
16
Astrophysics and cosmology

Finite-temperature field theory finds extensive applications in astrophys-
ical environments and cosmology. This chapter is devoted to an introduc-
tion to these applications. A more comprehensive discussion could easily
fill whole books.

The end product of the evolution of any star is a white dwarf star, a
neutron star, or a black hole, depending on the initial mass of the star.
A white dwarf star is held up against gravitational contraction by elec-
tron degeneracy pressure (Section 16.1) whereas a neutron star is held up
by baryon degeneracy pressure and repulsive baryon interactions (Section
16.2). The sun will end its days by swelling up into a red giant and then
collapsing to a white dwarf. Neutron stars are formed in the gravitational
collapse of stars with initial mass in the range from about two to eight
solar masses. The collapse is sudden and may be seen as a supernova. The
resulting star is initially quite warm, perhaps 10 to 40 MeV in tempera-
ture, but cools rapidly by neutrino emission (Section 16.3). If the initial
mass of the dying star is too great then it will end as a black hole.

There was some excitement when it was realized that a first-order QCD
phase transition about one microsecond after the big bang could influ-
ence the abundances of the light isotopes such as deuterium, helium, and
lithium. However, quantitative calculations now show that this is very
unlikely (Section 16.4); in addition QCD, with its known set of quark
masses, probably does not undergo a first-order phase transition, as we
saw in Chapter 10.

Going further back in time, it seems quite likely that the final baryon
and lepton numbers of the universe were determined at around the elec-
troweak temperature scale of 100 GeV. Sphaleron transitions were the
last phenomena that were able to change these numbers (Section 16.5).
Baryogenesis and leptogenesis may have originated at some much ear-
lier epoch, in the context of grand unified or supersymmetric theories. It
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380 Astrophysics and cosmology

may be that some very massive particles in such a theory preferentially
decayed into baryons rather than antibaryons. The formation and decay
rates of such particles are considered in Section 16.6.

16.1 White dwarf stars

A white dwarf is the end result of a star of about one solar mass after it
has burned all its nuclear fuel. It is held up against gravitational collapse
by the degeneracy pressure of electrons, although essentially all its mass
is contributed by baryons. It is interesting to inquire to what extent the
equation of state of the degenerate electron gas influences the structure
of white dwarfs.

In a white dwarf, the pressure of the electrons dominates the pressure
of the atomic nuclei while the mass density of the baryons dominates the
total energy density. Therefore the energy density is approximately

ε =
mNne

Ye
(16.1)

where mN is the nucleon mass, ne is the electron density, and Ye is the
number of electrons per baryon. For a star composed predominantly of
helium Ye = 1/2, while for a star composed predominantly of iron Ye =
26/56. These values follow from the requirement of electrical neutrality.
There are small corrections due to the binding energy of the atomic nuclei
and to their average kinetic energy.

To determine the mass and structure of cold, nonrotating, spherically
symmetric stars, we use the Tolman–Oppenheimer–Volkoff equation from
general relativity,

r2dP

dr
= −G(ε + P )(M + 4πr3P )

(
1 − 2GM

r

)−1

(16.2)

where

M(r) = 4π
∫ r

0
ε(r′)r′2dr′

The function M(r) is the total mass contained within a sphere of radius
r. We can neglect the pressure in comparison with the energy density.
We can also neglect the general relativistic change in the metric. To an
excellent approximation Newtonian gravitational physics applies.

It turns out that as the central density εc of the star increases, the
mass increases at first while the radius decreases. As the central density
is increased further, an asymptotic limit is reached for the stellar mass.
White dwarfs with a mass greater than this “Chandrasekhar limit” cannot
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exist. To understand this limit we recognize that at very high density the
electrons become ultrarelativistic. The electron pressure for noninteract-
ing electrons is then

Pe =
μ4
e

12π2
(16.3)

and the density is

ne =
∂Pe

∂μe
=

μ3
e

3π2
(16.4)

Together with (16.1) this results in the equation of state

P = Kε4/3 (16.5)

where K is a constant. This has the form of a polytrope (pressure propor-
tional to the energy density raised to a power). Newtonian gravitational
physics then predicts the unique asymptotic mass

M∞ = 4.555
(
K

G

)3/2

= 5.735Y 2
e Msun (16.6)

where the second equality expresses it in terms of the mass of the sun [1].
This mass is independent of the central density and the radius, which is
given by

R = 3.891
(
K

G

)1/2

ε−1/3
c = 4.20

(
Msun

εc

)1/3

Y 2/3
e (16.7)

The physical constants used above are: the average nucleon mass mN =
0.939 GeV; Newton’s constant G = 6.707 × 10−39 GeV−2; the solar mass
Msun = 1.989 × 1030 kg; and the solar radius Rsun = 6.961 × 108 km. For
a white dwarf composed of helium M∞ = 1.43Msun. The Chandrasekhar
limit is one of the fundamental concepts in astrophysics.

The story is not complete. When the electron density becomes high
enough, roughly when μe = 5me, electrons are captured by protons to
form neutrons (the neutrinos escape from the star). The electron-to-
baryon ratio Ye decreases, and so does the mass. As a function of increas-
ing central density the mass goes up, reaches a maximum just below the
Chandrasekhar limit, and then decreases. When the star mass falls with
increasing central density the star is gravitationally unstable and collapses
further.

It is clear that several other more minor effects have been left out of
this analysis. Among these is the change in the equation of state of the
electron gas owing to interactions among the electrons. Let us see how
important these interactions are. From our previous studies we know that
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382 Astrophysics and cosmology

the first-order correction to the pressure in the limit μe � me, T is

Pe =
μ4
e

12π2

(
1 − 3

2
α

π

)
(16.8)

and the correction to the density is

ne =
∂Pe

∂μe
=

μ3
e

3π2

(
1 − 3

2
α

π

)
(16.9)

This means that the coefficient K is modified:

K → K

(
1 − 3

2
α

π

)−1/3

(16.10)

This changes the Chandrasekhar limit by only 0.2%. So, after all this
hard work we find that the perturbative corrections in an ultrarelativistic
electron gas are probably impossible to discern by measuring white dwarf
masses and radii.

16.2 Neutron stars

A neutron star consists of almost pure neutron matter with a central
density greater than that in atomic nuclei. This represent the final state
in the evolution of many stars. Owing to their high central density, neu-
tron stars serve as distant laboratories for the study of dense, relativistic,
strongly interacting systems. Their central cores may have some compo-
nent of hyperon matter or quark matter. Much theoretical work has been
published on this topic over the last forty years. Here we can just touch
on some of the important issues by studying a few illustrative theories of
cold dense baryonic matter.

To first approximation the star consists of pure neutron matter. How-
ever, neutrons undergo beta decay by the process n → p + e− + ν̄e. This
decay will continue until the density of protons and electrons is high
enough for the Pauli exclusion principle to prevent any further decays;
this happens when the chemical potentials satisfy μn = μp + μe. The neu-
trinos escape from the star. In fact, neutrino radiation is an important
mechanism for the cooling of a neutron star from its initial temperature
of 10 to 40 MeV following its birth by supernova. The details of neutrino
cooling are a fascinating, and complicated, story in themselves. The inter-
ested reader is referred to Section 16.3 and to the bibliography at the end
of the chapter.

As the central density increases, so does the baryon chemical potential.
Eventually it becomes high enough that hyperons can be produced and
coexist in chemical equilibrium with the neutrons and protons. The lowest
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16.2 Neutron stars 383

spin-1/2 baryon octet consists of p, n,Λ,Σ+,Σ0,Σ−,Ξ0,Ξ−. If the baryon
density is high enough, muons may appear too.

We will consider three different models for the equation of state. The
first consists of relativistic but non-interacting neutrons. (It can be shown
that the inclusion of noninteracting protons, whose abundance is deter-
mined by beta equilibrium with neutrons, does not modify the equation
of state and therefore the structure of neutron stars by very much.) The
second model consists of protons and neutrons in beta equilibrium, inter-
acting via the exchange of σ, ω, and ρ mesons in the relativistic mean
field approximation. The first two mesons heve been discussed already,
in Chapter 11; the ρ meson is required here to reproduce the measured
charge-symmetry energy of nuclear matter. The third model starts with
the second and adds the six hyperons in the baryon octet. In addition, the
vector meson φ is included, since it couples to the hyperons and represents
vector repulsion among them.

All three models for the equation of state are based on the Lagrangian

Lstrong =
∑
j

ψ̄j(i∂ −mj + gσjσ − gωj ω − gφj φ− gρj ρaTa)ψj

+ 1
2

(
∂μσ∂

μσ −m2
σσ

2
)− 1

3bmN(gσσ)3 − 1
4c(gσσ)4

− 1
4ω

μνωμν + 1
2m

2
ωωμω

μ − 1
4φ

μνφμν + 1
2m

2
φφμφ

μ

− 1
4ρ

μν
a ρaμν + 1

2m
2
ρρ

a
μρ

μ
a (16.11)

Here j runs over the spin-1/2 baryons in the octet and T a is the isospin
generator. The various models discussed above correspond to the inclusion
or exclusion of some of the terms in Lstrong.

In the relativistic mean field approximation we allow the meson fields
to acquire density-dependent average values; the nonzero ones are σ̄, ω̄0,
φ̄0, and ρ̄3

0. These are driven by the finite densities of particle number,
baryon number, strangeness, and isospin asymmetry, respectively. From
the Lagrangian, one can read off the effective baryon masses m∗

j ,

m∗
j = mj − gσj σ̄ (16.12)

and effective baryon chemical potentials μ∗
j ,

μ∗
j = μj − gωjω̄0 − gφjφ̄0 − I3jgρj ρ̄

3
0 (16.13)

where I3j is the third component of the isospin of the jth baryon (1/2 for
the proton,−1/2 for the neutron, etc.).

The particle densities are given in terms of the Fermi momenta by

nj = p3
Fj/3π

2 (16.14)

https://doi.org/10.1017/9781009401968.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.017


384 Astrophysics and cosmology

The Fermi momenta, in turn, are related to the effective chemical poten-
tials by

μ∗
j =

√
m∗2

j + p2
Fj (16.15)

In a neutron star the matter is electrically neutral and in equilibrium
under the strong, electromagnetic, and weak interactions. Chemical equi-
librium among the baryons listed above, as well as the electrons and
muons, implies the relations

μp = μn − μe μΛ = μn

μΣ+ = μn − μe μΣ0 = μn (16.16)
μΣ− = μn + μe μΞ0 = μn

μΞ− = μn + μe

where μe =
√
m2

e + p2
Fe, ne = p3

Fe/3π
2, and similarly for the muons. Elec-

trical neutrality then requires

np + nΣ+ = ne + nμ + nΣ− + nΞ− (16.17)

The hyperons and muons will only appear when the baryon chemical
potential μn is high enough to give them a nonvanishing Fermi momen-
tum.

The total pressure and energy density are expressed in terms of the
effective masses and chemical potentials as

P =
∑
j

PFG(μ∗
j ,m

∗
j ) + PFG(μe,me) + PFG(μμ,mμ)

− 1
2m

2
σσ̄

2 − 1
3bmN(gσσ̄)3 − 1

4c(gσσ̄)4

+ 1
2m

2
ωω̄

2
0 + 1

2m
2
φφ̄

2
0 + 1

2m
2
ρ(ρ̄

3
0)

2 (16.18)

ε =
∑
j

εFG(μ∗
j ,m

∗
j ) + εFG(μe,me) + εFG(μμ,mμ)

+ 1
2m

2
σσ̄

2 + 1
3bmN(gσσ̄)3 + 1

4c(gσσ̄)4

+ 1
2m

2
ωω̄

2
0 + 1

2m
2
φφ̄

2
0 + 1

2m
2
ρ(ρ̄

3
0)

2 (16.19)

where PFG and εFG are the Fermi-gas expressions with the quoted effective
masses and chemical potentials
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The values of the mean vector fields are determined in a transparent
way:

m2
ωω̄0 =

∑
j

gωjnj

m2
φφ̄0 =

∑
j

gφjnj (16.20)

m2
ρρ̄

3
0 =

∑
j

I3jgρjnj

The mean value of the scalar field must be determined numerically from
the self-consistency condition

m2
σσ̄ + bmNg

3
σN σ̄2 + cg4

σN σ̄3 =
∑
j

gσjn
s
j (16.21)

where ns
j is the scalar density of the jth baryon.

There are many parameters in Lstrong. The masses are known. The
coupling constants gωN , gσN , b, and c were determined in Chapter 11 on
the basis of the nuclear saturation density, binding energy, compressibility,
and Landau mass. The ρ–nucleon coupling constant can be determined
from the charge symmetry coefficient in the symmetry energy:

asym =
(
gρN
mρ

)2 p3
F

12π2
+

p2
F

6mL
= 32.5 MeV (16.22)

There is considerable uncertainty surrounding the coupling constants
in the strange sector. Here we choose gφN = 0 on the basis that the nucle-
ons have no strange valence quarks while the φ meson is composed of ss̄.
A study of Λ hypernuclei by Rufa et al. [2] in the relativistic mean field
approximation gives gσΛ = 0.48gσN and gωΛ = 0.56gωN . A study by Keil,
Hofmann, and Lenske [3] gives similar numbers, namely, gσΛ = 0.49gσN
and gωΛ = 0.55gωN . (For comparison, a study of low-energy nucleon–
nucleon and hyperon–nucleon scattering by Maessen, Rijken, and de Swart
[4] gives gσΛ = 0.58gσN and gωΛ = 0.66gωN .) These two coupling con-
stants are highly correlated, gσΛ being somewhat smaller than gωΛ. The
reason is that the binding energy of a Λ hyperon in a nucleus or in
nuclear matter depends mainly on the depth of the mean field potential,
which is gωΛω̄0 − gσΛσ̄0. Thus both coupling constants can be increased
or decreased together to yield the same mean field potential. For the
sake of illustration we shall use the values from Keil et al.; based on
quark-counting we then estimate that gσΣ = gσΞ = 0.49gσN , gφΛ = gωΛ,
gωΞ = gωN/3, and gφΞ = 2gφΛ.

The equation of state for electrically neutral matter, P versus ε, is
plotted in Figure 16.1. At low energy density the pressure of a gas of
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Fig. 16.1. Equation of state for electrically neutral dense nuclear matter.

noninteracting nucleons (including electrons and muons) is greater than
that of nuclear matter that takes into account interactions. The reason
is that attractive interactions lower the pressure; in fact, for isospin-
symmetric nuclear matter the pressure is zero at the saturation density of
nuclear matter. At high energy density the situation is reversed; repulsive
interactions involving vector mesons cause an increase in the pressure.
When hyperons are included the pressure is reduced and the equation of
state is said to be softened, on account of energy having been put into
hyperon masses rather than into the kinetic energy of nucleons.

The star mass as a function of central energy density, for each of
the three model equations of state, is plotted in Figure 16.2. These are
obtained as solutions to the Tolman–Oppenheimer–Volkoff equation. The
star mass at first increases with central density, reaches a maximum, and
then decreases. The maximum mass represents the limit of stability. A star
cannot be supported against gravitational collapse to a black hole by going
beyond that limit. As can be seen by comparing Figures 16.1 and 16.2,
a stiffer equation of state can support a higher maximum mass. A large
number of neutron star masses have been measured in binary star systems.
The most accurately measured ones tend to fall in the range between 1.4
and 1.5 solar masses. This proves observationally that nuclear interactions
are crucial in supporting a neutron star from gravitational collapse; a gas
of free neutrons, protons, electrons, and muons can only produce a star
with maximum mass less than 0.7 solar mass.
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16.2 Neutron stars 387

Fig. 16.2. Star mass as a function of central energy density for the three equa-
tions of state represented in Figure 16.1.

The chemical abundances of the baryons are very interesting. These
are shown in Figure 16.3 for the model equation of state that includes
hyperons. At low baryon density the matter is dominated by neutrons.
Neutron decay is Pauli-blocked by a small admixture of protons and elec-
trons. As the density goes up it is advantageous for more neutrons to be
converted to protons and electrons. Eventually it becomes favorable for
nucleons to be converted into hyperons. This is a general feature. How-
ever, the order of appearance of hyperons with density and their relative
abundances depend sensitively on the numerical values of the coupling
constants. Increasing the coupling to the scalar field decreases the effec-
tive mass, and decreasing the coupling to the vector fields increases the
effective chemical potential, both of which work to favor the appearance
of a given hyperon. Note, however, that the maximum-mass star only
probes the equation of state up to an energy density of about 1 GeV fm−3

and a baryon density of about 0.9 fm−3 ≈ 6n0, where n0 is the nuclear
saturation density.

Whether the central density in the most massive neutron stars is great
enough to support a core of quark matter has been a topic of much study
and debate over the last three decades; if so, the core may be a color
superconductor, as described in Section 8.9. Unfortunately, it is very dif-
ficult to probe the deep interior of a cold neutron star. A neutron star is
born in a supernova, however, and therefore has an initial temperature
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Fig. 16.3. Baryon chemical composition for the equation of state that includes
hyperons. Note that the cusps correspond to particle production thresholds.

that may be as high as 40 MeV. The interior of the star cools by several
mechanisms, including neutrino production. This is a topic to which we
turn our attention now.

16.3 Neutrino emissivity

As mentioned in the previous section, neutron stars are born with a sig-
nificant amount of thermal energy. A great deal of this is lost by neutrino
emission. The microscopic processes are quite varied and complicated.
The environments for these processes are usually separated into the outer
crust and the inner core; the inner core may be nonsuperfluid or it may
be superfluid and magnetized.

Two of the most important reactions in the crust are pair annihila-
tion, e+e− → νν̄, and plasma decay, γ → νν̄. Pair annihilation is quite
straightforward, but it was not until 1993 that a fully relativistic treat-
ment of plasma decay (actually the decay of collective excitations of the
plasma) was carried out, by Braaten and Segel [5]. One of the most impor-
tant reactions in the crust is the direct Urca process, n → pe−ν̄e, and the
related reaction pe− → nνe. (The process was named after a casino in Rio
de Janeiro by Gamow and Schoenberg [6] who likened thermal energy to
money and neutrinos to the casino that takes it away.) There is also a
modified Urca process, in which a spectator nucleon N facilitates the
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process, namely, nN → pNe−ν̄e and pNe− → nNνe. The nucleon N , or
the neutron or proton for that matter, may be replaced by a hyperon,
depending on the chemical conditions in the core. Then there is neu-
trino cooling by more exotic processes, such as pion condensation, kaon
condensation, the Urca process for quarks, or color superconductivity. We
shall consider some of these processes in this section. For a comprehensive
survey the reader should consult the review by Yakovlev et al. [7].

16.3.1 Pair annihilation

When the temperature of the crust or the core reaches 100 keV or so,
which is a significant fraction of the electron mass, there will be a sig-
nificant number of electrons and positrons which can annihilate into
neutrino–antineutrino pairs. The rate (number of reactions per unit time
per unit volume) can be calculated directly from the cross section:

dR = σ(e+e− → νlν̄l)vrel

(
2
d3p−
(2π)3

N−
F (p−)

)(
2
d3p+

(2π)3
N+

F (p+)
)

(16.23)

Here the subscript l specifies the neutrino flavor and vrel =√
(p+ · p−)2 −m4

e/E+E−; the quantities in large parentheses represent
the thermal phase space for electrons and positrons, including the spin
factor 2 (the Fermi–Dirac occupation numbers are the same as in (5.57)).
This expression assumes that neutrinos escape so that there is no Pauli-
blocking in the final state. Note that the cross section is proportional to
the imaginary part of the forward scattering amplitude and to the square
of the invariant amplitude, as discussed in Section 12.2. The same expres-
sion can be derived from the finite-temperature field theory rules using
the standard model Lagrangian. For the present situation, where the tem-
perature and chemical potential are smaller than the electroweak scale of
100 GeV, we might as well use the cross section as calculated in many
texts on the standard model.

The neutrino emissivity Q is the energy radiated into neutrinos per
unit time per unit volume. This involves multiplication of dR by the total
energy E+ + E− and integration over all phase space:

Qpair =
G2

F

3π

∫ (
d3p−
(2π)3

N−
F (p−)

)(
d3p+

(2π)3
N+

F (p+)
)

(E+ + E−)

× {C2
+

[
m4

e + 3m2
e(p− · p+) + 2(p− · p+)2

]
+ 3m2

eC
2
−
[
m2

e + (p− · p+)
]}

(16.24)

The Fermi constant is denoted by GF. The quantities C2± =
∑

l(C
2
V l ±

C2
Al) are sums over neutrino flavors of the vector and axial-vector
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constants. Electron neutrinos can be produced via charged or neutral
current interactions, involving W and Z vector bosons, respectively, while
muon and tau neutrinos can only be produced via neutral current interac-
tions. Thus CV e = 2 sin2 θW + 1/2, CAe = 1/2, CV μ = CV τ = 2 sin2 θW −
1/2, CAμ = CAτ = −1/2, with sin2 θW ≈ 0.23. The six-dimensional inte-
gral for Qpair can be reduced to products of one-dimensional integrals.
The latter cannot be found in closed form in general, but they can be
evaluated numerically; simple parametrizations for them also exist (see
[7]).

A particularly simple limit, although not the most relevant for the
majority of periods of neutron star cooling, is the nondegenerate (NF � 1)
ultrarelativistic (T � me) limit;

Qpair → 7ζ(5)
12π

C2
+G

2
FT

9 (16.25)

This illustrates how rapidly the cooling rate increases with temperature.
In this limit, a ten-fold increase in T results in a billion-fold increase in
the emissivity!

16.3.2 Plasma decay

We saw in Chapter 6 that the photon propagator at finite temperature
has singularities corresponding to the propagation of transverse and lon-
gitudinal modes. Both modes have a finite energy at zero momentum.
As a consequence, they will decay into a neutrino–antineutrino pair. This
occurs via the coupling of the photon to a (virtual) e+e− pair, which
then annihilates into neutrinos. The general expression for the emissivity
is

Qplasma =
∫

d3k

(2π)3
[2NB(ωT)ωTΓT(ωT) + NB(ωL)ωLΓL(ωL)] (16.26)

The NB are the Bose-Einstein distributions, ωT and ωL are the energies
of the transverse and longitudinal modes with momentum k, and ΓT and
ΓL are the decay rates into a νν̄ pair.

The complete one-loop analysis of the plasma decay rates at arbi-
trary temperature and chemical potential was carried out by Braaten
and Segel [5]. The rates are expressed in terms of the photon lon-
gitudinal and transverse self-energies, F and G, and the residues of
their poles, ZL and ZT. Specifically, Z−1

L (k0,k) = 1 − ∂F (k0,k)/∂k2
0 and
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Z−1
T (k0,k) = 1 − ∂G(k0,k)/∂k2

0. We have

ΓT(k0,k) =
G2

F

48π2α
ZT(k0,k)

k2

k0

[
C2
V G

2(k0,k) + C2
AΠ2

A(k0,k)
]

ΓL(k0,k) =
G2

F

48π2α
ZL(k0,k)

k2

k0
C2
V F

2(k0,k)

(16.27)

The transverse rate also involves a new axial self-energy ΠA. To leading
order in α it is given by

ΠA(k) = e2 k
2

|k|
∫

d3p

(2π)3E
[
N−

F (E) −N+
F (E)

] k0(p · k) − Ek2

(p · k)2 − (k2)2/4
(16.28)

where E =
√

p2 + m2
e. To first order in α, the term (k2)2/4 in the denom-

inator can be set to zero; it corresponds to an imaginary part arising
from the production of electron–positron pairs. This is unphysical since
it does not take into account the dispersion relation of electrons to the
same order in α. The resulting expression for ΠA can be expressed as a
one-dimensional integral that in general must be done numerically. When
used to calculate the emissivity, all functions above are evaluated using
the appropriate dispersion relation, either k0 = ωL(k) or k0 = ωT(k).

For neutron star cooling it is numerically efficient to have simple, accu-
rate, analytic formulas for the emissivity. Nice formulas were derived by
Braaten and Segel with this in mind. The following expressions were
shown to be correct in the classical, degenerate, and relativistic limits
for all momenta and correct at small momenta for all temperatures and
densities; they were interpolated to an accuracy of order α in between
these limits (in what follows k = |k|):

ω2
T = k2 + ω2

P

3ω2
T

2v2∗k2

[
1 − ω2

T − v2∗k2

2v∗kωT
ln
(
ωT + v∗k
ωT − v∗k

)]
0 ≤ k < ∞

(16.29)

ω2
L = ω2

P

3ω2
L

v2∗k2

[
ωL

2v∗k
ln
(
ωT + v∗k
ωT − v∗k

)
− 1
]

0 ≤ k < kmax (16.30)

kmax =

√
3
v2∗

[
1

2v∗
ln
(

1 + v∗
1 − v∗

)
− 1
]
ωP (16.31)

v2
∗ω

2
P =

4α
3π

∫ ∞

0

dp p2

E

[
5
( p

E

)2 − 3
( p

E

)4
]
NF(E) (16.32)

In these expressions ωP is the plasma frequency, defined in Chapter 6.
The variable v∗ lies between 0 and 1. Since we start with two independent
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variables, T and μ, it is quite natural that the two independent variables
ωP and v∗ appear in the result. The longitudinal and transverse energies
must still be solved self-consistently from this set of equations.

When evaluated with the dispersion relations calculated above, the self-
energies and residues are approximated to the same accuracy, as follows:

F = ω2
L − k2 (16.33)

G = ω2
T − k2 (16.34)

ZT =
2ω2

T(ω2
T − v2∗k2)

3ω2
Pω

2
T + (ω2

T + k2)(ω2
T − v2∗k2) − 2ω2

T(ω2
T − k2)

(16.35)

ZL =
2ω2

L(ω2
L − v2∗k2)

(ω2
L − k2)[3ω2

P − (ω2
L − v2∗k2)]

(16.36)

ΠA = ωAk
(ω2

T − k2)[3ω2
P − 2(ω2

T − k2)]
ω2

P(ω2
T − v2∗k2)

(16.37)

One new frequency appears, which is

ωA =
2α
3π

∫ ∞

0
dp

[
3
( p

E

)2 − 2
( p

E

)4
]

[N−
F (E) −N+

F (E)] (16.38)

To calculate the emissivity, first the two dispersion relations must be
solved numerically and inserted into the functions appearing in the inte-
grand, and then the one-dimensional integral must be evaluated numeri-
cally. However, several limits can be evaluated analytically. Consider the
high-temperature limit defined by T � ωP. It can be shown that the con-
tribution of the longitudinal part is smaller than that of the transverse
part by a factor of order ω2

P/T
2, and the axial part is smaller by a factor of

order ω2
A/T

2. The transverse part can be evaluated by setting the factor
ω2

T − k2 equal to m2
P = G(k0 = |k|) (see Section 6.7) because the integral

is dominated by k � ωT, and otherwise setting ωT = k. The emissivity is
then given by

Qplasma → G2
F

24π4α
C2
V ζ(3)m6

PT
3 (16.39)

In the limit T � |μe| and T � me, m2
P ∝ αT 2. Then the emissivity goes

as α2G2
FT

9. The powers of the couplings follow from the lowest-order
diagrams needed to make the process go, and the power of the temperature
follows from dimensional analysis.

16.3.3 Direct Urca process for quarks

The analog of the direct Urca process for quarks is d → u + e− + ν̄e and
u + e− → d + νe. In beta equilibrium the chemical potentials are related
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by

μd = μs = μu + μe (16.40)

If the particles are assumed to be massless, electrical neutrality is achieved
without any electrons:

nu = nd = ns = n

ne = 0
(16.41)

where n is the baryon density. At low temperatures the quark Urca process
can only occur when all particles are near their Fermi surface; hence, there
is very little phase space for the reactions to occur. In particular, if all
particles are massless then energy and momentum conservation requires
the up quark, down quark, and electron momenta all to be collinear. Giv-
ing the d quark a slightly greater mass than the u quark, say 7 MeV
versus 5 MeV, does allow the decay to proceed, but very slowly. Iwamoto
[8] showed that interactions among the quarks change the situation dra-
matically.

From Chapter 8 we know that the relation between the Fermi momen-
tum, defined via the density, and the chemical potential is

μq =
(

1 +
2
3π

αs

)
pFq (16.42)

for quark flavors q = u, d. For relativistic electrons,

μe ≈ pFe (16.43)

Therefore pFd − pFu − pFe ≈ −(2/3π)αspFe < 0. This opens up the phase
space for the reactions and allows them to occur at a much higher rate.
Knowing the decay rate for the down quark, and the cross section for the
flavor-changing reaction, both of which could easily be calculated within
the standard model, Iwamoto found their sum to be

QquarkUrca =
457
630

G2
Fαs cos2 θC pFd pFu pFe T

6 (16.44)

where θC is the Cabibbo angle with cos2 θC ≈ 0.948. The electron Fermi
momentum would be zero if the strange quark mass were zero, but it is
not. For the temperatures of interest, say 5 to 50 MeV, pFe is comparable
to T , while pFd and pFu are definitely larger than T . The QCD coupling
is in the range of 0.1 to 1.0. Therefore the quark Urca process provides
quite a large emissivity.

There is also the direct Urca process in which the strange quark replaces
the down quark. The current-quark value of the strange quark mass at
the scales of relevance is around 105 to 150 MeV. This suppresses the
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reaction u + e− → s + νe but enhances the decay s → u + e− + ν̄e. How-
ever, the latter is suppressed by the factor sin2 θC ≈ 0.052 because it is
a strangeness-changing process. Overall one finds that the direct Urca
process with the strange quark is smaller than with the down quark.

If the electron Fermi momentum becomes too small then the modified
quark Urca process d + q → u + q + e− + ν̄e and u + q + e− → d + q + νe
dominates. This was calculated by Burrows [9].

16.4 Cosmological QCD phase transition

The main interest in a cosmological quark–gluon to hadron phase tran-
sition arises from its potential to influence the big bang nucleosynthesis.
Whether QCD with its known set of parameters undergoes a first-order
transition or something smoother is still not completely settled. Assum-
ing that there is a first-order phase transition one needs nucleation the-
ory to understand how the transition proceeds; this topic was discussed
in Chapter 13. In this section we first discuss how it can be that nucle-
osynthesis is affected by a QCD phase transition, and then we analyze
the dynamics of a first-order phase transition during the expanding early
universe.

16.4.1 Inhomogeneous big bang nucleosynthesis

A cosmological first-order phase transition at T ∼ 160−180 MeV could
leave spatial inhomogeneities in the baryon-to-entropy ratio and in the
ratio of protons and neutrons. If these inhomogeneities survive to T ∼
0.1−1 MeV then they could influence nucleosynthesis. This was first
pointed out and analyzed by Witten [10], by Applegate, Hogan, and Scher-
rer [11], and by Alcock, Fuller, and Mathews [12]. In thermal and chemical
equilibrium one might expect that the baryon density in the quark–gluon
phase is higher than in the hadron phase. This is called the baryon den-
sity contrast. Assuming a critical temperature of 160 < Tc < 180 MeV,
Kapusta and Olive [13] computed this baryon density contrast to be 1.5
to 2.5 when hadronic interactions were neglected and 5 to 7 when they
were included. One would expect that the last regions of space to undergo
the phase conversion would contain more baryons per unit volume than
the first regions to phase-convert because of the lack of time for baryons
to diffuse. After phase completion the neutrons will diffuse more rapidly
than protons because they are electrically neutral and therefore do not
Coulomb-scatter on electrons. This leads to isospin inhomogeneities, at
least temporarily.

A detailed calculation of inhomogeneous nucleosynthesis with a com-
parison to the observed abundances of the light elements was performed
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Fig. 16.4. Conservative upper limit to the baryon-to-photon ratio η from the
4He abundance Yp ≤ 0.248 and the deuterium abundance D/H ≥ 1.5 × 10−5.
The three thicker curves are for volume fractions covered by the high-density
regions of 1/(2

√
2) (solid), 1/8 (broken), and 1/(16

√
2) (broken and dotted).

The two thinner curves are for volume fractions 1/64 (solid) and 1/256 (broken).
From [15].

by Kurki-Suonio et al. [14]. They considered baryon density contrasts
ranging from 1 to 100 and matter-fractions in the high-density regions
ranging from 1/64 to 1/4. The average separation of the high-density
regions l was left as a free parameter, as was the average baryon-to-photon
ratio of the universe. The differential diffusion of protons and neutrons
was accounted for and then a standard nucleosynthesis code was run.
By fitting the observed abundances of 4He, D, 3He, and 7Li they con-
cluded that the baryon-to-photon ratio must lie between 2 × 10−10 and
7 × 10−10 (or 20 × 10−10 if certain constraints on 7Li were relaxed). They
also concluded that l < 150 m at the time of nucleosynthesis, whereas at
the completion of the QCD phase transition this upper limit would have
been only about 1 m. A quantitative theoretical estimate of the latter
scale is the purpose of the next subsection.
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Recently the inhomogeneous nucleosynthesis calculation was redone,
with technical improvements and updated estimates of the cosmic abun-
dances of the relevant light elements, by Kainulainen, Kurki-Suonio, and
Sihvola [15]. Their results are shown in Figure 16.4. The high-density
matter was distributed in spheres. The inhomogeneities are ineffective in
influencing nucleosynthesis unless the high-density regions are separated
by more than about 150 m at T = 1 MeV.

16.4.2 Dynamics of the phase transition

The nucleation rate for a system of particles or fields that has negligible
baryon number compared with the entropy was derived in Section 13.4.
Here we mention only the essential details. The change in free energy due
to the appearance of a bubble of hadronic matter in quark–gluon plasma
is

ΔF =
4π
3
r3 [Pq(T ) − Ph(T )] + 4πr2σ (16.45)

where r is the radius. The critical-sized bubble has radius

r∗ =
2σ

Ph(T ) − Pq(T )
(16.46)

which leads to

ΔF∗ =
4π
3
σr2

∗ (16.47)

The nucleation rate is

I =
4
π

( σ

3T

)3/2 σ(3ζq + 4ηq)r∗
3(Δw)2ξ4

q

e−ΔF∗/T (16.48)

It is proportional to the shear viscosity ηq and the bulk viscosity ζq in
the quark–gluon plasma and is inversely proportional to the square of the
enthalpy (w = ε + P ) difference between the two phases.

For numerical purposes we use a simple bag-model-type equation of
state with

Pq = (45.5 + 14.25)
π2

90
T 4 −B

Ph = (5.5 + 14.25)
π2

90
T 4

(16.49)

The constant 45.5 approximates the effective number of degrees of freedom
arising from massless gluons and up and down quarks and a strange quark
mass comparable with the temperature. The constant 5.5 approximates
the hadronic equation of state near Tc arising from a multitude of massive
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hadrons. The constant 14.25 arises from photons, neutrinos, electrons,
and muons common to both phases. The bag constant B is chosen to give
Tc = 160 MeV. For definiteness we take σ = 50 MeV/fm2, ξq = 0.7 fm,
and ηq = 18T 3 (see Section 9.6 and Baym et al. [16]).

Given the nucleation rate one would like to know the (volume) fraction
of space h(t) that has been converted from the quark–gluon plasma to
hadronic gas at proper time t in the early universe. This requires kinetic
equations that use the nucleation rate I as an input. Here we use a rate
equation first proposed by Csernai and Kapusta [17]. The nucleation rate
I is the probability of forming a bubble of critical size per unit time per
unit volume. If the system cools to Tc at time tc then at some later time
t the fraction of space that has been converted to the hadronic phase is

h(t) =
∫ t

tc

dt′ I(T (t′))[1 − h(t′)]V (t′, t) (16.50)

Here V (t′, t) is the volume of a hadronic bubble at time t that was nucle-
ated at an earlier time t′; this takes into account bubble growth. The
factor 1 − h(t′) takes into account the fact that new bubbles can only be
nucleated in the fraction of space not already occupied by the hadronic
gas. This conservative approach neglects any spatial variation in the tem-
perature. However, it does allow for completion of the transition without
violating any of the fundamental laws of thermodynamics.

Next we need a dynamical equation that couples the time evolution of
the temperature to the fraction of space converted to the hadronic phase.
We use Einstein’s equations as applied to the early universe, neglecting
curvature. The evolution of the energy density is

dε

dR
= −3w

R
(16.51)

where R is the scale factor at time t. This assumes kinetic but not
phase equilibrium and is basically a statement of energy conservation.
We express the energy density as

ε = hεh(T ) + (1 − h)εq(T ) (16.52)

where εh and εq are the energy densities in the two phases at the tem-
perature T . There is a similar equation for the enthalpy w. The time
dependence of the scale factor is determined by the equation of motion

1
R

dR

dt
=

√
8πGε

3
(16.53)

This expression can be used to relate the time to the scale factor using
the normalization R(tc) = 1.
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Fig. 16.5. Temperature as a function of scale factor.

We also need to know how fast a bubble expands once it is created. This
is a subtle issue since by definition a critical-sized bubble is metastable
and will not grow without a perturbation. After applying a perturbation,
a critical-sized bubble begins to grow. As the radius increases the surface
curvature decreases, and an asymptotic interfacial velocity is approached.
The asymptotic radial-growth velocity will be referred to as v(T ). The
expected qualitative behavior of v(T ) is that the closer T is to Tc the
more slowly the bubbles grow. At Tc there is no motivation for bubbles
to grow at all since one phase is as good as the other. The bubble-growth
velocity was studied by Miller and Pantano [18]. Their hydrodynamical
results may be parametrized by the simple formula

vγ = 3
(

1 − T

Tc

)3/2

(16.54)

which indeed has the expected behavior. A simple illustrative model for
bubble growth is then

V (t′, t) =
4π
3

[
r∗(T (t′)) +

∫ t

t′
dt′′v(T (t′′))

]3

(16.55)

This expression can also be written in terms of R,R′, R′′ instead of t, t′, t′′.
We now have a complete set of coupled integro-differential equations,

which must be solved numerically. These equation take into account bub-
ble nucleation and growth, energy conservation, and Einstein’s equations.
They make no assumption about entropy conservation.

Figure 16.5 shows the temperature as a function of the scale factor.
For practical purposes, nucleation begins near the bottom of the cooling
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Fig. 16.6. Average bubble density as a function of scale factor.

line. Thereafter, the nucleation and growth of bubbles release latent heat
that causes the temperature to rise. The increasing temperature shuts
off nucleation, and the phase transition continues owing to the growth
of already nucleated bubbles. The temperature can never quite reach
Tc; if it did, bubble growth would cease and the transition would never
complete. This is a result of the equations of motion and is not an
imposition.

Figure 16.6 shows the average bubble density

n(R(t)) =
∫ t

tc

dt′ I(T (t′))[1 − h(t′)] (16.56)

as a function of the scale factor. The bubble density rises rapidly just
before R reaches 1.007 and reaches its asymptotic value just after 1.007.

Figure 16.7 shows the nucleation rate as a function of scale factor. The
rate has a very sharp maximum between 1.0070 and 1.0071. The turn-on
and turn-off of the nucleation rate corresponds precisely with the fall and
rise of the temperature shown in Figure 16.5.

Figure 16.8 shows the fraction of space h that has made the conversion
to the hadronic phase. When h = 1 the transition is complete and the
temperature will begin to fall again. This occurs when R ≈ 1.4464, to
be compared with the value one would obtain from an ideal Maxwell
construction, RMaxwell = (239/79)1/3 = 1.446 30. . . . In fact the whole
curve h(R) is very close to the ideal Maxwell construction, apart from its
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Fig. 16.7. Nucleation rate as a function of scale factor.

Fig. 16.8. Volume fraction of space h occupied by the hadronic phase as a
function of scale factor.

delayed start, apparent in the figure. The interested reader could work
out the Maxwell formula from the equations given here.

Figure 16.9 shows the average bubble radius r̄ as a function of scale
factor, obtained from

4π
3
r3n = h (16.57)
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Fig. 16.9. Average bubble radius as a function of scale factor.

It grows with time and with the scale factor, of course. At the end of the
phase transition it is of order 1 cm. This is also the order of magnitude of
the distance between the final quark–gluon plasma regions. Unfortunately,
it is two orders of magnitude too small to affect nucleosynthesis. This
result is rather robust against reasonable variations in any of the input
parameters.

Nucleosynthesis is affected by remnant inhomogeneities in the baryon-
to-entropy ratio and in isospin if the high-baryon-density regions imme-
diately following a QCD phase transition are separated by at least 1 m.
A set of dynamical equations can be written and solved for the evolution
of the universe through such a phase transition all the way to completion.
The evolution of the temperature and hadronic volume fraction as func-
tions of time and scale factor are hardly different from the results of an
idealized Maxwell construction. The information not available in the lat-
ter construction is the length scale of the inhomogeneities, that is, bubble
sizes and so on. The characteristic distance between the last regions of
quark–gluon plasma seem to be of order 1 cm, too small to affect nucle-
osynthesis. However, qualifications and improvements can be made. For
example, when the fraction of space occupied by bubbles exceeds about
50%, interactions among the bubbles probably cannot be neglected. It
is unlikely, though, that further improvements in the dynamics would
qualitatively change the current picture of the transition. Indeed, crude
estimates of the effects of bubble fusion on the dynamics of the QCD
transition in heavy ion collisions indicate that the transition completes
only a little faster, and that the average bubble size is greater (Csernai
et al. [19]). At least this is in the right direction to be interesting.
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16.5 Electroweak phase transition and baryogenesis

The standard model conserves baryon and lepton number at the classical
level but not at the quantum level. This violation is always a possibility
when the current is associated with a global symmetry rather than with a
local gauge symmetry. Electric charge, for example, is conserved at both
the classical and quantum levels. This phenomenon is called the Adler–
Bell–Jackiw anomaly (Bell and Jackiw [20]; Adler [21]). In the standard
model the divergence of the baryon current is

∂μJ
μ
B =

Nfam

64π2
εμνρσ

(
g2fa

μνf
a
ρσ + g′2gμνgρσ

)
(16.58)

Entering on the right-hand side are the field strength tensors for the SU(2)
and U(1) gauge fields, in the same notation as in Chapter 15. There is a
factor Nfam on the right-hand side equal to the number of quark families
(the standard model has three). The divergence of the lepton current is
exactly the same, so that if the numbers of families of quarks and leptons
are the same, as in the standard model, the baryon number minus the
lepton number, B − L, is conserved. Of course, baryon and lepton number
will change only if the field configurations are such that the right-hand
side does not vanish.

Gerard ’t Hooft [22] showed that, indeed, the conservation of baryon
number is violated by the instanton of the weak SU(2) group. (For instan-
tons in QCD see Chapter 8.) The rate for baryon number violation is
proportional to the factor exp(−16π2/g2) ≈ 10−170. The probability of
observing this effect is exceedingly small with any reasonable estimate of
the prefactor. The proton lifetime, for example, has been estimated to be
many orders of magnitude larger than the age of the universe. It would
seem that this effect is merely a curiosity of quantum field theory.

However, Kuzmin, Rubakov, and Shaposhnikov [23] showed that this
is not the case at high temperatures. The reason that baryon number
can be violated at zero or low temperatures is that the weak instanton
involves tunneling between inequivalent vacua with different baryon num-
bers. This tunneling is exponentially suppressed by the aforementioned
factor. At high temperatures the transition can occur because of thermal
fluctuations, and if the temperature is high enough the corresponding
Boltzmann factor may not be nearly as small as the tunneling probabil-
ity. Specifically, they calculated the free energy of a static classical field
configuration involving the SU(2) gauge field and the Higgs field. The
Boltzmann factor for the baryon-number-violating process is

exp
(−Fsphaleron

T

)
= exp

[∫ β

0
dτ

∫
d3xLeff(Aa

i (x),Φ(x))
]

(16.59)
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The calculation is done at fixed temperature. Therefore the resummed
effective Lagrangian derived in Sections 9.3 and 15.4 can be used. This
is a beautiful example of the use of the effective resummed theory. To
lowest order, this means that the coupling constant and the Higgs con-
densate become functions of temperature, g(T ), v(T ). Before describing
the relevant classical solution to the field equations, let us understand the
connection between baryon (and lepton) number violation and the Adler–
Bell–Jackiw anomaly. Here we follow Klinkhamer and Manton [24], who
coined the word sphaleron to refer to this and related classical solutions.

We compute the time rate of change of total baryon number as dB/dt =∫
d3x∂J0

B/∂t. Let us assume that either the spatial baryon current JB

vanishes at spatial infinity or that it is periodic in a large box of volume V .
In either case Gauss’s theorem can be used to express the volume integral
of the divergence of the spatial current in terms of a surface integral,
which vanishes under the above assumptions. The change in the baryon
number, relative to its value as t → −∞, is associated with the baryon
number of the sphaleron,

Bsphaleron =
Nfamg2

64π2

∫ t

−∞
dt′
∫

d3x εμνρσfa
μνf

a
ρσ (16.60)

The integrand can be expressed as the divergence of a current:

∂μK
μ =

1
2
εμνρσfa

μνf
a
ρσ

Kμ = εμνρσ
(
fa
νρA

a
σ − 2

3
εabcA

a
νA

b
ρA

c
σ

) (16.61)

This can be proven by using the classical equations of motion.
To proceed we must have time-dependent fields with finite energy at

all times. Furthermore, we want these fields to evolve from the trivial
vacuum, Aa

μ = 0, at t → −∞ to the sphaleron configuration at time t.
Moreover, we want Aa

μ to be a pure gauge field at spatial infinity such
that K = 0 there. Then we can write

Bsphaleron =
Nfamg2

32π2

∫
d3x K0(x, t) (16.62)

Whether this is nonzero depends on the field configuration. Notice that
the sphaleron configuration we discussed earlier was time independent. In
fact, to make the identification of baryon number with sphaleron, we first
find a static configuration of fields and then make a gauge transformation
to satisfy the conditions given above.
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Define the dimensionless variable ζ = gvr. The static sphaleron ansatz
is

A0 = 0

A = v
f(ζ)
ζ

r̂ × σ (16.63)

Φ =
v√
2
h(ζ)r̂ · σ

(
0
1

)
with boundary conditions f(0) = h(0) = 0, f(∞) = h(∞) = 1. The result-
ing equations of motion are

ζ2f ′′ = 2f(1 − f)(1 − 2f) − ζ2

4
(1 − f)h2 (16.64)

ζ2h′′ = −2ζh′ + 2(1 − f)2h− λ

g2
(1 − h2)h (16.65)

These cannot be solved exactly in closed form, although analytic approxi-
mations can be found. Klinkhamer and Manton showed that the resulting
free energy is Fsphaleron = (4πv/g)F0(λ/g2). The factor F0 varies smoothly
from 1.566 at λ = 0 to 2.722 at λ = ∞, with F0(1) = 2.10. The charac-
teristic size of the sphaleron is found to be 1/gv simply from dimensional
analysis. Note that the characteristic energy is 4πv/g ≈ 5 TeV when the
parameters are those appropriate to the vacuum.

In order to compute the baryon number of the sphaleron we must make
a gauge transformation. We choose the gauge transformation

U(x) = exp
(
i

2
Θ(r)σ · x

)
(16.66)

with a function Θ(r) that varies smoothly from 0 to π as r varies from 0
to ∞. The function should be chosen so that A goes to zero faster than
1/r as r → ∞, so that K does not contribute to the integral yielding the
baryon number. In particular

Aa
i =

[1 − 2f(gvr)] cosΘ(r) − 1
gr2

εiabxb

+
[1 − 2f(gvr)] sin Θ(r)

gr2

(
δiar

2 − xixa
)

+
1
g

dΘ
dr

xixa
r2

(16.67)

By using this formula in K0 it is easy to show that the baryon num-
ber of the sphaleron is Bsphaleron = Nfam/2. This is reasonable since the
sphaleron interpolates between two sectors that differ by baryon number
1 for each family. The same holds true for lepton number.

The rate of sphaleron transitions involves primarily the Boltzmann fac-
tor, but for numerical purposes the prefactor is needed too. Calculation of
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the prefactor is analogous to that for the nucleation of bubbles in a first-
order phase transition, as analyzed in Chapter 13. The first calculation
was performed by Arnold and McLerran [25] who found that

Γsphaleron =
ω−
2π

(gv)3VNtran8π2Nrot

(
gT

v

)3

κ exp
(−Fsphaleron

T

)
(16.68)

Here ω− is the magnitude of the negative mode causing the instability. It
was estimated to be of order gv. The volume of phase space associated
with translational zero modes is (gv)3V , where the volume of the box or
universe is V . The volume of rotation space, SO(3), is 8π2. The factors
Ntran and Nrot relate to the normalization. They are given as integrals
involving the functions f and h describing the sphaleron. Finally there
is a determinantal factor κ (not to be confused with the quantity used
in Chapter 13), that depends on the ratio λ/g2. It is this last quantity
that is very difficult to compute; this must be done numerically with
great care. Carson et al. [26] found that Ntran is a smoothly increasing
function, and Nrot a smoothly decreasing function, of λ/g2. However, their
product has the approximately constant value 90 for 0.1 < λ/g2 < 10.
They found that ω− is a slowly increasing function of the same ratio of
couplings and differs from gv by only 30% as λ/g2 varies by two orders
of magnitude. They calculated κ for four different values of λ/g2. Baacke
and Junker [27] also calculated κ for seven values of λ/g2. Their results
are in approximate numerical agreement. It turns out that κ peaks at
λ/g2 ≈ 0.4 and falls off rapidly for both smaller and larger values of λ/g2.
A simple parametrization that captures this feature is

lnκ = lnκmax − 0.09
(

λ

g2
− 0.4

)2

− 0.13
(
g2

λ
− 2.5

)2

lnκmax = −3
(16.69)

If we now put everything together we find the rate per unit volume,

Γsphaleron

V
= 56.3gv(g2T )3

κ(λ/g2)
κmax

exp
(
−4πv

gT
F0(λ/g2)

)
(16.70)

This depends on two scales, gv and g2T , as well as on the ratio of the
quartic and gauge couplings.

For what range of temperature is the sphaleron rate formula given above
valid? It assumes that the baryon- and lepton-changing transitions are
dominated by the sphaleron configuration and that higher excitations are
unimportant. This means that on the one hand the argument of the expo-
nential must be larger than unity, or T < 4πv/g. On the other hand, it
assumes that gv provides an infrared cutoff smaller than the temperature,
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gv < T . Therefore the expected range of validity is

gv < T < 4πv/g (16.71)

The values of v, λ, and g are those appropriate to T , not the zero-
temperature values. Of these, v changes the most rapidly with T , as we
saw in Sections 15.2 and 15.3. If we use the vacuum value g = 0.637 and
10% of the vacuum value of v = 246 GeV, the temperature range is 16
to 480 GeV. This is centered directly on the electroweak energy scale,
which suggests that the baryon and lepton numbers of the universe were
essentially determined when the universe had that range of temperatures.

To relate the sphaleron rate to the baryon-number-changing rate we
follow Arnold and McLerran [25]. Suppose that the universe has different
sectors of baryon and lepton number and a sphaleron appears. It is associ-
ated with baryon and lepton numbers equal to Nfam/2. The change in free
energy of the universe when a sphaleron is formed now involves the extra
term (ΔNBμB + ΔNLμL)/T ; ΔNB = ΔNL = ±Nfam/2, the sign being
determined by whether the sphaleron increases or decreases the baryon
and lepton numbers. The difference in the forward and backward rates
involves the factor

e(μB+μL)Nfam/2T − e−(μB+μL)Nfam/2T ≈ (μB + μL)Nfam/T (16.72)

where the last approximate equality follows because the chemical poten-
tials are extremely small (the observed baryon-to-photon ratio is about
10−9). Furthermore, the sphaleron facilitates the transition between two
sectors that differ by a baryon number value equal to the number of fam-
ilies Nfam. Therefore the baryon-changing rate is

dNB

dt
= −N2

fam

μB + μL

T
Γsphaleron (16.73)

We need to relate the baryon number to the chemical potentials. We
allow for a third chemical potential μE associated with electric charge.
Taking three families of fermions, calculating the electric charge density
and setting it to zero, and solving for the chemical potentials we find that
μE = (3μL − μB)/8. Then the densities are

nB =
5μB + μL

8
T 2

nL =
9μL + μB

8
T 2

(16.74)

If we further assume that the baryon and lepton numbers of the universe
are equal we get μL = μB/2 and finally nB = (11/16)μBT

2. Putting this
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into the baryon-changing rate we finally get

1
NB

dNB

dt
= −1100

κ(λ/g2)
κmax

g7v exp
(
−4πv

gT
F0(λ/g2)

)
(16.75)

The absolute baryon number is decreased by sphalerons no matter
whether it starts out positive or negative.

The characteristic time for the relaxation of baryon and lepton numbers
to their equilibrium value of 0 is just given by the previous equation. This
should be compared with the expansion rate of the universe. According
to Einstein’s equations the scale factor of the universe evolves according
to (16.53). For an equation of state corresponding to Ndof ≈ 100 massless
bosonic degrees of freedom the characteristic expansion time scale is found
from

1
R

dR

dt
= 1.66

√
Ndof

T 2

mPlanck
(16.76)

where mPlanck = G−1/2 = 1.22 × 1019 GeV. The baryon-number-changing
rate is greater than the expansion rate of the universe for temperatures
greater than T∗, that is determined approximately by

T∗ ln
(
vmPlanck

T 2∗

)
=

4πvF0

g
(16.77)

The solution to this equation is approximately given by T∗ = v(T∗).
Within a factor 2 we can estimate T∗ to be about 100 GeV, the electroweak
scale, that is within the range of validity of the sphaleron approximation
to the baryon-changing rate. We would expect the net baryon and lepton
numbers of the universe to be determined somewhere around T∗.

For some range of temperatures above the regime of validity of the
sphaleron calculation the baryon- and lepton-number-changing reactions
are not expected to be suppressed. When T > 4πv/g there is no longer
a barrier to these reactions. On dimensional grounds the rate per unit
volume is then expected to be Ag10 ln(1/g2)T 4, where A is a constant
[28, 29]. This involves a factor (g2T )3, arising from the spatial volume
associated with the scale g2T , and a factor g4 ln(1/g2)T arising from the
relaxation time. Since the rate per unit volume grows as T 4 and the
particle density grows approximately as T 3, the rate per particle grows
as T . This should be compared with the T 2 growth of the expansion rate
of the universe. Therefore baryon- and lepton-number-changing processes
will be predominant for T∗∗ > T > T∗; it is left as an exercise for the
reader to estimate T∗∗.

One can ask a different question. Is it possible for the net baryon and
lepton numbers of the universe to be generated at the electroweak scale?
This requires three ingredients: baryon- and lepton-changing processes;
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CP violation; and a system out of equilibrium. The first has already been
demonstrated in the standard model. CP violation also exists in the stan-
dard model, as evidenced by neutral kaon oscillations. The requirement
that the universe be out of equilibrium is certainly possible if the stan-
dard model has a first-order electroweak phase transition. Much work has
been done in this context, but the consensus is that there is no first-order
electroweak phase transition in the minimal standard model; see Section
15.4. An extension of the minimal standard model to include extra Higgs
bosons generally does allow for a first-order phase transition. There also
seems to be a consensus that a second-order phase transition is not suffi-
cient to generate baryon and lepton numbers anywhere near their observed
values. What happens beyond the minimal standard model is a topic of
much current research.

16.6 Decay of a heavy particle

Presumably there is physics beyond the standard model. This may include
grand unified theories (GUT), supersymmetry (SUSY), and string theory.
A feature common to all of these is the existence of new particles that have
masses well above the electroweak scale of 100 GeV. These particles could
have been in thermal and chemical equilibrium in the very early universe
when the temperature was comparable with or greater than their masses.
Since these particles are not observed today they must have been unstable
and have decayed to lighter particles. The methods developed in previous
chapters are perfectly adapted to describe the physics of these decays at
finite temperature.

Following Weldon [30], consider a very heavy scalar field Φ with mass
M that decays into a pair of lighter scalar fields φa and φb with masses
ma and mb (M > ma + mb). The interaction responsible for the decay is
taken to be Lint = gsΦφaφb. The self-energy of the Φ can be computed in
the one-loop approximation in the usual way:

Π(k0 = iωn,k)

= −g2
sT

∞∑
j=−∞

∫
d3p

(2π)3
1

ω2
j + p2 + m2

a

1
(ωj − ωn)2 + (p − k)2 + m2

b

(16.78)

Here ωn and ωj are the Matsubara frequencies. After performing the sum
the self-energy may be expressed as

Π(k0 = iωn, k) = g2
s

∫
d3p

(2π)3
1

2Ea2Eb

(
1 + na + nb

k0 − Ea − Eb
+

na − nb

k0 + Ea − Eb

+
nb − na

k0 − Ea + Eb
− 1 + na + nb

k0 + Ea + Eb

)
(16.79)
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The energies are Ea =
√

p2 + m2
a and Eb =

√
(p − k)2 + m2

b , and the na

and nb are the Bose–Einstein occupation numbers.
Since the Φ is unstable its self-energy has both real and imaginary

parts. The imaginary part is what concerns us most here. As in Section
6.6, we write k0 = ω − iγ and assume weak damping, γ � ω. Then it is
easy to see that

ImΠ(ω,k) = −πg2
s

∫
d3p

(2π)3
1

2Ea2Eb

×{[(1 + na)(1 + nb) − nanb]
× [δ(ω − Ea − Eb) − δ(ω + Ea + Eb)]
+ [na(1 + nb) − nb(1 + na)]
× [δ(ω + Ea − Eb) − δ(ω − Ea + Eb)]} (16.80)

The product nanb has been added and subtracted in each of the terms
to provide a transparent physical interpretation. Under the conditions
stated above, the kinematically allowed processes are the decay Φ →
φa + φb and the formation φa + φb → Φ. The former involves the factor
(1 + na)(1 + nb), that is a Bose enhancement of the final state. The lat-
ter involves the factor nanb and a relative minus sign as is appropriate
for a formation reaction. The overall normalization is governed by the
decay amplitude gs times kinematic factors. At zero temperature all the
Bose–Einstein occupation numbers go to zero and γ = −ImΠ/2ω just
represents the in-vacuum decay. The other terms represent processes that
are kinematically forbidden in the present situation but could occur under
different ones. They include Φ + φa → φb, Φ + φb → φa, Φ + φa + φb → 0,
φa → Φ + φb, φb → Φ + φa, 0 → Φ + φa + φb.

It may also be possible for the Φ to decay into a fermion–antifermion
pair. This could happen via the interaction Lint = gf ψ̄ψΦ. In that case
the imaginary part would be

ImΠ(ω,k) = −2πg2
f

∫
d3p

(2π)3
s− 4m2

f

2Ea2Eb

×{[(1 + na)(1 + nb) − nanb]
× [δ(ω − Ea − Eb) − δ(ω + Ea + Eb)]
+ [na(1 + nb) − nb(1 + na)]
× [δ(ω + Ea − Eb) − δ(ω − Ea + Eb)]} (16.81)

The physical interpretation of these terms is exactly analogous to those
for the decay of the Φ into bosons.
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The imaginary part due to the coupling to either bosons or fermions
can be written in a universal format:

ImΠ(ω,k) = −1
2

∫
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4

×{δ4(k − pa − pb)|M(Φ → a + b)|2
× [(1 − na)(1 − nb) − nanb]

+ δ4(k + pa − pb)|M(Φ + a → b)|2
× [na(1 − nb) − nb(1 − na)]

+ δ4(k − pa + pb)|M(Φ + b → a)|2
× [nb(1 − na) − na(1 − nb)]

+ δ4(k + pa + pb)|M(Φ + a + b → 0)|2
× [nanb − (1 − na)(1 − nb)]} (16.82)

Here M is the corresponding amplitude for a given process, whether for
bosons or fermions.

This result is of wide application. It applies to final states involving
more than two particles also. It easily generalizes to the decay of vector
mesons and to the decay of a heavy fermion in an obvious way.

16.7 Exercises

16.1 Derive the formulas for the asymptotic mass and radius of a white
dwarf star given in Section 16.1.

16.2 Derive the expression for the charge symmetry coefficient (16.22)
given in Section 16.2.

16.3 Using the numbers given in the text, calculate the mean field
potential at nuclear saturation density for nucleons and for the
Λ, Σ, and Ξ hyperons.

16.4 Calculate the neutrino emissivity for an ultrarelativistic degener-
ate electron gas (μe � T � me).

16.5 Show that the formulas for ZT and ZL, (16.35), (16.36), follow
from the previous formulae.

16.6 Look up the relevant matrix element and use it to calculate
(16.44).

16.7 Derive formulae for and plot the temperature T (R) and hadronic
volume fraction h(R) assuming an idealized Maxwell construction
for a QCD phase transition in the early universe.

16.8 Derive the equations of motion for f and h that start from the
sphaleron ansatz (16.63).

16.9 Show that the baryon number of a sphaleron is Nfam/2 by using
(16.67).
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16.10 Derive the formulae (16.74) for the baryon and lepton densities.
16.11 Suppose that the baryon-changing rate is given by

Ag10 ln(1/g2)T 4. If the baryon-to-photon ratio η has the
value 10−9 at T = 100 GeV, what would it have been at ear-
lier times and temperatures? What is your estimate for the
temperature T∗∗ discussed in the text?

16.12 Consider a very heavy boson of mass M that decays into a mass-
less fermion–antifermion pair. Write down the rate equation for
the abundance of these heavy bosons. Solve this equation in the
temperature range M � T0 > T > 100 GeV in terms of the initial
density nM (T0).
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