Diffraction-Contrast Analysis of Dislocation Loops in BCC Alloys

J. Bentley

Metals & Ceramics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6064

Soon after the first observations of dislocations by transmission electron microscopy (TEM), dislocation loops in MgO were analyzed by Groves and Kelly and their character determined as interstitial; some months later, after Mike Whelan pointed out the extra 180° rotation between image and diffraction pattern, the loop character was changed to vacancy [1]. It can be argued that loop analysis has been in a continuing state of confusion ever since. In the first of five seminal papers on irradiation damage in molybdenum, Maher and Eyre described in detail the analysis of non-edge perfect dislocation loops, including the concept of "safe orientations" where contrast is in the same sense as that of a pure edge loop [2]. Needless to say, some confusion followed, even in print [3].

Dislocation loop analysis was an integral part of a TEM characterization study of Mo neutronirradiated at elevated temperatures to fluences of 1 and 3 x 10^{20} fission neutrons.cm⁻² [4]. With one exception, all clearly resolved loops were interstitial in character for materials irradiated at \geq 475°C. Remarkably, in TZM alloy (Mo-0.5%Ti-0.1%Zr) irradiated at 750 and 850°C high concentrations of small (<20 nm diameter) vacancy loops with Burgers vector $\mathbf{b} = a/2 < 111 > \text{constituted the dominant}$ component of the damage microstructure. The 100-kV diffraction-contrast analyses followed a procedure derived from Maher and Eyre [2] that accounted for foil normals near <011>. All dislocation loops with $\mathbf{b} = a/2 < 111$ were imaged with diffracting vector $\mathbf{g} = \pm 200$ at a beam direction (image-plane normal) $\mathbf{B} = [023]$. Images recorded with $\mathbf{g} = 01\overline{1}$ at $\mathbf{B} = [155]$, $\mathbf{g} = 1\overline{2}1$ at $\mathbf{B} = [135]$ and $\mathbf{g} = 12\mathbf{1}$ at $\mathbf{B} = [137]$ were used to identify loops with $\mathbf{b} = \pm a/2[111]$ and $\pm a/2[111]$ from $\mathbf{g}.\mathbf{b} = 0$ invisible or residual contrast. Both $+\mathbf{g}$ and $-\mathbf{g}$ diffracting vectors were used (with s_g constant and positive) so that the invariance in strength of contrast and position of images satisfying $\mathbf{g} \cdot \mathbf{b} = 0$ conditions could be confirmed. Diffracting vectors in safe orientations which gave $\mathbf{g}.\mathbf{b} = \pm 2$ conditions for the appropriate loops were used for inside/outside contrast analyses to determine the sense of **b** and thus the nature of the loop. For $\mathbf{b} = \pm a/2[111]$, $\pm \mathbf{g} = 310$ at $\mathbf{B} = [136]$ and for $\mathbf{b} = \pm a/2[111]$, $\pm \mathbf{g} = 310$ at $\mathbf{B} = [136]$ were used. Weak-beam dark-field images were also recorded for the in-side/outside $\mathbf{g}.\mathbf{b} = \pm 2$ analyses with $s_{<310>} = 2.4$ to 2.9 x 10⁻² Å⁻¹ (Ewald sphere intersecting the reciprocal lattice 1/4 to 1/2 of the distance from <620> to <930>). Outside contrast occurs for ($\mathbf{g}.\mathbf{b}$)s_g > 0, inside contrast for(g.b)s_g < 0. With b defined by the FS/RH perfect crystal convention, the positive dislocation direction as clockwise when viewed from above, and $\mathbf{n} = \mathbf{u} \mathbf{p} \mathbf{w} \mathbf{a} \mathbf{r}$ loop normal, for interstitial loops $\mathbf{n}.\mathbf{b} > 0$ and for vacancy loops $\mathbf{n}.\mathbf{b} < 0$. The presence of vacancy loops and their stability during post-irradiation annealing was rationalized on the basis of segregation of oversized Ti and Zr solutes to the dilated near-core regions, or through the formation of Ti-Zr-C complexes [4].

V-4%Cr-4%Ti has been of interest for the last decade as a candidate structural material for proposed fusion reactors. For a series of oxygen-doped alloys, annealing at 950°C resulted in the formation of large (diameter >1 µm), disk-shaped, TiC-rich Ti(C,O,N) precipitates ~2 nm thick on {001} [5]. The misfit normal to the habit gives rise to misfit dislocation loops. Diffraction-contrast analyses with $\pm g = <110>$ and <200> reveal that $\mathbf{b} \approx a<001>$, although the exact magnitude of \mathbf{b} is uncertain since displacement fringes are commonly present with $\mathbf{g} = <110>$ (figure 1). Since the loops are of pure edge type, no consideration of safe orientations is needed and inside/outside contrast analyses with $\mathbf{g}.\mathbf{b} = \pm 2$ are achieved with $\mathbf{g} = <112>$, as shown in figure 2. The loops have interstilial character, as expected from the bi-phase crystallography. The results are directly relevant to analysis of similar precipitates and secondary point-defect clusters in neutron-irradiated V-4%Cr-4%Ti. Even with the added complications of ferromagnetism, similar analyses of interstitial loops with $\mathbf{b} = a<100>$ were performed by Horton and Bentley on neutron-irradiated Fe and ion-irradiated Fe-10%Cr [6]. In summary, although fraught with potential pitfalls and seemingly countless opportunities for getting the wrong answer, traditional diffraction-contrast analysis still has much to offer for the characterization of dislocation structures, especially for point-defect clusters such as dislocation loops [7].

- 1. G.W. Groves and A. Kelly, Philos. Mag. 6 (1961) 1527; Philos. Mag. 7 (1962) 892.
- 2. D.M. Maher and B.L. Eyre, *Philos. Mag.* 23 (1971) 409.
- 3. C.M. van der Walt, Philos. Mag. 24 (1971) 999; D.M. Maher and B.L. Eyre, Philos. Mag. 26
- (1972) 1233; C.M. van der Walt, Philos. Mag. 26 (1972) 1237.
- 4. J. Bentley, PhD thesis, University of Birmingham, England (1974).
- 5. J. Bentley and B.A. Pint, Microsc. Microanal. 7(Suppl.2) (2001) 1246.
- 6. L.L. Horton et al., J. Nucl. Mater. 108/9 (1982) 222; J. Nucl. Mater. 103/4 (1981) 1085.
- 7. Research at the ORNL SHaRE User Facility (JB) supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Fig. 1. Disk-shaped TiC-rich Ti(C,O,N) precipitates on {001} in oxygen-doped V-4%Cr-4%Ti annealed at 950°C exhibiting misfit dislocation loop contrast. Pairs of **g.b** = 0 conditions with $\mathbf{g} = \pm 011, \pm 110, \pm 101$ and 200 ($\pm \mathbf{g}$ recorded but not shown) at $\mathbf{B} = [122], [223], [212]$ and [023], respectively, reveal that $\mathbf{b} \approx a < 001 > .$

Fig. 2. Same area as Fig. 1 showing $\mathbf{g.b} \approx \pm 2$ inside/outside contrast analyses with $\mathbf{g} = \pm \mathbf{1}2\mathbf{1}$, $\pm 21\mathbf{I}$ and $\pm \mathbf{1}\mathbf{I}2$ at $\mathbf{B} = [234]$ [146] and [243], respectively. The loops have interstitial character as expected from the bi-phase crystallography.

