
18

The Kobayashi–Maskawa matrix

In Chapter 14, in the theory of the weak interaction of quarks, there appeared the

Kobayashi–Maskawa matrix:

V =
⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠ (18.1)

and its parameterisation:

V =
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠ (18.2)

where c12 = cos θ12 > 0, s12 = sin θ12 > 0, etc. The KM matrix couples quark

fields of different flavours. It contains four physically significant parameters, which

can be taken to be the three rotation angles θ12, θ13, θ23, each lying in the first

quadrant, and the phase angle δ.

There is no theory relating these parameters, just as there is no theory relating

quark masses. Indeed, the quark sector of the Standard Model may appear to the

reader to be lacking in aesthetic appeal. The parameters of the KM matrix must

be determined from experiment, and in this chapter we indicate how experimental

information has been obtained.

18.1 Leptonic weak decays of hadrons

We have seen in Section 15.3 two unitarity sum rules that support the validity of the

Standard Model, and there are many independent measurements that both test for

consistency and given consistency determine the parameters. So far no definitive

inconsistencies have been established, and a large body of data is well described
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Figure 18.1(a) A Feynman diagram for the leptonic decay b → c + e− + ν̄e
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(b) A quark model diagram for the decay B− → charmed hadron system +
e− + ν̄e

with the parameter values s12 = 0.2243 ± 0.0016, s23 = 0.0413 ± 0.0015, s13 =
0.0037 ± 0.0005 and δ = 57◦ ± 14◦.

A suitable starting point for the consideration of hadronic weak decays is first-

order perturbation theory in the effective Lagrangian density of equation (14.21):

L = −2
√

2GF j †μ jμ, where jμ is given by (14.20). Leptonic decays are the most

simple for theoretical analysis because the leptonic parts of a transition matrix

element can be calculated with some confidence. If quarks were available as isolated

particles, the three rotation angles of the KM matrix could be determined by the

measurement of the decay rates of leptonic decays such as

b → c + e + ν̄e.

In lowest order perturbation theory (see Fig. 18.1a) the decay rate for this process

is given by

1

τ (b → c)
= G2

Fm5
b

192π3
|Vcb|2 f

(
mc

mb

)
(18.3)

where f (x) = 1 − 8x2 + 8x6 − x8 − 24x4 ln(x) is a factor associated with the

available phase space. This programme cannot be carried out directly since the b

and c quarks are accompanied by other spectator quarks and gluons (see the quark
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178 The Kobayashi–Maskawa matrix

model diagram of Fig. 18.1b), which involve the calculation of strong interaction

matrix elements. To the extent that the hadronic matrix elements can be calculated,

a measurement of the decay rate will determine |Vcb|2.

18.2 |Vud| and nuclear β decay

Isospin symmetry (see Section 16.6) is important for the determination of the

hadronic matrix elements of all nuclear β decays. Such decays involved the quark

current

jμ
q = d†

Lσ̃ μuL = d̄γ μ(1/2)(1 − γ 5)u. (18.4)

Here we have expressed the current in terms of the Dirac four-component spinors

u and d, with the help of the projection operator (1/2)(1 − γ 5) introduced in (5.32)

and noting d̄ = d†γ o.

As in Chapter 16, we now take the u and d quarks together in an isotopic doublet:

D(x) =
(

u(x)

d(x)

)
.

The isospin operator (1/2)(τ 1 − iτ 2) has the property

1

2

(
τ 1 − iτ 2

) (
u
d

)
=

(
0

u

)
,

so that we may write (see (16.31))

j u
q = (1/4)D(x)γ μ(1 − γ 5)(τ 1 − iτ 2)D(x)

= (1/2)
[
νμ(x) − aμ(x)

]
. (18.5)

We have split the current into the part νμ(x), which transforms like a vector under

space inversion and the part aμ(x), which transforms like an axial vector (see

Section 5.5):

νμ(x) = (1/2)Dγ μ(τ 1 − iτ 2)D, (18.6)

aμ(x) = (1/2)Dγ μγ 5(τ 1 − iτ 2)D. (18.7)

We saw in Section 16.6 that exact isospin symmetry leads to conserved currents:

ν
μ

i = (1/2)Dγ μτ iD, (18.8)

so that the vector part of the β decay current of the u and d quarks is a conserved

isospin current.
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In the case of nucleons, we denote the isospin doublet of the effective Dirac

fields p(x) and n(x) of the proton and neutron by

DN(x) =
(

p(x)

n(x)

)
. (18.9)

An effective Lagrangian density that at the low energies of nuclear physics describes

the β decay of a nucleon is

Leff = −2
√

2GFC | j †e jμ

N + jμ†
e jeμ|, (18.10)

with

jμ

N = 1

4
DNγ μ(1 − gAγ 5)(τ1 − iτ 2)DN. (18.11)

Experimentally, it is found from a range of nuclear data that

C = 0.9713 ± 0.0013 and gA = 1.2739 ± 0.0019.

(See Particle Data Group.)

The vector part of the current j
μ

N is the conserved isospin current of nuclear

physics and corresponds to the more fundamental conserved isospin current at

the quark level. Exact isospin symmetry would require that the contribution of the

conserved nucleon isospin current to the effective interaction (18.8, 18.9) be the

same as that of the quarks in (18.5, 18.6), so that we identify C = Vud = 0.9713 ±
0.0013.

18.3 More leptonic decays

The most precise estimates of |Vus| have come from observations of leptonic

K decays, for example K−(sū) → πo(uū − dd̄)/
√

2 + e− + ν̄e. Analyses of these

decays by lattice QCD, quark model calculations, and calculations based on chiral

symmetry (see Section 16.7) all converge on the value |Vus| = 0.224 ± 0.003.

Estimates of |Vcs| and |Vcd| can be extracted from D decays, for exam-

ple D−(c̄d) → Ko(s̄d) + e− + ν̄e or D−(c̄d) → πo(uū − dd̄)/
√

2 + e− + ν̄e. These

decay rates are proportional to |Vcs|2 and |Vcd|2 respectively.

More experimental information on |Vcd|2 comes from the deep inelastic scattering

of neutrinos by atomic nuclei through processes such as

νμ + d → μ− + c. (See Appendix D.)

Atomic nuclei provide an abundant source of d quark targets. The cross-section

for producing a c quark rather than a u quark can be inferred by identifying those

c quarks that decay as c → d + μ+ + νμ. Overall, a characteristic μ+μ− pair is

produced.
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180 The Kobayashi–Maskawa matrix

The conclusions, after much work along the lines indicated, and without imposing

the unitarity condition, are

|Vcd| = 0.224 ± 0.014, |Vcs| = 1.04 ± 0.16.

Leptonic decays of B mesons (bū, bd̄, b̄u and b̄d) provide the best data on |Vcb|
and |Vub|, Three experimental facilities have been constructed to measure B decays:

in the USA at Cornell (Cleo) and Stanford (Babar), and in Japan (Belle). At these

‘B meson factories’ many million B mesons have been produced for analysis.

In the case of |Vcb|, the hadronic matrix elements for decays like B− → D◦ +
e− + ν̄e can be calculated taking the heavy b quark in the B−(b, ū) meson as static

in first approximation. Analysis of the data gives

|Vcb| = 0.0413 ± 0.0015, |Vub| = 0.00367 ± 0.00047.

The remaining three elements of the KM matrix involve the top quark. The

mean life of the top quark is so short it is likely to decay before it has time to

settle into a top quark hadron. The methods described above are unavailable for

|Vti | (i = d, s or b).

18.4 CP symmetry violation in neutral kaon decays

In Section 14.4 we obtained the important result that the quark sector of the Standard

Model is not invariant under the charge conjugation, parity, operation unless all the

elements of the KM matrix can be made real. With the parameterisation (18.2), this

requires that the phase angle δ = 0.

CP violation was first observed in 1964 in the decay of neutral K mesons. The

states of definite quark number are the K◦(ds̄) and K̄◦(d̄s). These mesons are readily

produced in strong interactions, for exampleπ−(ūd) + p(uud) → Ko(ds̄) + 
(uds).

Without the weak interaction the K◦ and K̄◦ would have equal mass and be stable.

The weak interaction is responsible for their instability and CP violation would be

manifest if for example it were seen that the decay rates Ko → π+π− and K̄◦ →
π+π− were different. Such a difference can occur in second-order perturbation

theory in the weak interaction (first order in GF. See (14.21)). This is known as

direct CP violation.

The weak interaction also gives rise to the phenomenon of mixing (Appendix E,

Fig. E1). Although mixing occurs only at second order in GF it has the dramatic

effect of splitting the mass degeneracy: it results in two mixed states of different

mass. If CP were conserved the mixed states would be

|Ko
1) =

(
1
/√

2
) ( |Ko

〉 + |K̄o
〉)

and |Ko
2

) =
(

1
/√

2
) (|Ko

〉 − ∣∣K̄o
〉)

.
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18.4 CP symmetry violation in neutral kaon decays 181

Acting on Ko and K̄o, the CP operator may be taken to give

CP
∣∣Ko

〉 = ∣∣K̄o
〉

and CP
∣∣K̄o

〉 = ∣∣Ko
〉
.

Then
∣∣Ko

1

〉
and

∣∣Ko
2

〉
are eigenstates of CP with eigenvalues +1 and −1 respectively.

Experimentally two states with a mass difference 3.5 × 10−12 MeV are indeed

observed; they also have very different mean lives

τs = 8.9 × 10−11s, τL = 5.17 × 10−8s.

The Ko
s decays predominantly into two pions, π+π− or πoπo. Each of these

two-pion states is an eigenstate of CP, with eigenvalue +1 (Problem 18.2). In its

mesonic decay modes, the Ko
L decays predominantly into πoπo πo, and these three-

pion states are eigenstates of CP with eigenvalue −1 (Problem 18.3). However, in

about three decays in a thousand Ko
L decays into two pions, with CP eigenvalue +1.

If CP were conserved Ko
L would be either Ko

1 or Ko
2 and could not have both two

pion and three pion decay modes. CP violation is also seen in leptonic K decays.

These show that direct CP violation is not responsible for the anomalous Ko
L decays

but they are predominantly due to CP violation in mixing.

It is shown in Appendix E that neither
∣∣Ko

s

〉
nor

∣∣Ko
L

〉
is an eigenstate of CP, but

each can be written in terms of |Ko〉 and
∣∣K̄o

〉
:

∣∣Ko
s

〉 = N
[

p |Ko〉 + q
∣∣K̄o

〉]
,∣∣Ko

L

〉 = N
[

p |Ko〉 − q
∣∣K̄o

〉]
.

(18.12)

N is the normalisation factor: (|p|2 + |q|2)−1/2. Note that q is not equal to p. In

Appendix E we indicate how p and q can be calculated in the Standard Model.

We can similarly express
∣∣Ko

s

〉
and

∣∣Ko
L

〉
in terms of

∣∣Ko
1

〉
and

∣∣Ko
2

〉
:

∣∣Ko
s

〉 =
(

N/
√

2
) [

(p + q)
∣∣Ko

1

〉 + (p − q)
∣∣Ko

2

〉]
,∣∣Ko

L

〉 =
(

N/
√

2
) [

(p − q)
∣∣Ko

1

〉 + (p + q)
∣∣Ko

2

〉]
.

(18.13)

Neglecting direct CP violation only Ko
1 can decay into ππ so that the ratio of the

decay rates

�(KL) → ππ

�(KS) → ππ
= |p/q − 1|2

|p/q + 1|2 = (5.25 ± 0.05) × 10−6 (from experiment).

Defining p/q = 1 + 2εK we infer that |εK| = 2.3 × 10−3; εK is a measure of CP
violation.
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Figure 18.2 The unitarity triangle.

18.5 B meson decays and Bo, B̄o mixing

At the B meson factories the 4s (bb̄) meson is copiously produced by e+e− collisions

with beam energies turned to the meson mass. The meson decays almost exclusively

into B+, B− or Bo, B̄o pairs and so provides a rich source of B mesons. With a mass

of 5.28 GeV, B mesons decay into many different final states and many exhibit CP
violation. An indication of why this is so can be seen by a consideration of the

unitarity condition

VudV ∗
ub + VcdV ∗

cb + VtdV ∗
tb = 0,

which can be written as

z1 + z2 = 1 (18.14)

where we have defined z1 = −VudV ∗
ub

VcdV ∗
cb

and z2 = − VtdV ∗
tb

VcdV ∗
cb

.

z1 and z2 are complex numbers that, in the complex plane form a triangle, the

unitarity triangle illustrated in Fig. 18.2. Also it can be seen from the parameters

given in Section 18.1 that VcdV ∗
cb is almost real and negative. Neglecting its very

small imaginary part, the angle γ = δ, the phase of V ∗
ub, and β is the phase of

V ∗
td. Of all the unitarity triangles, this is the only one with direct access to the

two KM matrix elements with large phases; it also involves the b quark and hence

B mesons.

Of particular importance has been the measurement of the angle α through both

charged and neutral decays B → ππ, B → πρ and B → ρρ and of the angle β

through Bo, B̄0 mixing. As one example it is shown in Appendix E how sin(2β) is

measured at the B factories.
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Figure 18.3 The apex of the unitarity triangle is in, or near, the shaded region of
the plot.

The unitary triangle is specified by the position of its apex. This requires two

parameters, say the real and imaginary parts of z1. A single parameter defines a

line on the complex plane and a parameter with errors defines a band. Four such

bands inferred from experiment are shown in Fig. 18.3. The most important point

illustrated by the figure is the consistency between four independent measurements.

There is no indication of the Standard Model failing. The KM phase δ (≈γ ) can be

seen to be in the region δ = 57o ± 14o. The apex of the unitarity triangle is in, or

near, the shaded region of the figure.

18.6 The CPT theorem

We denote by T the operation of time reversal, t → t ′ = −t . The CPT theorem
states that, under very general conditions, a Lorentz invariant quantum field theory

is invariant under the combined operations of charge conjugation, space inversion,

and time reversal. The theorem was discovered by Pauli in 1955.

For the Standard Model, the CPT theorem implies that, since CP is not a sym-

metry of the Model, then neither is time reversal T. One may contemplate the

implications for the ‘Arrow of Time’.
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Problems

18.1 Draw quark model diagrams for the decays

π− → μ− + ν̄μ, K− → μ− + ν̄μ.

Show that the decay amplitudes are proportional to Vud and Vus respectively, and

Vus/Vud = tan θ12.

Neglecting the effects of the different quark masses, the ratio αK/απ calculated

in Problem 9.10 would equal Vus/Vud. Use this observation to estimate sin θ12.

18.2 A πo meson is even under the charge conjugation operation C, i.e. C |π0〉 = |π0〉.
Also, C |π+〉 = |π−〉 and C |π−〉 = |π+〉.

Show that two pions |πo, πo〉 or |π+, π−〉 in a relative S state and with their centre

of mass at rest satisfy CP|π, π〉 = |π, π〉.
18.3 Show that a state of three πo mesons |πo, πo, πo〉 with angular momentum zero and

centre of mass at rest satisfies C P|πo, πo, πo〉 = −|πo, πo, πo〉. (See Problem 18.2.)

18.4 Show that the area of the unitary triangle of Fig. 18.5 is J/2.

18.5 Show that if the quark fields are subject to a change of phase

d → eiθd d, b → eiθb b,

then the unitary triangle of Fig. 18.5 is rotated through an angle (θd − θb).
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