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The Theory of Contours,
and its Applications in Physical Science.

By W. PEDDIE.

PART I.

1. The word contour is largely used in ordinary language, but its
meaning, when so used, is in general very different from its meaning
as a scientific term. We speak of the contour of a hill, a cloud, a
country, and so on; meaning usually a profile or an outline,—some-
times a particular outline only. Yet, even in this popular use of the
word, we have an indication of its more exact significance. Thus,
we see that the visible horizon, if we consider it to be a contour line,
is the curve in which the earth's surface is met by its tangent-cone
the vertex of which is at the observer's eye. The tangent-surface has a
constant characteristic; and it is this possession of a distinctive
property by all surfaces which give rise to contour lines, which furnishes
the reason for the peculiar applicability of the method of contours to
physical problems.

2. The word is used in a more special sense by ordnance surveyors.
In their terminology a contour line is a line drawn on a map of a
country through points which are at a constant height above mean
sea-level. Here again we have a quantity which is constant all along
the line, and also all over the surface which gives rise to the line by
its intersection with the earth. This is a level surface, or surface of
equilibrium. It is approximately true that the special characteristic
is constant height above sea-level, so long as the area considered is so
small that gravity has sensibly the same value all over it. Because
of the variation of gravity from point to point of the earth's surface,
and because of the earth's rotation, <kc, it is not true that the
mutual distance of two level surfaces is of uniform value. What is
really constant is the kinetic energy acquired by a body in falling
from the upper level to the lower by any path.

So, in extension of the third order, a contour may be the inter-
section of a surface by a surface over which some quantity is con-
stant.

3. This idea may be extended to objects of other dimensions than
the second, and extension of other order than the third. We may
state generally that the contour of an object of n dimensions, existing
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in extension of the (n +1)"" order, is the intersection of it with an
object of n dimensions at every point of which some quantity is constant.
It is, therefore, of (n - I) dimensions. But, since in extension of the
(ra+l)t t order, we have objects of all positive dimensions up the
(n + 1 ) * inclusive; in such extension, we may have contours of all
positive dimensions up to the ntt inclusive. The contours of a curve
are points; of a surface, curves; of a solid, surfaces; of a four-
dimensional object, solids; and so on. Hence, in ordinary extension we
may have point, curve, and surface, contours.

4. Since space is of three dimensions, a point in space may have
three degrees of translational freedom,—it may be free to move in
any three mutually perpendicular directions successively or simul-
taneously. We are said to introduce a degree of constraint when
we take away one of these degrees of freedom. If we prevent the
exercise of one kind of freedom, unless a second is simultaneously
exercised, we introduce a degree of constraint in the most general
way possible. The moving point is then forced to remain on some
definite surface, and the nature of the constraint is best shown by
writing down the equation to the surface, the most general being of
the form f(x, y, z) = 0. If another such constraint be imposed, the
moving point must remain in positions common to both the corres-
ponding surfaces. Hence, it must move in a definite curve. Three
such equations determine the position of a point. They may
degenerate into / ,(*) = 0, / , (y) = 0, f{z) = 0, where fix) is some
function of x of the first degree, &c.; that is to say, the position of
the point is determined by the intersection of three planes parallel to
the co-ordinate planes.

5. A curve being of one dimension, its contours are points,—the
points of intersection of it with curves along each of which some
quantity is constant, although it differs in magnitude from one curve
to another. These points may be projected upon any line in the
plane (as, y).

We shall consider first a plane curve, and let its plane be taken
as that of (x, y). We have the equations fjx, y) = 0 and f(z) = 0,
where the suffix denotes the degree of the equation. Instead of the
second equation, we may put s = 0, as this simply makes the
plane of the curve that of (.r, y). The equations to the curves,
along which some quantity, say c, is constant, may be written in the
general form <f>n(x, y, c) = 0. In the different curves of the system, c
has different values. As a particular example, the curves wight be
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circles of different radii. Again, the equation might be ^(y, c) = 0.
This represents a series of lines parallel to the axis of x. It
furnishes the simplest case for consideration, and, at the same time,
the most useful.

From the reference already made (§ 2) to contour maps, it is
evident that the mutual variation of three quantities can be repre-
sented upon a plane surface by means of lines. So, in the case
considered, the mutual variation of two quantities can be represented
upon a right line. The curve in fig. 20 is intersected by lines
parallel to the axis of x, and the points of intersection are projected
upon the axis, and designated by numbers giving the various values
of y corresponding to the values of x. If the curve be continuous
a maximum or minimum, value of y exists between two equal values.
It is a maximum if, as x increases from its least value corresponding
to the given value of y, y first increases and then diminishes. It is a
minimum if y first diminishes and then increases. The steepness of slop*
is shown by the closeness of the contours for equal increments of y, and
its direction is shown by the order in which the values of y occur as
regards numerical magnitude when x increases. Similarly, the exist-
ence of a maximum-minimum value is indicated, and so on.

The contours of a closed oval and of a figure-of-eight curve, are
shown in figs. 21 and 23.

6. Hitherto we have considered only plane curves. In the case
of tortuous curves, it will be most convenient to obtain the contours
by cutting the curve by surfaces over which some quantity is con-
stant. As a particular case, these surfaces may be planes perpendi-
cular to the z-axis, the equations to which may be written in the
general form,/i(z, c) = 0. Obviously, the position of a moving point
in space is representable by a tortuous curve. Its position at any
time can be got from the curve, if the value of the time in terms any
one of the co-ordinates, say z is known, for we should then only
have to cut'the curve by the plane i/a(z, t) = 0, where t represents the
time, and ,/„ is a functional symbol showing that the equation is of
the first degree in z but may be of any degree in t. This condition
is rendered necessary by the fact that the point must be in one
definite position at a given time, but may occupy the same position
at different times. If we consider a number of such curves traced
out in space by moving material points, we can, by cutting the curves
by planes corresponding to a definite time and projecting the points
so got upon any coordinate plane, obtain the diagram of configuration
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of the material system at that time. It is evident that, in general,
the plane corresponding to a definite time will be different for each
curve. The disadvantage so entailed may be got rid of by using
trilinear co-ordinates to indicate the position of the point when the
time is given. If the curve be cut by any plane, the distances of the
point of intersection from three intersecting lines in that plane give
the x, y, and z co-ordinates at an instant. This instant may be
determined by the distance of the plane from a given fixed plane
parallel to it. The curves, which are now taken to represent the
positions of the points, are not the actual curves traced out by the
points in their motion through space. But the diagram of configura-
tion obtained from them has the advantage of showing at once the
relative values of all the co-ordinates of all the points, whereas, in
the Cartesian system this could not be done without projecting on all
three co-ordinate planes. The triangles of reference will be similar
whatever be the plane by which the curves are cut, but they will not
necessarily be of the same magnitude. The similarity is necessary in
order to give the proper ratios of the co-ordinates, the different magni-
tude is necessary in order to give the proper values of the co-ordinates.
Fig. 22 shows the contours of curves a, b, by planes corresponding to
times <,, <,.

By the aid of this diagram, the diagram of total displacements in
a given time may be constructed. And by taking the displacements

in -th of the unit of time and magnifying them n times, the diayram
n

of velocities can be got. Similarly, the diagrams of acceleration, forces,
and so on, may be represented as the contours of curves. The curves,
from which the diagrams of velocities, &c, are obtained, are, of
course, different from the original curves representing the position of
the moving points. In the case of velocities, for example, they are
the hodographs of the original curves on this trilinear system of
reference.
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