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DISSECTIONS OF QUOTIENTS OF THETA-FUNCTIONS

SonGg HENG CHAN

We prove a general theorem on dissections of quotients of theta-functions. As corol-
laries, we establish six g-series identities that were conjectured by M.D. Hirschhorn:

1. INTRODUCTION

An N-dissection of a g-series F'(g) with integral powers is a representation of the
form

) N-1
F(g) =) ¢"Fi(q"),
k=0

where Fy(q) is a series in ¢ with integral powers.

Ramanujan was most probably the first person to give dissections of g-series identi-
ties. In his lost notebook [6], he recorded dissections of the generating function of cranks
and the generating function of ranks. Since Ramanujan’s time, and inspired by his par- -
tition congruences, a great deal of work has been done by many people on identities and
partition theorems obtained through dissection techniques.

For |g| < 1 and any integer n, set

o0
1—ag*
@gn =[] —x

— agntk
o 1—ag®
and (@;g)oo = lim (a; g)n.

Next, we define Ramanujan’s theta-function by

(1.1) fla,b):= Y arr/2pn-bz - gh| < 1,

n=—oo

which satisfies the Jacobi triple product identity ([3, p. 35, Entry 19])
(1.2) f(a,b) = (—a; ab)oo(—b; ab) o (ab; ab)o-

We also define
f(=9) = (¢ oo

Received 11th March, 2003
The author is grateful to Professor Bruce Berndt for several helpful suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 $A2.00+0.00.

19

https://doi.org/10.1017/50004972700034225 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034225

20 S.H. Chan 2]

Recently, working jointly with Sellers on overpartitions, Hirschhorn conjectured a
total of six identities, (3.1) — (3.6) below, which are dissections of quotients of theta-
functions. Hirschhorn then communicated these conjectures in [4] to the author. Thus
our primary aim of this paper is to prove a theorem which yields these six conjectures as
special cases.

In Section 2, we prove a general theorem (Theorem 2.1), from which all of (3.1) -
(3.6) follow as corollaries. The six conjectures, (3.1) — (3.6) are then stated and proved
in Section 3. In Section 4 of this paper, we give an alternative proof of (3.1) and (3. 2)
which involves the reciprocal of the quintuple product identity (4.1).

2. A GENERAL THEOREM

We prove the following theorem, which is an N—dissection of a quotient of theta-
functions, where N is any positive integer.
THEOREM 2.1. Let N be any positive integer. Then for |¢| < |z| < 1, we have
(2.1)
(=24 oo (= (4" /7)1 4" )
(x'QN)oo(( ”/x)'qN)oo
oo k

(q fl % = xN)qu)oo(quz-N 4" )oo(—V%; 4V )oo(~gN N —H); gN*)og

PRrROOF: Recall Ramanujan’s famous ;1 summation formula

E (a q nn _ (0219)0((9/02); )0 ((5/0); )0 (g @) 0

= (25 9)oo((b/02); 40) ((9/0); @) 00 (b; @)oo
which is valid for b/a| < |z| < 1. (See (1, 2], [3, p. 32, Entry 17] and [5] for proofs.)
Letting (a, b, z) = (y,yq, =), we obtain the useful corollary

N kN N’) ( qN(N k).’L‘—N N’) (qu,qu)

00

3 2t (o5 0)e((a/2Y) Deol(e: 9
1-yq®  (%9)00((9/2); Q)oo(¥; D)oo ((8/¥); Do

Next, we specialise (2.2) by letting y = —1 and replacing ¢ by ¢", where N is any
positive integer, to deduce that

(2.2)

n=—00

i " (=24 )= (g /7); ¢V)o(aV; ¢

= T+g¥ T 2259V )eo((0V /2); ¢V )eo( -4V V)%

We multiply (2.3) by 2((—qN;qN)§°)./( N.gM)? ) to obtain

(2.3)

(=714 (=(a"/2); ¢V _, (=4 Z
(2;4M)oo (g% /7)) oo (q q 1+q""
)2 N-1
(24) - ( qq q(fV)zoo Z Z 1+qN2n+Nk

0 k=0 n=-00
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Finally, we apply (2.2) in each of the infinite sums in (2.4), and this completes the
proof of the theorem. 0

3. CONJECTURES OF HIRSCHHORN AND THEIR PROOFS.

COROLLARY 3.1. We have

o oo
(31) 7 B / 3 (~1)rglntemr

n=-—oo n=—oo
_ 1
(9% 9'8)5,(4% 9'8)3,(¢'%; ¢'8)3,(¢'%; ¢*8)S,
+ 2q
(q3; qIB)go(qG; qIB)go(qQ; qls)go(qlz; q18 go(qls; q18)g°
+ i

(% ¢8)4. (a5 a®)3,(¢% ¢'8) 4. (¢'% ¢'8)3,(¢%; ¢'®)4,

and

oo o0
(3.2) Z (_l)nq(3n2+n)/2/ Z q(3n2+n)/z
n=—0o0 n=-00
B 1
(q3; qIS)go(qG; q18)°°(q12; qls)oo(qls; qIB)go
2q .
(qB; q18)°°(q6; q18)°°(q9; qls)go(qu; q18)°°(q15; q18)°°'
COROLLARY 3.2. We have
(3.3)
o0 [=+]
Z q(5n2+n)/2 / Z (_l)nq(5n2+n)/2
n=—0o0 n=-oo '

— 1/(‘]5; q50)g°(q10; q50)<4>°(q15; qSO)go(qZO;q50)°°(q30;q50)°°(q35;q50)g°(q40; qSO):O(q'is; qSO):O
+ 4q6/(q5; qSO):O(qu; q50)§°(q15;q50);(q20; q50 2o(q25; qSO):O(qSO;QSO)ZO(q35; qSO)ZO
(q40, q50)2 (q45, q10)4
3 oo ' 00
+ 2(]2/((]5; q50)g°(q10; qSO)go(QIS;QSO)gO(q%; q50 go(qSS;qSO)go(q40;q50)g°(q45; (15(])2‘7
+20°/(0% 0%)5 (0" 0708001 %)% (47 6705 (07 0o (075 4°°) 20 (4%% 0505
(q40, q50)3 (q45_ q10)4
) o0 1) [> ]
+ 2q4/(q5; qSO)ZO(qlo; q50)°°(q15; q50)g°(q20; q50 go(q25; q50 go(q30; qSO)ZO(q%; qSO)gQ

(q40;q50)w(q45;q50);,
(3.4)
b 2 > 2 2
Z qbn +3n)/2 / Z (_l)nq(Sn +3n)/
n=—oc n=—00
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= 1/(0% 0% (0% 4% )en 0% ) (% 0% (%5 0 (%5 ) 05 4)en(4"
+2¢/(0% 0°°)5 (4% )5 (0" 5")2<,( %56 00(07% 6% (%% )0 (6°% )30
(% ¢™) 5 (0"
+2¢% /(0% 0°°)3. (6% 6°) 2% (0'% 6°°) . (6% 6%, (6% %) (6% 6°) 3, (6% 6°°) 2,
(q40;q50)2 ( 45;q50)5
+26°/(0% 6°)% ("% 6°°)3. (0% 6°) 2 (6% 6°) 2 (6% 4%°)% (6% ¢°°) 2 (0% 4°°)S,
+44%/(¢% 6%)5 (6'% )3, ("% 6%°) 5 (6% ¢°%) 2 (075 6%°) 5 (6°% %) (6% 6°°) %,
(q40;q50)g°(q45; qSO)go

50)4
)

(3.5)

oo 00
Z (_l)nq(sn2+n)/2 / Z q(5n2+n)/2

n=—00 n=-00
= 1/(¢% 6*)(a"%: 6% 6%)% (6% 6)3% (6% )% (6% 6%
_ 2q2/(q5’q50)°°(q ;q )oo(ql5’q50)g°(q 50)2( 25 50)2 (q 50)2( 35 50)2
(q“°,qs°)oo(q“5 )%,
- 2¢%/(g% ¢*)2% ("% 6*)%(2"% 6°°)3. (65 6°°) oo (0% 6°) 2 (6% **) o (6% 6°°)3,
(q40;q50)‘2 (q45. IO)CZ’O
+ 2q4/(q5;q50)g°(q15; q50)g°(q20;q50)g°(q25; qSO)CZ’O(quO; q50)go(q35;q50)go( 45, q )

and
(3.6)
- 2 / i (5n2+3n)/2
Z (__l)nq(Sn +3n)/2 q n®+3n
n=-—00 n=-—o0o

— 1/(q5, q50)§°(q10;q50)g°(q15;q50)4°°(q35;q50)4°°(q40. 50)3 (q45;q50)2
~ 20/(¢% 02 (0% 075 (6% 6™)3 (67 6°) %0 (6% )% (0% 605 (4% )2
+267/(¢% 07)%(0"% 4%)o0 (0% 0%)5 (0™ 6% (6% %)% (6% )2 (6% %)%
’ (q o;qso)m(qﬁ; qlo)g<>
~ 26°/(2% 0™ (4" )5 (4% 8™ (7% 4o (05 )20 (4% 4 a (97 )26
(q40 5012 (q 50)20‘

We now begin our proof of Corollaries 3.1 and 3.2.

PROOF OF (3.1): Letting (z, N} = (g,3) in Theorem 2.1, we obtain
(=96} 0(~4% )0

(9:¢%)oo(q%; 3)00

o= &3 ¢%) Z =03, 0%) 0o (—0° 33, %) 0 (¢°; ¢°)2,
(%)% &7 (g% ‘19)oo(<16 0%)oo(— q3";qg)m( —¢°73%,¢%)
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(=¢% 6%)% (=¢% 8%)oo(—6% ¢%) oo (¢”; ¢°)%
(6% 6% (6% ¢%)eo(4% 0°)o(~¢% ¢°)%
(=% %)%, (=% 0% (=% 0%)oo(9® ¢%)%,

(2% 832, (6% %)oo(d%; 0%)oo(—4% 4%) oo (—45 %) oo
(=% %)%, (-4 ¢°)%(¢°% )%

(6% 632 (8% 6%)00(q% 6°)oo(—45; ¢°)eo(~43; 4°) oo

(-¢%¢%)3, 29(-¢%d%)% | 44°(—¢% ®)oo(—¢% ¢%)%
(6% 9°)%:(a% ¢°)% (=% a®)3, (g% ¢°)% (g% ¢%)%, ) (6% ¢9)3.(¢5% ¢°)3,
1 q
(2% ¢°)3,(45% °)3.(a%; ¢*8)3,(¢"%: ¢*8)3 * (4% ¢°)3,(45 ¢°)3, (g% ¢°)2,
4q?

% 4°)3,(¢% °)3, (6% ¢°) (9% 4"8)3, 0

PROOF OF (3.2): Let (z,N) = (—g,3) in Theorem 2.1 and proceed as in the proof
of (3.1). 0
PRrROOF OF (3.3): Let (z,N) = (¢,5) in Theorem 2.1 and proceed as in the proof
of (3.1). 0
PROOF OF (3.4): Let (z,N) = (¢%,5) in Theorem 2.1 and proceed as in the proof
of (3.1). 0
PROOF OF (3.5): Let (z, N) = (—g,5) in Theorem 2.1 and proceed as in the proof
of (3.1). g
PROOF OF (3.6): Let (z, N) = (—¢?,5) in Theorem 2.1 and proceed as in the proof
of (3.1). 0

+ 2¢q

+ 4q

1

4. RECIPROCAL OF THE QUINTUPLE PRODUCT IDENTITY.

In this section, we provide a completely different proof of Corollary 3.1. First, we
express the reciprocal of the quintuple product identity [3, p. 80, equation (38.2)] in the
form (4.1), as a three dissection.

THEOREM 4.1. (Quintuple Product Identity.) With f(a,b) defined by (1.1),

(41) f(P3Q,Q5/P3) _ P2f(Q/P3, PSQS) — f(_QQ)f(;gé—g;é§2) .

Recall the elementary identity
1 A%+ AB+ B?
A-B A -B
We set A = f(P?Q,Q°%/P®) and B = P%f(Q/P3, P3Q®) in (4.2). Replacing P by
w*P in (4.1), k = 0,1, 2, where w is a primitive cube root of unity, and multiplying all
three results together, we find that

(4.2)

2
(4.3) A3 - B3 = H{f(w3kP3Q, Qs/w:}kPS) _ w2kP2f(Q/w3kP3’w3kP3Q5)}
k=0
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f(_P67 —QG/PS)

f(PQ3,@Q3/P3) "

Thus, by (4.1), (4.2) and (4.3), we have obtained the following theorem.
THEOREM 4.2. With f(a,b) defined by (1.1),

~r-@)

(4.4)
£2(—-Q?) f(PQ,Q/P) _ f(P°Q* Q3/P%) f2(P°Q, Q%/P?)
(=P -Q*/P?) f(—P8,—Q5/P®)
+ p [ (P°Q, QP f(P°Q,Q°/ P°) f(Q/P?, P°Q°)
f(=PS,-Q5/P%)
+ P4f(P3Q3’ Qa/Pa)fz(Q/Ps, PSQS)
f(—P¢, —Q°/P¥) ’

We now give a different proof of (3.2) and (3.1) using Theorems 4.1 and 4.2, respec-

tively. .
SECOND PROOF OF (3.2): Apply (4.1) with P = —¢'/2 and Q = ¢*/? and divide
by f(-4%). 0
SECOND PROOF OF (3.1): Apply (4.4) with P = —¢'/? and Q = ¢*? and divide
by f2(~¢%). 0
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