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An exact set of equations describing deep-water irrotational surface gravity waves,
originally proposed by Balk (Phys. Fluids, vol. 8 (2), 1996, pp. 416–420), and studied
in the case of standing waves by Longuet-Higgins (J. Fluid Mech., vol. 423, 2000,
pp. 275–291) and Longuet-Higgins (Proc. R. Soc. Lond. A, vol. 457 (2006), 2001,
pp. 495–510), are analytically examined and put in a form more suitable for practical
applications. The utility of this approach is its simplicity. The Lagrangian is a low-
order polynomial in the Fourier coefficients, leading to equations of motion that are
correspondingly of low degree. The structure of these equations is examined, and the
existence of solutions is considered. To gain intuition about the system of equations,
a truncated model is first examined. Linear stability analysis is performed, and the
evolution of the fully nonlinear system is discussed. The theory is then applied to fully
resolved permanent progressive deep-water waves and a simple method for finding
the eigenvalues and eigenvectors of the normal modes of this system is presented.
Potential applications of these results are then discussed.
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1. Introduction
Nonlinear surface wave models are a powerful tool for studying complex wave

scenarios, and in particular for investigating the properties of steep and overturning
waves. An improved description of the dynamics of surface water waves, and their
behaviour under these nonlinear conditions, is crucial for a better understanding of air–
sea interaction processes (Melville 1996). Nonlinear surface waves pose a formidable
theoretical problem, and analytical studies of weakly nonlinear waves have led to a
better understanding of water wave phenomena, but these results are limited by their
restriction to weak nonlinearities. That is, many of these theoretical predictions are
far outside of their region of validity as wave breaking is approached and during the
subsequent breaking event. For this reason, numerical models of surface waves can
provide insight into the physics of highly nonlinear waves processes. In this paper we
derive, and put in a form more suitable for numerical applications, the model of Balk
(1996), based on a Lagrangian for deep-water surface gravity waves.
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896 A7-2 N. Pizzo

The pioneering study of Longuet-Higgins & Cokelet (1976) numerically integrated
the equations of motion for irrotational inviscid deep-water surface gravity waves,
allowing for the systematic examination of properties of waves up to and past the
point of overturning. The method employed by Longuet-Higgins & Cokelet (1976, see
also Dold 1992) used a Green’s identity to solve Laplace’s equation, which was then
used to time step the velocity potential and the free surface displacement. This scheme
is a mixed Eulerian–Lagrangian approach, with particles on the free surface serving
as the dependent variables of the system. Additionally, this method is advantageous
because the points tend to cluster around the regions of highest curvature, so that
one can resolve wave overturning with relatively few surface points.

The method of Balk (1996) takes a different, variational, approach to describing two
dimensional surface gravity waves. At each point in time, the domain is conformally
mapped to a periodic lower half-plane in the complex domain. The geometry of
this domain makes solving Laplace’s equation trivial and the governing equations
can then be written as a set of coupled low-order polynomial ordinary differential
equations in the dependent variables, which are Fourier coefficients of the free surface
displacement.

Variational models have proven to be particularly useful in fluid mechanics (Salmon
1988). This is due to several reasons, including their succinctness, the ability to find
conservation laws (in particular for truncated models where conservation laws are not
always straightforward to derive) and the freedom to choose coordinate systems to
optimize simplicity. Furthermore, a variational approach allows for a priori knowledge
of the necessarily truncated integrals of motion used as basic tests on the fidelity of
the numerical model. These benefits motivated a closer inspection of Balk’s model.

Although there are currently a number of different analytical and numerical
approaches to studying surface waves, Balk’s approach is examined here because of
its essential simplicity. For example, a common technique is to formulate the water
wave equations of motion in terms of a Hamiltonian (Zakharov 1968). However,
in this method, a Taylor series around the mean water level is performed, and
subsequently an infinite series is needed to describe the kinetic energy. Conformal
mapping techniques help alleviate this problem, and this has been examined in detail
by, for example, Fornberg (1980), Tanveer (1991) and Fokas & Nachbin (2012).
However, in all of these approaches, sophisticated tools, or considerable algebraic
complexity, is necessarily introduced. For practical (i.e. numerical) applications then,
a straightforward method is desirable. Balk’s relatively unexploited work provides this
framework. Longuet-Higgins (2000, 2001) recognized the utility of such an approach,
and applied this framework to the study of standing waves. This motivated us to
extend the work of Longuet-Higgins, and derive the equations of motion for the more
general system.

In this paper, the scheme of Balk (1996, hereinafter referred to as Balk) is derived
from Hamilton’s principle, applied to the action describing irrotational inviscid water
waves. This is advantageous as one knows the form of the conserved quantities (e.g.
energy, mass and momentum) when numerical approximations are necessarily applied.
Furthermore, the governing equations are found to be a set of coupled lower-order
polynomial ordinary differential equations, making the numerical implementation
straightforward (Longuet-Higgins 2000). This also the facilities the discussion of
various orders of approximation. Significantly, normal modes of steep Stokes waves
are derived in this framework, facilitating analytic and numerical examination of the
geometry and kinematics of steep and focusing waves (Deike, Pizzo & Melville 2017;
Pizzo 2017). The scheme presented here will be used in a subsequent paper to analyse
the nonlinear stability of steep Stokes waves (Longuet-Higgins & Dommermuth 1997).
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Theory of surface gravity waves derived from a Lagrangian 896 A7-3

The outline of this paper is as follows. First, in § 2 we provide a derivation of the
model of Balk. In § 3 the equations are examined. Next, in § 4 we look at a truncated
model, with only one spatial mode. In § 5, the linear stability of Stokes waves is
examined. The results are then discussed in § 6.

2. Derivation of the equations of Balk
In this section we derive the governing equations for irrotational inviscid surface

gravity waves in a conformally mapped reference frame. This formulation has a
number of distinct advantages, including the ability to model wave overturning, a
knowledge of the truncated properties (a necessary feature of any numerical model)
of the waves (e.g. energy, momentum), and a relatively straightforward recipe for
numerical implementation. Although the model is algebraically intensive, the tools
needed to derive these results are relatively simple (cf. the boundary integral methods
of Longuet-Higgins & Cokelet (1976) and Dold & Peregrine (1986)). Instead of
following Balk directly, we make use of some results from Dyachenko et al. (1996)
and show how this approach leads to a more natural derivation of the governing
equations originally found by Balk.

To this end, we consider irrotational two-dimensional inviscid flow in a fluid of
infinite depth with a free surface. Density and the gravity constant are set to 1 and
the flow is assumed to be 2π periodic in the x-coordinate.

The domain in the complex plane of the fluid is given by z= x+ iy, which can be
considered to be the conformal image of the lower half-plane described by ζ = ξ + iκ
(these variables are time dependent, but this is not explicitly written now for clarity
of presentation).

The transformation from the (ξ , κ) plane to the (x, y) plane is given by
z(ζ ) = x(ξ , κ) + iy(ξ , κ). The velocity of fluid w = u + iv is given by the complex
potential f (z) = ϕ(x, y) + iΨ (x, y) (here ϕ and Ψ represent the velocity potential
and streamfunction, respectively, and we assume they satisfy the condition v→ 0 as
y→−∞). That is,

w∗ =
df
dz
=

(
dC
dζ

)(
dz
dζ

)−1

, (2.1)

where C(ζ )= a(ξ , κ)+ ib(ξ , κ) is the complex potential in the ζ plane and ∗ denotes
the complex conjugate. The surface of the fluid is going to be the image of the real
axis in the ζ -plane, i.e.

X(ξ)≡ x(ξ , 0), Y(ξ)≡ y(ξ , 0), (2.2a,b)

and the surface values of the velocity potential and streamfunction are

A(ξ)≡ a(ξ , 0), B(ξ)≡ b(ξ , 0). (2.3a,b)

We note that {X, Y, A, B} completely determine the state of the fluid. Furthermore,
Balk notes that knowledge of {Y(ξ), B(ξ)} are sufficient to completely characterize
the fluid, since the boundary values at κ = 0 of the real parts of analytic functions in
the lower half-plane can be found from the imaginary parts via the Hilbert transform.

Recall, in the x–y plane, we have from Zakharov (1968, see also Miles 1977) that
the action for water waves can be written as

S=
∫
ψηt −

(∫ η

−∞

1
2
(∇φ)2 dy+

1
2
η2

)
dx dt, (2.4)

where ψ = φ(x, η, t).
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896 A7-4 N. Pizzo

Now, from the chain rule the time derivative of the free surface η can be rewritten
in terms of the conformal variables as (cf. Dyachenko et al. 1996, equation (2.14))

ηt dx =
(

dY
dt

dX
dξ
−

dX
dt

dY
dξ

)
dξ

= ẎX′ dξ − ẊY ′ dξ, (2.5)

where dots and primes over the summation symbol represent differentiation with
respect to time and ξ , respectively. Therefore, this term in the action becomes∫

ψηt dx=
1

2π

∫ 2π

0
A(ẎX′ − ẊY ′) dξ . (2.6)

Next, the kinetic and potential energy densities, per unit wavelength, can be written
as

V =
1
2

∫
η2 dx=

1
2

1
2π

∫ 2π

0
Y2X′ dξ, (2.7)

while the kinetic energy density is given by (via a Green integral identity)

T =
1
2

∫
((αx)

2
+ (αy)

2) dy dx=−
1
2

1
2π

∫ 2π

0
AB′ dξ . (2.8)

Finally, exploiting the analyticity of C, we can use the Cauchy–Riemann equations to
rewrite (2.4) as

S=
∫ tb

ta

(
1

2π

∫ 2π

0
A(ẎX′ − ẊY ′)−

1
2

AB′ −
1
2

Y2X′ dξ
)

dt, (2.9)

with the time interval (ta, tb) chosen so that the dependent variables are fixed at these
times.

Now, variations of S with respect to A give

B′ = (ẊY ′ − ẎX′), (2.10)

which is precisely the kinematic boundary condition, in the conformally mapped
coordinates (equation (2) in the paper of Balk). The constraint that mass is conserved
is the condition

d
dt

∫
η dx=

d
dt

1
2π

∫ 2π

0
YX′ dξ = 0, (2.11)

so that taking the constant of integration to be 0, corresponding to the mean water
level being at y= 0, we find

1
2π

∫ 2π

0
YX′ dξ = 0, (2.12)

which is equation (3) in Balk.
Substituting (2.10) into (2.9) we find that the action becomes

S=
∫ tb

ta

T − V dt, (2.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.312


Theory of surface gravity waves derived from a Lagrangian 896 A7-5

with the constraint given in (2.12). In the derivation given above, the constraints on
the system enter naturally by a change of variables in the action, whereas in Balk’s
derivation, he simply imposes these conditions.

Note, a priori there is no reason that the Lagrangian should be the difference of
kinetic and potential energies (e.g. see (2.4)) in an Eulerian framework, which has
led to significant confusion in the literature (see, for example, the discussion in Luke
(1967) and Salmon (1988)). However, both Balk’s original formulation and equation
(8) in Luke (1967) constrain the system to obey conservation of mass, the kinematic
boundary condition, and the condition of no flow at the bottom. When these conditions
are met, then the Lagrangian for water waves may be set equal to the difference of
kinetic and potential energies (see the discussion in Luke (1967)).

Conservation of mass can explicitly be built into the Lagrangian by exploiting the
periodicity of the flow in the x-direction. This property implies the following Fourier
expansions:

X(ξ , t)+ iY(ξ , t)= ξ +
∞∑

k=−∞

(Xk(t)+ iYk(t))e−ikξ , (2.14)

and

A(ξ , t)+ iB(ξ , t)=
∞∑

k=−∞

(Ak(t)+ iBk(t))e−ikξ , (2.15)

where we also must have Y−k = Y∗k , X−k = X∗k , A−k = A∗k, B−k = B∗k for {X, Y, A, B} to
be real. The Hilbert transform then implies (k 6= 0)

Xk = iσkYk, Ak = iσkBk, (2.16a,b)

where σk= (1, 0,−1) for (k> 0, k= 0, k< 0), respectively. This gives us relationships
between the real and imaginary parts of the conjugate pairs. We note explicitly

X = ξ +
∞∑
1

2Re[Yk] sin kξ − 2Im[Yk] cos kξ, (2.17)

Y = Y0 +

∞∑
1

2Re[Yk] cos kξ + 2Im[Yk] sin kξ, (2.18)

ξ ∈ (0, 2π), (2.19)

where Re/Im stand for the real and imaginary parts, respectively.
Using the kinematic boundary condition, i.e. equation (2.10), we find (for n 6= 0)

Bn =
i
n

(
−Ẏn +

∑
j+k=n

ẎjYkk(σj − σk)

)
. (2.20)

The complex potential is defined up to an arbitrary constant, so that without loss of
generality, we may set A0 = B0 = 0.

Substituting the Fourier expansions of {A,B} into the equation for the kinetic energy,
i.e. equation (2.8), we find

T =
1
2

∞∑
k=−∞

|k|BkB−k. (2.21)
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896 A7-6 N. Pizzo

Similarly, with these expansions the potential energy is found directly from (2.7) and
(2.14) (see also Longuet-Higgins 2000)

V =
1
2

∞∑
k=−∞

YkY−k +
1
2

∑
k+j+l=0

|l|YkYjYl. (2.22)

The Lagrangian, L= T − V , can now be written as

L=
1
2

∞∑
k=−∞

|k|BkB−k −
1
2

∞∑
k=−∞

YkY−k −
1
2

∑
k+j+l=0

|l|YkYjYl, (2.23)

where Bk is given in (2.20) and we choose Y0 to satisfy the constraint given in (2.12),
namely,

Y0 =−

∞∑
k=−∞

|k|YkY−k. (2.24)

The two most obvious conserved quantities associated with this Lagrangian are the
x-momentum (associated with phase shift invariance), defined as

P =
∫
βy dx dy=

1
2π

∫ 2π

0
BX′ dξ =

∞∑
k=−∞

|k|BkY−k, (2.25)

and energy (associated with time shift invariance) given by

H ≡ T + V =
1
2

∞∑
k=−∞

|k|BkB−k +
1
2

∞∑
k=−∞

YkY−k +
1
2

∑
k+j+l=0

|l|YkYjYl. (2.26)

Next, the governing equations are found by varying the Lagrangian (2.23) with respect
to Yk. This yields the Euler–Lagrange equations for each mode k

d
dt

(
∂L
∂Ẏk

)
=
∂L
∂Yk

. (2.27)

For partial wave solutions, the infinite sums used in the Fourier expansion of the
dependent variables will be truncated at a finite N, so that we will have a truncated
Lagrangian LN = TN − VN . This is advantageous since we know the conserved
quantities associated with this truncated Lagrangian before deriving the dynamical
evolution equations (see Salmon (1988) for a thorough discussion).

3. Equations of motion
In order to better understand the governing equations, we extend the work of

Longuet-Higgins (2000, 2001) from the special case of standing waves to the more
general equations of motion.

First, from (2.21) we have for n> 0,

inBn = · · · + 2|n+ 2|Yn+2Ẏ−2 + 2|n+ 1|Yn+1Ẏ−1

+ |n|YnẎ0 + Ẏn + 2|1|Y−1Ẏn+1 + 2|2|Y−2Ẏn+2 + · · · , (3.1)
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Theory of surface gravity waves derived from a Lagrangian 896 A7-7

and similarly for n< 0,

inBn=· · ·+2|2|Y2Ẏn−2+2Y1Ẏn−1+ Ẏn+|n|YnẎ0+2|n−1|Yn−1Ẏ1+2|n−2|Yn−2Ẏ2+· · · .

(3.2)
By substituting these two expressions into (2.21) we find that we can write the kinetic
energy as

T =
N∑

m=1

(
N∑

k=−N

PmkẎk

)(
N∑

l=−N

P−mlẎl

)
, (3.3)

where

Pmn =
2
√
[m]

( f (m− n)|m− n|Ym−n − |mn|YmY−n). (3.4)

The operator [∗] is defined as

[ j] =
{
| j| : j 6= 0,
1 : j= 0,

and

f (m− k)=
{

0 : Sign(k)= Sign(m− k),
1 : otherwise,

and Yk ≡ 0 when k > N for N the number of Fourier modes in our model, i.e. the
resolution. Note, by construction, the first term in parentheses in (3.3) is the complex
conjugate of the second term.

By using these definitions, and reversing the order of summation, the kinetic energy
can be rewritten as

T =
N∑

k=−N

N∑
l=−N

QklẎkẎl, (3.5)

where

Qkl =

N∑
m=1

PmkP−ml. (3.6)

That is, the matrix Qkl is related to the column by column multiplication of two P
matrices.

We now use these definitions to solve for the equations of motion. Substituting the
kinetic energy into the first term of equation (2.27) we find

d
dt

(
∂T
∂Ẏn

)
=

d
dt

(
∂

∂Ẏn

)∑
k

∑
l

QklẎkẎl =
d
dt

(∑
k

QknẎk +
∑

l

QnlẎl

)

=

∑
k

QnkŸk +
∑

l

QnlŸl +
∑

k

dQkn

dt
Ẏk +

∑
l

dQnl

dt
Ẏl. (3.7)

Next, we note that
dQkn

dt
=

∑
j

∂Qkn

∂Yj
Ẏj, (3.8)
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896 A7-8 N. Pizzo

which implies that (3.7) becomes∑
k

QnkŸk +
∑

l

QnlŸl +
∑

k

∑
l

∂Qkn

∂Yl
ẎlẎk +

∂Qnl

∂Yk
ẎlẎk. (3.9)

Finally, the second term in the Euler–Lagrange equation, i.e. equation (2.27), is given
by

∂T
∂Yn
=

∑
k

∑
l

∂Qkl

∂Yn
ẎkẎl. (3.10)

Putting this together, we see that our governing equations are now of the form∑
k

QknŸk +
∑

l

QnlŸl +
∑

k

∑
l

(
∂Qkn

∂Yl
ẎlẎk +

∂Qnl

∂Yk
ẎlẎk −

∂Qkl

∂Yn
ẎkẎl

)
−
∂V
∂Yn
= 0,

(3.11)
for each n= (±1,±2, . . .±N).

Further simplifications of these equations can be made by realizing that

∂Qkl

∂Yn
=

∂

∂Yn

∑
m

PmkP−ml =
∑

m

∂Pmk

∂Yn
P−ml + Pmk

∂P−ml

∂Yn
. (3.12)

From the definition of Pij, i.e. equation (3.4), we find that

∂Pmk

∂Yn
=

2
√
[m]

f (m− k)|m− k| : m− k− n= 0,
−|mk|Ym : k+ n= 0,
−|mk|Y−k : m− n= 0.

Next, we consider the potential energy term, which, from equation (2.7), can be
written as

2V = −4

(
∞∑

n=1

|n|YnY−n

)2

+ 2
∞∑

n=1

YnY−n

+ 8
∞∑

i=−∞

∞∑
j=−∞

∞∑
k=−∞

F(i, j, k)
YiYjYk

8[ j][k]
, (3.13)

where

F(i, j, k)=
{
|ijk| : i+ j+ k= 0 and i, j, k 6= 0,
0 : otherwise.

Finally, we define

Snkl =

(
∂Qlk

∂Yn
−
∂Qnl

∂Yk
−
∂Qln

∂Yk

)
, (3.14)

so that the governing equation becomes∑
l

(Qnl +Qln)Ÿl =
∑

l

∑
k

SnklẎkẎl +
∂V
∂Yn

(n=±1,±2, . . .). (3.15)
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Theory of surface gravity waves derived from a Lagrangian 896 A7-9

Note, this can be written more concisely as

QnlŸl − SnklẎkẎl −
∂V
∂Yn
= 0, (n=±1,±2, . . .)= 0, (3.16)

where
Qnl =Qnl +Qln, (3.17)

and Einstein summation is assumed. Together with initial conditions at time t= 0 for
Yn and Ẏn, equation (3.16) are the complete equations for surface gravity waves written
in a compact form.

Analytically, we may also check that our equations reduce to those of Longuet-
Higgins (2000), for the case where all Yk are real, which corresponds to standing
waves. It is a simple matter to show that under the condition that Y−k = Yk, and by
mapping into the coordinates used in that work, namely an= 2|n|Yn with a0= 1, then
the entries of P become

Pmn→
1
2

1
√
|m||n|

(an−m + am+n − aman). (3.18)

With this identification, the rest of our variables can easily be shown to be equivalent
to those of Longuet-Higgins (2000).

4. Example: N = 1

In this section we consider a simple example where only one mode is present.
We perform linear stability analysis of permanent progressive waves, as this system
illustrates many properties of the large N Stokes waves to be considered in the next
section. Furthermore, we examine properties of general solutions to this system of
equations.

4.1. Governing equations
To begin, we let α = Y1 and β = Y−1, to find

T = [(1− 2αβ)α̇ − 2α2β̇][(1− 2αβ)β̇ − 2β2α̇], (4.1)

and
V = αβ − 2(αβ)2. (4.2)

The Euler–Lagrange equations for (α, β) then imply

Lα̈ +Mβ̈ =−2[Lαα̇2
+ 2Lβ α̇β̇ + (2Mβ −Nα)β̇

2
] −C1, (4.3)

Mα̈ +Nβ̈ =−2[(2Mα − Lβ)α̇2
+ 2Nαα̇β̇ +Nβ β̇

2
] −C2, (4.4)

where

L= 4αβ3
− 2β2, (4.5)

M = 1
2 + 4α2β2

− 2αβ, (4.6)

N = 4α3β − 2α2, (4.7)

and
C1 = 4αβ2

− β, C2 = 4α2β − α. (4.8a,b)
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Note, these governing equations can be rewritten as[
L M
M N

] [
α̈

β̈

]
=

[
F1
F2

]
, (4.9)

where F1, F2 are the right-hand sides of equations (4.3) and (4.4), respectively. We
define the coefficient matrix Q as

Q=
[

L M
M N

]
. (4.10)

Now, equation (4.9) has solutions provided that Q is invertible. Therefore, there is
some interest in looking at how the wave evolution breaks down as det(Q)→ 0. To
this end, the determinant of Q is

det(Q)= LN −M2
= 0 H⇒ αβ = 1/4. (4.11)

The reality condition on the Fourier components mandates that α∗= β, so that letting
α=A+ iB= β∗, this condition implies that (A,B) must lie within a circle of radius
1/2, i.e.

A2
+B2 < 1/4. (4.12)

In the case B = 0, we have the result of the N = 1 case for standing waves, as
discussed by Longuet-Higgins (2000).

4.2. Permanent progressive waves
A simplified class of solutions to equation (4.9) are those of the permanent progressive
type. That is, we choose

α = α0eict, β = α0e−ict, (4.13a,b)

where c is a to be determined phase velocity of the waves. When this ansatz is made,
we find from (4.9) the following relationship between c and α0:

c2
= 1− 4α2

0 . (4.14)

For α0 small we approach the infinitesimal sinusoidal wave solution we expect from
linear theory for deep-water surface gravity waves (Phillips 1977). As α0→ 1/2, the
free surface forms a cusp (note this is also when the coefficient matrix Q becomes
singular), taking the form of a cycloid (see figure 1). This may also be seen as the
point where Xξ (ξ =π)= Yξ (ξ =π)= 0.

The total energy of these waves T + V is conserved, and takes the form

T + V = 2α2
0(1− 3α2

0). (4.15)

Similar to Stokes waves (Schwartz 1974; Longuet-Higgins 1975), the energy does not
monotonically increase with α0. The energy maximum occurs when α0 = 1/

√
6. This

has implications for the stability of the system, as is discussed below.
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FIGURE 1. Permanent progressive solutions to the N = 1 equations of motion. For larger
values of α0, the waves become peakier at the trough and flatter at the crests. For α0→

1/2, the solution forms a cusp so that there is a limiting wave in this system.

4.3. Normal mode stability analysis
The linear stability analysis of this system is performed by letting

Y1 = (α1 + εA(t))eict, Y−1 = (α1 + εA∗(t))e−ict, (4.16a,b)

where ε � 1 is an ordering parameter. Applying Hamilton’s principle to the
Lagrangian at second order in ε, i.e. O(ε2), we find

MÄ+ 2icKȦ+ νCA= 0, (4.17)

where (M, K, C) are 2 × 2 matrices and A = (A, A∗). Defining ν = −4α2
0 and µ =

ν(1− 2α2
0), the matrices are given by

M=
[
µ 1+µ

1+µ µ

]
, K=

[
0 1
−1 0

]
, C=

[
1 1
1 1

]
. (4.18a−c)

Note, M and C are symmetric while K is skew–symmetric.
We now let A = A0eλt, where λ is the normal mode eigenvalue and (A0, A∗0) the

corresponding eigenvector. The eigenvalues are found by requiring that the determinant
of the left-hand side of equation (4.17) vanishes. That is

det
[

µλ2
+ ν λ2(1+µ)+ ν + 2cλ

λ2(1+µ)+ ν − 2cλ µλ2
+ ν

]
= 0. (4.19)

This implies that the eigenvalues are given by

− λ2
=

4(1− 6α2
0)

(1− 4α2
0)

2
=

4(1− 6α2
0)

c4
. (4.20)

We see immediately that the eigenvalues are real when

α0 >
√

1/6, (4.21)

which is equivalent to the point at which the energy becomes a maximum. This is in
agreement with existing studies on Stokes waves (Saffman 1985; MacKay & Saffman
1986).

The corresponding eigenvectors are found by solving equation (4.17) with the
eigenvalues substituted in. These are unique up to a rescaling by a complex constant.
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FIGURE 2. Potential Π(ρ) when Λ > 0 (black line) and Λ < 0 (red line), where Λ is
defined in (4.28) and ρ= |α|. For the case of Λ> 0, the solutions are stable for all times.
When Λ< 0, solutions may be unstable, leading to the formation of a cusp in the free
surface as ρ→ 1/2.

4.4. General solutions
In this subsection we consider more general solutions to (4.3) and (4.4). To this end,
we consider two integrals of motion: the total energy H, i.e. equation (2.26) and the
momentum P , i.e. equation (2.25). These take relatively simple form when we let

α = ρ(t)eiθ(t)
= β∗. (4.22)

Then, we have
(1− 4ρ2)2ρ̇2

+ ρ2(1+ θ̇ 2
− 2ρ2)=H, (4.23)

and
2ρ2θ̇ =P . (4.24)

From the last equation we find θ̇ as a function of ρ, which may be substituted
into (4.23) to give

(1− 4ρ2)2ρ̇2
+

P2

4ρ2
+ ρ2(1− 2ρ2)=H, (4.25)

which may be rearranged to find
1
2 ρ̇

2
+Π(ρ)= 0, (4.26)

where

Π(ρ)=
1
2

1
(1− 4ρ2)2

(
P2

4ρ2
−H + ρ2(1− 2ρ2)

)
. (4.27)

Equation (4.26) describes a particle trapped in a potential well, immediately yielding
insightful qualitative information about the evolution of the amplitudes. Examples of
potentials are shown in figure 2.

For ρ small we see the potential goes to positive infinity, as P2 > 0. For ρ→ 1/2,
the sign of the potential is given by the sign of

Λ=P2
−H + 1/8. (4.28)

When Λ< 0, solutions might lead to cusp formation as the value of ρ can approach
1/2.
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5. Stokes waves
The normal mode linear stability of Stokes waves has been studied in detail by, for

example, Longuet-Higgins (1978a), McLean et al. (1981), Tanaka (1983) and MacKay
& Saffman (1986). Here, we present an alternative derivation of the linear stability
analysis with the added benefit that the system of equations takes a particularly simple
form and is general. That is, once the Stokes coefficients (this may, for instance, be for
class M Stokes waves (Saffman 1980)) are determined, the stability analysis follows
readily by solving an eigenvalue problem with prescribed matrix entries which are
low-order polynomials in the dependent variables, making this approach particularly
suitable for numerical implementation.

5.1. Stokes waves
We now consider permanent progressive solutions to the system where N is taken to
large enough to properly resolve the physical scenario in question.

To this end, we note that Stokes wave solutions to our system of equations take the
simple form (Balk 1996)

Yk = αkeickt, (5.1)

so that Bk = cYk. The Lagrangian can then be written as

L=−
c2Y0

2
+ V, (5.2)

with V given by equation (2.7). Therefore, the system governing the coefficients αk is
(Longuet-Higgins (1985), see also Longuet-Higgins (1978c))

Fn = αn(1+ nα0)+
1
4

∑
(|n| + 2| j|)αjαk, (5.3)

for Fn = 0. There are N + 1 equations here, so we must prescribe a parameter to
close the system. Generally, the phase speed c has been used. However, c does not
increase monotonically with increasing slope and contains critical points, which leads
to loss in numerical accuracy (see § 5 of Longuet-Higgins (1985)). Alternatively, a
variety of other parameters which do increase monotonically with increasing ak have
been proposed. Following Longuet-Higgins (1985), we take the parameter Q = 1 −
q2

crest, where qcrest is the particle speed at the crest. From Bernoulli’s equation, we have
Q= 1+ Y(0)= 1+ 1

2α0 + α1 + α2 + · · · . To solve the system of equations, i.e. (5.3),
we employ a Newton–Raphson-type method.

5.2. Linear stability analysis
To find the form of the linear normal modes, we next let

Yk = (αk + εAkeλt)eikct, (5.4)

where ε is a small parameter, λ is the normal mode eigenvalue and Ak are the
coefficients of the eigenvector.

The Lagrangian to O(ε2) becomes

L=
1
2

N∑
−N

|k|BkB−k +
1
2

Y2
0 −

N∑
1

YkY−k −
1
2

′∑
j+k+l=0

|l|YjYkYl, (5.5)
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where

Bk =
i
k

(
−Ẏk − Ẏ0Yk|k| +

′∑
ẎjYll(σj − σl)

)
, (5.6)

and primes represent sums over all indices except 0. Explicitly, the mean surface
displacement is given by

Y0 =−2
N∑
1

|k|α2
k − ε

N∑
−N

|k|αkA−k − ε
2

N∑
−N

|k|AkA−k, (5.7)

so that its time derivative is

Ẏ0 =−ε

N∑
−N

|k|αkȦ−k − 2ε2
N∑
−N

|k|ȦkA−k. (5.8)

Substituting these relationships into the Bk term, we find

Bk = cαk +
iε
k

(
−(Ȧk + ickAk)+ αk|k|

N∑
−N

|l|αlȦ−l (5.9)

+

∑
[2ic(αjAl + αlAj)+ (αjȦl + αlȦj)] jl(σj − σl)

)
(5.10)

+
iε2

k

(
−Ẏ (2)0 |k|αk − Ẏ (1)0 |k|Ak +

′∑
ȦjAll(σj − σl)

)
, (5.11)

where superscripts imply we are taking terms of that order from the expansion.
This is sufficient to define the Lagrangian. Applying the Euler–Lagrange equations,

we find that the governing equation takes the form (cf. the discussion for the N = 1
case in § 4) of a quadratic eigenvalue problem (Tisseur & Meerbergen 2001). Namely,
we have

(λ2M+ λC+K)A= 0, (5.12)

where
γn,m =

i
n
δ−n,m +

i
n
α−n−m(n+m)(σm − σ−n−m)− 2iσnαn|m|αm, (5.13)

for δm,n the Kronecker delta function, while

Mn,m =−iσnγn,m + 2i|n|αn

(
N∑
−N

lαlγl,m

)
+ i

N∑
−N

σlαl−n(l− n)γl,m(σn − σn−l), (5.14)

Cn,m = 2icαn+mσn+m(σm − σn)G(n,m)+ 2icn|m|αnαm + c|n|γn,m

+ icσnδ−n,m + icσ−m(n+m)αn+m(σn − σ−n−m)G(n,m), (5.15)

Kn,m = (1− c2
|n|)δ−n,m − 4

(∑
1

lα2
l

)
|m|δn,−m

+ − 4|nm|αnαm + (|n| + |m| +G(n,m)|n+m|)αn+m, (5.16)
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FIGURE 3. A comparison of the eigenvalues squared of Tanaka (1983) (red dashed-dot
line) versus the prediction given by Balk’s system, i.e. equation (5.12), shown by the black
dots. The change in (minus) energy, −E, with respect to ak is shown by the blue dashed
line.

where G(n, m) = 1 if −N − m 6 n 6 N − m and 0 otherwise. The entries of
these matrices are low-order polynomials in the Stokes coefficients, making them
particularly suitable for numerical implementation. Furthermore, these results are
general in the sense that one may examine subharmonic instabilities (Longuet-Higgins
1978b) by considering class M, for M a positive integer, Stokes waves (Saffman 1980;
Zufiria 1987).

To validate these algebraically complex computations, the eigenvalues corresponding
to superharmonic perturbations of steep Stokes waves are computed from this method
and are shown on top of the previous computations due to Tanaka (1983) in figure 3.
Agreement between the predictions of equation (5.12) and Tanaka’s results are found.
Furthermore, the change in (minus) total energy versus slope, ak, is shown in the plot,
showing that the change in stability corresponds to the critical point in the energy.

6. Conclusion
In this paper we have transformed the equations of Balk into a form more suitable

for theoretical and numerical examination. Furthermore, we have derived the equations
of motion that result from Balk’s Lagrangian. This represents a generalization of the
work done by Longuet-Higgins (2000, 2001) for standing waves. The system of
equations are found for independent coefficients Yn(t), n= 1, 2 . . . , with partial wave
solutions found by truncating the system at n = N. Solutions exist as long as the
matrix Q, i.e. equation (3.17), is invertible.

A one mode example was considered, and the stability of permanent progressive
waves was examined. Linear stability conditions were derived, and the evolution
of the fully nonlinear system was considered. The linear stability of Stokes waves
(here the number of modes N was increased until convergence was found) was then
inspected. A general system of equations to derive the eigenvalues was presented,
and comparison was made to the values found by Tanaka (1983).
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The main advantage of Balk’s approach is its simplicity, allowing for easy
numerical implementation. The variational method allows for a priori knowledge of
the necessarily truncated integrals of motion present during numerical implementation,
providing additional numerical benchmarks to test the fidelity of the integration.

The spectral formulation considered here suffers from the usual drawback of slow
series convergence when singularities in the upper half-complex plane approach the
free surface (Fornberg 1980; Baker & Xie 2011). However, this may be overcome
to a certain extent through conformal mapping techniques (e.g. Tanaka 1983), which
increase the resolution in these regions of high curvature, effectively moving the
singularities further away from the free surface, accelerating the rate at which the
Fourier series converge. More formally, following Tanveer (1991), one may study
the singularities in the unphysical plane to improve numerical efficiency. Related
problems, such as the examination of the Rayleigh–Taylor and Richtmyer–Meshkov
instability, may be studied in a similar fashion (Baker, Meiron & Orszag 1980;
Tanveer 1991).

An application of these equations to understanding the nonlinear evolution of the
normal modes of steep Stokes waves (Longuet-Higgins & Dommermuth 1997; Bridges
2004) will be discussed in a future paper.
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