
Appendix H
Pairing in a single j-shell

H.1 BCS solution

We shall discuss some of the consequences of pairing correlations in the case of particles
moving in a single j-shell. The number of degenerate pair levels (ν, ν̄) which can be
accommodated in the shell is

� = 2 j + 1

2
. (H.1)

The value of the occupation numbers Vν and Uν must be the same for all the orbitals. In
particular, the occupation probability of the level when the system is occupied with N
particles is N/2�. Consequently,

Vν = V =
√

N

2�
(H.2)

and

Uν = U =
√

1− N

2�
, (H.3)

in keeping with the fact that U 2
ν + V 2

ν = 1. Making use of the above relation one finds

� = G
∑
ν>0

UνVν = G�U V

= G

2

√
N (2�− N ). (H.4)

The pairing gap thus achieves its maximum value for the system with N = � particles
(half-filled shell), in keeping with the fact that, owing to the degeneracy of the levels,
pairs of particles and hole states are equivalent as far as pairing correlations are concerned
(see Fig. H.1).

Making use of the condition H20 = 0, i.e.

2(εν − λ)UνVν = �(U 2
ν − V 2

ν ), (H.5)
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Figure H.1. Schematic representation of the pairing gap as a function of the number of
particles (see equation (H.4)).

and assuming εν = ε = 0, one obtains

− 2λ

2�

√
N (2�− N ) = G

2

√
N (2�− N )

1

�
(�− N ), (H.6)

thus leading to

λ = −G

2
(�− N ). (H.7)

Let us now calculate the ground-state energy

E0 = U + λN = 2
∑
ν>0

ενV 2
ν −

�2

G
.

Consequently,

E0 = −�
2

G
= −G2

4

1

G
N (2�− N )

= −G�

2
N + G

4
N 2. (H.8)

Assuming �� N one obtains from equation (H.7)

λ ≈ −G�

2

and equation (H.8) can be rewritten as

E0 ≈ λN + G

4
N 2. (H.9)
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322 Appendix H

Interpreting the second term in equation (H.8) or (H.9) as that corresponding to a rotor
in two dimensions with moment of inertia

�
2

2I =
G

4
(H.10)

or

I
�2
= 2

G
(H.11)

we finally write

E0 ≈ λN + �
2

2I N 2, (H.12)

∂E0

∂N

∣∣∣∣
N=0

= λ, (H.13)

∂2 E0

∂N 2
= �

2

I . (H.14)

Making use of the estimate given in equation (2.27) (see also end of Section 2.5) for
G and A ≈ 100 (Sn-isotopes), we obtain �

2/2I ≈ 0.07 MeV. This result is very close to
the value needed to fit the experimental data (see Fig. 4.2, where the pairing rotational
band is fitted with a parabola whose quadratic term is 0.1 MeV N 2).

In the single f-shell model, the quasiparticle energy is given by

Eν =
√

(εν − λ)2 +�2

=
[

G2

4
(�− N )2 + G2

4
N (2�− N )

]1/2

= G

2

[
�2 − 2�N + N 2 + 2�N − N 2

]1/2
,

Eν = E = G�

2
. (H.15)

H.2 Cranking moment of inertia

The cranking formula of the moment of inertia associated with pairing rotations (rotations
in gauge space) is

I = 2�
2
∑
ν>0

|< νν̄|Nν |BCS >|2
2Eν

=
∑
ν

|< νν̄|�Nν |BCS >|2
2Eν

. (H.16)

Making use of the relation

Nν = a†
νaν + a†

ν̄aν̄

= (U 2
ν − V 2

ν )(α†ναν + α†ν̄αν̄)+ 2UνVν(α
†
να

†
ν̄ + αν̄αν)+ 2V 2

ν

https://doi.org/10.1017/9781009401920.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.020


Pairing in a single j-shell 323

one obtains

〈νν̄ |Nν |BCS〉 = 2UνVν

leading to

I
�2
= 4

∑
ν>0

U 2
ν V 2

ν

Eν
=

∑
ν>0

�2

E3
ν

. (H.17)

Inserting (H.2), (H.3) and (H.15) into equation (H.17) one obtains

I
�2
= 4�

N

2�

(
1− N

2�

)
= 4N

G�

(
1− N

2�

)
. (H.18)

Setting N = �,

I
�2
= 2

G
, (H.19)

which coincides with the result shown in equation (H.11).
Note that

(�2/2I)

(G�/2)
= 1

2�
,

implying that collective pairing rotations have much lower energy than two-quasiparticle
excitation.

H.3 Two-particle transfer

The transfer operator is

P† =
∑
ν>0

a†
νa

†
ν̄

=
∑
ν>0

(
U 2
ν α

†
να

†
ν̄ −UνVν

(
α†ναν + α†ν̄αν̄

)
− V 2

ν αν̄αν +UνVν
)
. (H.20)

Consequently 〈
BCS

∣∣P†∣∣ BCS
〉 =∑

ν>0

UνVν = �
G
, (H.21)

and the two-particle transfer cross-section can be written as

σ (gs→ gs) ≈
(
�

G

)2

=
(

12√
A

A

28

)2

≈ A

4
. (H.22)
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On the other hand 〈
νν̄

∣∣P†∣∣ BC S
〉 = U 2

ν ≈ 1, (H.23)

leading to

σ (gs→ 2qp) ≈ U 4
ν ≈ 1. (H.24)

From the above equations one obtains

R = σ (gs→ gs)

σ (gs→ 2qp)
≈ A

4
. (H.25)

For Sn-isotopes (A ≈ 100) one thus expects

R = 25 (BCS model). (H.26)

Making use of the experimental results displayed in Fig. 4.2 one can calculate the aver-
age value of the ten observed two-particle transfer cross-sections connecting the mem-
bers of the Sn-ground-state pairing rotational band (64 ≤ N ≤ 76), normalized to the
116
50 Sn(gs)↔ 118

50 Sn(gs) (p, t) and (t, p) cross-sections. One obtains,

σ (gs→ gs)exp (H.27)

= 1.3+ 1.2+ 1.0+ 1.3+ 1.5+ 1.1+ 1.4+ 1.1+ 1.2+ 1.1

10
= 1.22.

Similarly, the calculation of the average of the six two-particle (relative) cross-sections
connecting members of the ground-state pairing rotational band to members of the two-
quasiparticle (2qp) pairing vibrational bands leads to

σ (gs→ 2qp)exp = 0.04+ 0.03+ 0.04+ 0.06+ 0.05+ 0.08

6
= 0.05. (H.28)

Consequently,

Rexp ≈ 1.22

0.05
≈ 24.4, (H.29)

essentially as predicted by theory (see also (2.58 )).

H.4 Polarization effects

In the following we summarize in simple terms the results obtained in sub-section 10.4.1.
The relation in equation (H.4) with N = � leads to

� = 1

2
G�. (H.30)

We are particularly concerned with the role of polarization effects on the renormalization
of the value of the pairing gap in a superfluid nucleus like e.g. 120Sn.

We shall call Gb and �b the bare pairing strength and degeneracy (closely related to
the density of levels) associated with an effective mass equal to the k-mass (mk ≈ 0.7 m)
(see equations (8.20) and (8.21)). From the results displayed in Figs. 8.6, 8.9 and 10.1
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one can write
1

2
Gb�b = 0.5�exp, (H.31)

1

2
Gb�d = 1.4�exp, (H.32)

and
1

2
gp-v�d ≈ 0.8�exp, (H.33)

where �d is the effective (dressed) degeneracy arising from the coupling of single-
particle motion to collective vibrations (ω-effective mass, see Section 9.2), while gp-v

is the induced pairing interaction due to the exchange of vibrations between pairs of
nucleons moving in time-reversal states close to the Fermi energy (see Section 9.3).

In keeping with the results displayed in Fig. 10.16, one can also write

1

2
Gd�d = �exp, (H.34)

where Gd is the dressed pairing interaction. Because the density of levels is proportional
to the ω-mass (see discussion end of Section 9.1.1 as well as equation (9.23)), one can
write

�d ≈ �b

Zω
, (H.35)

where Zω = (mω/m)−1 (see also Section 9.3).
Due to the coupling to vibrations, nucleons spend part of the time in more complicated

configurations than pure single-particle states (see Fig. 9.2). The factor Zω measures the
content of single-particle strength present in levels around the Fermi energy available
to nucleons to interact through a (pairing) force and correlate, eventually giving rise to
a superfluid system. In the case of the dressed pairing coupling constant, one then can
write the expression

Gd = Z2
ω(Gb + gp-v). (H.36)

Making use of this relation and of equation (H.34) one can write

1

2
Gd�d = Zω

1

2
Gb�b + Zω

1

2
gp-v�b. (H.37)

The above relation implies that, without considering the contribution of the induced
pairing interaction to the dressed pairing gap, the increase of the density of levels arising
from the coupling of nucleons to collective vibrations is overcompensated by the reduc-
tion in the single-particle content of these levels, the net result being a decrease of the
pairing gap (from the minimum value it can have in the static mean-field approximation,
i.e. 1

2 Gb�b). On the other hand, relations (H.32) and (H.33) imply

gp-v ≈ 0.6Gb. (H.38)

Summing up, taking into account the renormalization effects leading to an ω-mass, and
thus to an increase of the density of levels, one has to consider, at the same time, the
actual single-particle strength in the levels lying close to the Fermi energy.
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Note that a proper treatment of the dressing of single-particle states not only involves
the Zω-coefficients (arising from�E = Re ), but also the splitting of the single-particle
strength (arising from −2Im , see Section 9.1, equation (9.11), see also (9.14)). This
last effect leads to a further reduction of the ability of time reversal single-particle states
to participate in Cooper pair formation (see equation (9.41)).
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