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1. Introduction. Let us call an equational class (variety) K of
algebras permutable if and only if every pair of congruences on each
K-algebra is permutable. Similarly, we will call K modular (distributive)
if the congruence lattice of each K-algebra is modular (distributive).
Mal'cev [1] has characterized permutable equational classes by:

THEOREM. K is permutable if and only if there exists a term
(polynomial symbol), p, in three variables such that for every a, b,
in each K-algebra: (P1) p(a, a, b) = b

(P2) pla, b, b} = a

Jonsson [2] has characterized distributive equational classes by:

THEOREM. K is distributive if and only if there exists an n ¢ N,
the set of natural numbers, and a sequence dO, Ceey dn of terms in

three variables such that for every a, b, ¢ in each K-algebra:

1]

(D1) do(a, b, c)
(D2) di(a, b, a) = a(i=20,1,...,n),

a and d (a, b, ¢) = c,
n

(D3) di(a, a, b) = di+1(a’ a, b) (i even),
(D4) d.(a, b, b) = d. (a, b, b) (i odd).
i i+ —_—

In this note we give a similar characterization of modular equational
classes. We give definitions of n-modularity and n-distributivity that are
suggested by these theorems and show that 2-modularity is equivalent to
permutability and that n-distributivity implies (2n- 1)-modularity.

2. The characterization of modularity. For algebras @, 8, C,...,
we will use the respective upper case Latin letters A, B, C,... to
indicate the algebras' underlying set. For an algebra ¢ and x, yec A,
we let 6(x, y) be the smallest congruence relation on G that contains
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(%, y). To simplify notation in this paper, we use the same symbol for
a term and for its induced polynomials.

THEOREM 1. For an equational class K of algebras, the
following are equivalent:

(a) K is modular;

(b) There is a natural number n and a sequence {ml} (i=0,1,....

of terms in four variables such that for every K-algebra ¢ and all
a, b, c. de A

(M1) mo(a, b, ¢, d) = a and m (a, b, ¢, d) = d,
—_— n

(M2) mi(a, b, b, a) = a (i=20,1,...,n),

1

(M3) m_(a, b, b, d) m. (a, b, b, d) (i odd),
i i+l —_—

(M4) m.(a, a, d, d) = m., (a, a, d, d) (i even) .
i i+l I

Proof. Without loss of generality, we may assume K to be non-
trivial, i.e. containing at least one algebra with at least two elements.

(a) ~(b). Let C be an algebra with is K-freely generated by the
four element set {a, b, ¢, d} . We define congruence relations on C
by:

6 = 0(b,c), ¢ =26(ab)V 6(c,d), & = 6(a,d) v 8(b,c)

By (a) we have (a,d) e & A (U V (0 A 0)) = (b AY) V (& A 6). It follows
that there exists a natural number n and a sequence uo R u1, e, un in

C satisfying:

(1) u, = au = d,

(2) u o A O)u, (i odd),

(3) ui(d: A LlJ)\J.i_H (i even).

Since C is generated by {a, b, c, d} , there exists a sequence
mo, m1, . m_rl of terms in four variables such that

u = m(a, b, ¢, d) (i=0,1,2,...,n).
i i
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Since every homomorphism of the term algebra in four variables into a
K-algebra factors through C in such a way that the variables are mapped
to a, b, ¢, d respectively, it is enough to show that the above

identities hold in C for the free generators a, b, c, d.

(M1) follows easily from (1).

(M2): From (1), (2) and (3) above, it follows that mi(a, b, ¢, d) ¢ a

holds for all i=0,1, ..., n. This, together with a¢$ d and b ¢ c
gives us m.(a, b, b, a)é a. But the congruence ¢, restricted to the
1

subalgebra of C generated by {a, b} identifies rni(a, b, b, a) and a.
Therefore,

mi(a, b, b, a)=a (i=20,1,...,n),

(M3): For i odd, we get from (2) that mi(a, b, c, d) Grnl_H(a, b, ¢, d).
Since b 6 ¢, this gives mi(a, b, b, d) emiﬂ(a, b, b, d). Again, the

congruence relation 6 on the subalgebra of ¢ generated by {a, b, d}
identifies mi(a, b, b, d) and m_H(a, b, b, d). Therefore,
i

rni(a, b, b, d) = rniH(a, b, b, d) (i odd)

The proof of (M4) is similar.

(b) = (a): Let 6, ¢, ¢ be congruence relations ona K-algebra G
satisfying 6 < ¢ . We have to show (6 V ) Ad< 6 v (JA ¢). For
each ke N, let Ak = Yo 0o Yo...0080¢ (2k + 1 factors). Then

vae =U (M Ak). Hence it suffices to show that
keN
oM Ak < 6 V(pA ¢) for every ke N. We show this by induction over k.

For k =0, this is obvious. For every k, the relation Ak is

reflexive, symmetric and compatible with all operations. It follows
easily that it is also compatible with all polynomials on Q.

For k>0, then (a, d) e ¢/ A = ¢ M (Yo epAk) implies that

k+1
there exists elements b, ce A such that

a ¢ d, aAkb, b6c, cgd.
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Since 6 < ¢ and ¢ < Ak, we also have

Define u, = rni(a, b, ¢, d) (i=0,1,...,n). By (M1), a = u, and

u =d.
n

For i odd we have:

ui = mi(a, b, c, d) 6 mi(a, b, b, d) = miH(a, b, b, d) 6 us

and hence

(4) uiBuH_1 (i odd) .

For each i, we have

u ® mi(a, b, b, a) = a and a = mi(a, a, a, a) ¢ mi(a, a, d, d).
Therefore,
(5) u, ¢ mi(a, a, d,d) (i=0,1, ..., n).

. - A .
For 1 even, ui Ak mi(a, a, d, d) rni_H(a, a, d, d) . ui+1

By combining this with (5) we have

A = A
u ¢ M A mya, a dd) =m_ (2 a ddeN4 u

i (i even).

By induction hypothesis, ¢ (M) Ak < 06 V (A ¢) and this gives:

(6) u, 6 v(uA ¢) wy (i even).
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This, together with (4) yields

(a, d) e v(EVWag)) =08VIbASD)

which was to be proved.

3. A relation between permutability and modularity. We define an
equational class to be n-modular for some n ¢ N if there exists a
sequence of n +1 terms in four variables satisfying statement (b) in
Theorem 1. Clearly if K is modular, K is n-modular for some
n e N. Conversely, for any ne¢ N if K is n-modular then K is
modular.

THEOREM 2. An equational class is permutable if and only if it
is 2-modular.

Proof. If K is permutable, then by [1] there exists a term p in
three variables satisfying (P1) and (P2) in every K-algebra. We

define terms mg, m,, and m, in four variables by:

mo(a, b, ¢, d) = a,
m1(a, b, ¢, d) = p(a, p(a, b, c), d),
m2 (a, b, c, d) = 4.

(M1) is satisfied by definition, and:

m1(a, b, b, a) = p(a, p(a, b, b), a) = p(a, a, a) = a,
m1(a, b, b, d) = p(a, p(a, b, b), d) = p(a, a, d) = d = mz(a, b, b, d),
mi(a, a, b, b) = p(a, p(a, a, b), b) = p(a, b, b) = a = mo(a, a, b, b).

Therefore mg, m,, m, satisfy (M1) to (M4) and K is 2-modular.

If K is 2-modular, then by Theorem 1, there exists m_, m,, and

0 1
m, satisfying the properties (M1) to (M4). We define

p(a, b, ¢c) = mi(c, c, b, a).
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We have

1
1"
It

pla, a, b) ml(b, b, a, a) mo(b, b, a, a) b by (M4) and (M1) and

p(a, b, b)

I
il
1

m1(b, b, b, a) mz(b, b, b, a) a by (M3) and (M1).

Therefore, K 1is permutable.

4. A relation between distributivity and modularity. We define

n-distributivity similarly to n-modularity (i.e. a sequence do, RN dn

of n+1 terms in three variables satisfying (D1) to (D4) in Jénsson's
Theorem). As any distributive lattice is modular, any distributive

equational class is also modular. In this section we derive a sequence of
terms characterizing modularity from a given sequence that determine
distributivity .

THEOREM. If an equational class K is n-distributive then it is
(2n - 1)-modular.

Proof. Assume K is n-distributive, i.e. there exists a sequence

dO' ey dn of terms in three variables satisfying (D1) to (D4). We

define for k=0,1, ..., 2n -1
4 b, d k 1
d(k+1)/2(a' ’ ) = (mOd 4),
k =

' dk/z(a,c,d) 2 (mod 4),

mk(a, b,c,d) = <
=3 d
d(k+’1)/2(a' c,d) k (mod 4),
dk/z(a,b,d) k = 0 (mod 4).

\

N , b’ !d = ’ ) = ) H ’ i
ow mo(a c, d) do(a b, d) a and mZn—i(a b, c, d) is

either dn(a, b, d) or dn(a, c, d) which are both identically d. There-
fore (M1) is true. (M2) is clearly satisfied by applying (D2). For k

odd, m, (a, b, b, d d , b, , b, b,
k( ) (k+1)/2(a b, d) mk_“(a b, d) and thus
(M3) is satisfied.
For k even, we must consider two possible cases. If k = 2 (mod 4),

then % is odd and k +1 = 3 (mod 4).

Therefore by (D4):
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b = = =
mk(a, a, b, b) dk/Z(a’ b, b) (a, b, b) mk_H(a, a, b, b).

d(k+2)/2

¥ k = 0 (mod 4) then, k/2 is evenand k +1 =1 (mod 4). Then
by (D3)

b = b).
mk(a, a, b, b) dk/z(a, a, b) (a, a, b) (a, a, b, b)

d(k42)/2 s MV

Therefore (M4) is satisfied and k is (2n - 1) modular.

Whether (2n -1) is the best possible estimate in the above theorem
is not known. We do know that in the equational class L of lattices,
it can be no smaller. L is 2-distributive by the following terms:

do(a, b, C) = a,
dy(a b, e) = (avb)r(ave)a (b ve),
dz(a, b, ¢) = c,

L is 3-modular by Theorem 3 and cannot be 2-modular by Theorem 2.
These results for permutability, modularity, distributivity, suggest
the following general problem as raised by R. Wille: Can any non-trivial

lattice identity that holds for all the congruence lattices of a given
equational class be characterized by a sequence of equations?
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