| if $x \in X$ and $t \in \mathbb{R}$

c) $|||x+y||| \leq C(|||x||| + |||y|||)$, where $C \geq 1$ is a positive number which does not depend on x and y.

$$||(x_n)|| = \sum_{n=1}^{\infty} |x_n|^p < \infty$$

is a *p*-Banach space.

Let $(X, ||\cdot||)$ be a *p*-Banach space with topological dual X^* , and suppose that X^* separates the points of X (this condition will be assumed throughout this paper). We can provide X^* with the dual norm

$$||x^*||^* = \sup_{||x|| \leq 1} |x^*(x)|$$

and $(X^*, ||\cdot||^*)$ becomes a Banach space. The inclusion map from $(X, ||\cdot||)$ into $(X^{**}, ||\cdot||^{**})$ is continuous, more precisely, $||x||^{**} \leq ||x||^{1/p}$ for every x.

If $(X, ||\cdot||)$ is a *p*-Banach space, the convex hulls of the balls of $(X, ||\cdot||)$ form a basis of zero neighbourhoods of a locally convex topology which is the finest locally convex topology on *X* whose dual is *X*^{*}, that is, the Mackey topology of the dual pair $\langle X, X^* \rangle$. This is usually called the Mackey topology of $(X, ||\cdot||)$, and can be defined by the norm induced by the bidual $(X^{**}, ||\cdot||^{**})$ (See [3]).

If Y is a closed subspace of $(X, ||\cdot||)$, $(Y, ||\cdot||)$ is a p-Banach space for which the bidual norm $||\cdot||_Y^{**}$ defines the Mackey topology. In general, the Mackey topology of Y is stronger than the topology induced by the Mackey topology of X. It is easy to see, using duality arguments, that both topologies coincide if and only if Y has the Hahn Banach extension property (HBEP): every $y^* \in Y^*$ is the restriction to Y of some $x^* \in X^*$.

A sequence $(z_n)_{n=1}^{\infty}$ is called block basic sequence with respect to a basis $(x_n)_{n=1}^{\infty}$ if there exists a strictly increasing sequence of positive integers $(m_n)_{n=1}^{\infty}$ such that

$$z_{n} = \sum_{i=m_{n-1}+1}^{m_{n}} a_{i} x_{i} \qquad (*)$$

where $(a_n)_{n=1}^{\infty}$ is a sequence of scalars. And a sequence $(y_n)_{n=1}^{\infty}$ is called regular if $\inf_n ||y_n|| > 0$. If $(x_n)_{n=1}^{\infty}$ is a bounded and regular basis of a *p*-Banach space, then $\inf_n ||x_n||^{**} > 0$. (See [2, Proposition 3.2.iii])

Let $(z_n)_{n=1}^{\infty}$ be a block basic sequence as (*). If $(y_n)_{n=1}^{\infty}$ is a sequence in X with $Y_{m_j} = z_j$ and $y_n \in [x_i]_{i=m_{j-1}+1}^{m_j}$ whenever $m_{j-1} < n \leq m_j$, then $(y_n)_{n=1}^{\infty}$ is called block extension of $(z_n)_{n=1}^{\infty}$. Morrow [5] has proved that a bounded and regular block basic sequence $(z_n)_{n=1}^{\infty}$ in a *p*-Banach space X has a block extension that is a basis of X if and only if $\inf_{n=1}^{\infty} |z_n| + \infty$.

The proof of the following lemma is similar to the one known for the Banach case (see [4, 1.a.9]).

LEMMA 1. Let $(x_n)_{n=1}^{\infty}$ be a normalized basis of a p-Banach space X with basis constant K. Let $(y_n)_{n=1}^{\infty}$ be a sequence in X with $\sum_{n=1}^{\infty} ||x_n - y_n|| < \frac{1}{2K}$. Then $(y_n)_{n=1}^{\infty}$ is a basis of X which is equivalent to $(x_n)_{n=1}^{\infty}$. THEOREM 2. Let $(x_n)_{n=1}^{\infty}$ be a basis of a p-Banach space X and $(Y_n)_{n=1}^{\infty}$ a normalized sequence in X which converges to zero coordinatewise and such that $\inf_n ||y_n||^{**} = C > 0$. Then $(y_n)_{n=1}^{\infty}$ has a subsequence which can be extended to a basis of X.

Proof. We can suppose that $(x_n)_{n=1}^{\infty}$ is normalized. Let K be the basis constant of $(x_n)_{n=1}^{\infty}$. With an usual "gliding hump" method we can find a subsequence $(y_{p_n})_{n=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ and a $(z_n)_{n=1}^{\infty}$ block basic sequence of $(x_n)_n$ as (*) such that:

$$||y_{p_n} - z_n|| < \frac{C}{K \cdot 2^{n+1}}$$

Since $||y_{p_n} - z_n||^{**} \leq ||y_{p_n} - z_n||^{1/p} < \frac{C}{4}$, we deduce that

 $\inf_{n} ||z_{n}||^{**} > 0 \text{ and therefore a } (u_{n})_{n=1}^{\infty} \text{ block extension of } (z_{n})_{n=1}^{\infty}$ exists, which is a basis of X. Let $(v_{n})_{n=1}^{\infty}$ be the sequence defined by

$$v_n = \begin{cases} u_n & \text{if } n \neq m_k \text{ for every } k \\ \\ y_{p_k} & \text{if } n = m_k \end{cases}.$$

Since

$$\sum_{n=1}^{\infty} ||v_n - u_n|| = \sum_{n=1}^{\infty} ||y_p - z_n|| < \frac{1}{2K}.$$

 $(v_n)_{n=1}^{\infty}$ is a basis of X which is an extension of $(y_p)_{n=1}^{\infty}$ (lemma 1 is used).

THEOREM 3. Let X be a p-Banach space with basis. Let Y be an infinite dimensional subspace of X. The following are equivalent:

- i) Y contains a basic sequence which can be extended to a basis of X.
- ii) The unit ball of Y is not relatively compact in $(X^{**}, ||\cdot||^{**})$.

Proof. i i i) Let $(y_n)_{n=1}^{\infty}$ be a basic sequence in X such that a basis of $X(w_n)_{n=1}^{\infty}$ with $w_{p_n} = y_n$ for every $n \in \mathbb{N}$ exists. We can suppose that $(y_n)_{n=1}^{\infty}$ is contained in the unit ball of Y. Let $(w_n^*)_{n=1}^{\infty} \subset X^*$ be the sequence such that $w_n^*(w_m) = \delta_{n,m}$ and we write $y_n^* = w_{p_n}^*$. If a subsequence $(y_n)_{j=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ converges in $(X^{**}, ||\cdot||^{**})$, then the sequence $(z_j)_{j=1}^{\infty}$ with $z_j = y_{n_j} - y_{n_{j+1}}$ converges to zero in $(X^{**}, ||\cdot||^{**})$. But this is impossible because $||z_j||^{**} \ge \frac{y_{n_j}^*}{||y_{n_j}^*||} (y_{n_j} - y_{n_{j+1}}) = \frac{1}{||y_{n_j}^*||} \ge \frac{1}{K}$

where K is the basis constant of $(\omega_n)_{n=1}^{\infty}$, and so the unit ball of Y is not relatively compact in $(X^{**}, ||\cdot||^{**})$.

ii \Rightarrow i) If the unit ball of Y is not relatively compact in $(X^{**}, ||\cdot||^{**})$ then a bounded sequence $(z_n)_{n=1}^{\infty}$ in Y exists which does not have any subsequence converging in $(X^{**}, ||\cdot||^{**})$. Replacing $(z_n)_{n=1}^{\infty}$ with a subsequence, if needed, we can suppose that $(z_n)_{n=1}^{\infty}$ is Cauchy-coordinatewise, and also assume that $0 < \inf_{n=1}^{\infty} ||z_n - z_{n+1}||^{**}$.

Then if $y_n = z_n - z_{n+1}$, applying theorem $1 (y_n)_{n=1}^{\infty}$ has a subsequence which can be extended to a basis.

COROLLARY 4. If Y has an infinite dimensional subspace Z with HBEP then Y contains a sequence which can be extended to a basis of X.

Proof. If the unit ball of $(Y, ||\cdot||)$ is relatively compact in $(X^{**}, ||\cdot||^{**})$, the same is true for any subspace Z of Y. If Z has the HBEP, the Mackey topology of $(Z, ||\cdot||)$ is defined by $||\cdot||^{**}$ and Z must be finite dimensional.

THEOREM 5. Let $(X, ||\cdot||)$ be a p-Banach space with basis, such that every infinite dimensional subspace $Y \in X$ contains a basic sequence which can be extended to a basis of X. Then $(X, ||\cdot||)$ must be locally convex.

Proof. If $(X, ||\cdot||)$ is not locally convex, we can find a sequence $(x_n)_{n=1}^{\infty}$ in X such that $||x_n|| = 1$ and $||x_n||^{**} < \frac{1}{n}$. Using a "gliding hump" method we can assume that there exists a subsequence $(x_n)_{k=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ which is a basic sequence. Let $Y = \overline{sp}[x_n]_{k=1}^{\infty}$. Since $||x_n|| = 1$ and $||x_n||^{**} < \frac{1}{2}n_k$ the inclusion map i: $(Y, ||\cdot||) \longrightarrow (X^{**}, ||\cdot||^{**})$ is compact, and theorem 3 ensures us that Y does not have any basic sequence which can be extended to a basis of X, contradicting the hypothesis.

References

- W. Dean, I. Singer, L. Sternbach, "On shrinking basic sequences in Banach spaces", Studia Math. 40, (1971), 23-33.
- [2] N. J. Kalton, "Orlicz sequence spaces without local convexity", Proc. Comb. Phil. Soc. 81, (1977), 253-277.
- [3] N. J. Kalton, "Banach envelopes of non-locally convex spaces", (To appear).
- [4] J. Lindenstrass, L. Tzafriri, Classical Banach spaces: Sequence spaces. Springer-Verlag, Berlin (1977).
- [5] J. R. Morrow, "On basic sequences in non-locally convex spaces", Studia Math. 67, (1980), 114-133.

Departamento de Teoria de Funciones Facultad de Mathematicas Universidad de Barcelona Gran Via 585, 08007 BARCELONA, Spain.