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Introduction. Given an algebra A, the elements of A induce linear 
operators on A by left and right multiplication. Various authors have studied 
Banach algebras A with the property that some or all of these multiplication 
maps are completely continuous operators on A ; see (1-5). In (3)1. Kaplansky 
defined an element u of a Banach algebra A to be completely continuous if the 
maps a—^ua and a —> au, a £ A, are completely continuous linear operators. 
The set of all completely continuous elements of A forms an ideal. Assume that 
A is a semisimple Banach algebra, and let B be the intersection of all the 
primitive ideals of A which contain the socle of A. Using (1, Theorem 7.2), it 
can be shown that the ideal of completely continuous elements of A is con
tained in B. 

In general the elements of B are not completely continuous (in fact there are 
important algebras A where A — B, but zero is the only completely continuous 
element of A). However, the multiplication maps induced by elements u £ B 
do have special properties similar to those of completely continuous operators. 
I t is the purpose of this paper to develop a generalized Riesz-Fredholm theory 
for these maps. We shall make only the assumption that A is semisimple and, 
in some cases, that A is a normed algebra. Theorem 3.6 serves as a partial 
summary of our results. 

1. Preliminaries. Throughout this paper we shall assume that A is a 
complex semisimple algebra. We assume that the reader is acquainted with such 
notions as quasi-regularity of an element of A, left and right regular representa
tions of A on Af primitive ideals, etc. We use in general the definitions in 
C. Rickart's book (6). For B an algebra, we denote by EB the set of all minimal 
idempotents of B, and by SB, the socle of B ; see (6, pp. 45-47). A non-empty 
subset M of EB is orthogonal if ef = 0 for any two distinct elements e a n d / in 
M. 

We shall be interested in the elements in k(h(SA))} the ideal which is the 
intersection of all those primitive ideals of A which contain SA. Let B be the 
algebra k(h(SA)). It is not difficult to verify that P is a primitive ideal of B if 
and only if P is of the form B Pi Q where Q is a primitive ideal of A. Now 
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SB — S A C\ B, and this in combination with the previous statement implies 
that SB is contained in no primitive ideal of B. This is a necessary and 
sufficient condition that a semisimple algebra B be a modular annihilator 
algebra by (1, Theorem 4.3 (4), p. 570). For the definition and elementary 
properties of modular annihilator algebras see either (1) or (10). Since 
k(h(SA)) is a modular annihilator algebra, we have the following result which is 
used repeatedly. 

(1.1) If u G k(h(SA)), then u is left {right) quasi-singular, i.e., A(\ — u) ^ A 
((1 — u)A 9^ A), if and only if there exists x G A, x ^ 0, such that (1 — u)x = 0 
(x(l - u) = 0). 

In §3 it will be necessary for us to assume that A is a normed algebra. Assume 
for the present that A has a norm || • ||. Then B = k(h(SA)) is also a normed 
algebra. Let / be the norm closure in B of SA. B/I is then a normed radical 
algebra (recall t h a t 5 A = SB is included in no primitive ideal of B). If v G B/I 
and | • | is the induced norm on the quotient algebra, it follows that \vn\l/n —» 0 
as n —> oo ; see (6, Theorem (1.6.3), p. 28). We can draw the following con
clusion concerning elements in B: 

(1.2) Assume A has norm \\ - \\. If u G k(h(SA)), then there exists a sequence 
{sn} (Z SA such that \\un — sn\\

l/n —» 0asn —» °°. 

We do not assume that A has an identity. If A does have an identity, we 
denote it by 1 ; and if X is a scalar, we denote X • 1 simply by X. If A does not 
have an identity, 1 and X • 1, denoted again by X, are symbolic, but make sense 
when multiplied by an element of A. Our main concern is with operators defined 
on A by left or right multiplication by (X — u) where X is a scalar and u G A ; 
the left multiplication operator on A determined by (X — u) is the operator 
which takes x G A into (X — u)x G A. If M is any subset of A, we let 
R[M] = {a G A\ Ma = 0} andL[M] = {a G A\ aM = 0}. With this notation 
the null space of the left multiplication operator determined by (X — u) is the 
right ideal i?[^4(X — u)]; the range is the right ideal (X — u)A. The right 
multiplication operator on A determined by (X — u) has a similar definition 
and similar properties. 

In the course of studying left and right multiplication operators on A, we 
make important use of the concepts of ascent and descent of a linear operator. 
For the definitions and elementary properties of these concepts, see (8, 
pp. 271-274). We denote the ascent of the left (right) multiplication operator on 
A determined by (X — u) by ai(X — u) (aT(\ — u)) and the descent by 

ôi(\ — u) (dr(\ — u)). 

Finally we denote the spectrum of an element u G A by a(u). 

2. Ideals of finite order and elements of the socle. In the generalized 
Fredholm theory that we develop for elements in k(h(SA)), the concept of a 
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left or right ideal of finite order replaces that of finite-dimensional subspace. In 
this section we study the elementary properties of ideals of finite order, and 
using these results, derive basic information concerning the socle of A. 

Definition. A right (left) ideal K of A has finite order if and only if K can be 
written as the sum of a finite number of minimal right (left) ideals of A. We 
define the order of K to be the smallest number of minimal right (left) ideals of 
A which have sum K. For convenience we say that the zero ideal has finite 
order 0. 

If / is a two-sided ideal of A, the definition of the order of I is ambiguous. 
However, it is a corollary of Theorem 2.2 that the order of I considered as a 
right ideal is the same as the order of / considered as a left ideal. Thus we shall 
ignore the ambiguity. 

THEOREM 2.1. Assume that Mis a left ideal of A of finite order n. Iffi,f2, • . • ,fm 

are in EA, Afi + Af2 + . . . + Afm C M, and this sum is direct, then m < n. 
A similar statement holds for right ideals of finite order. 

Proof. Choose ei, e2) . . . , en Ç EA such that M = Ae\ + Ae2 + . . . + Aen. 
Since / i 6 M, there exist elements xk £ A such t ha t / i = Xi e\ + . . . + xn en. 
Assume thatx^ eô ^ 0. Then 

Ae3- = Axj e3 c( IL Aek\ + Afi. 
\ k^j ' 

Thus M must be the sum on the right-hand side of this inclusion. Now/2 G M, 
and therefore there exist elements yk 6 A and z ^ A such that 

n 

h = */i + Z) Jk et-
k=l 

Since the sum Afi + Af2 + . . . + Afm is direct, ytei ^ 0 for some i 9e j . Then, 
proceeding as before, we have that 

M = Af1 + Af2 + ( g AeA . 

By continuing in this manner, we can at each successive step replace an ideal 
Aea by an ideal Afv. If m > n, then at the end of this process we have 
M = Afi + Af2 + . . . + Afn. But this contradicts the assumption that the 
sum Afi + . . . + Afm is direct. Therefore m < n. 

THEOREM 2.2. Assume that K is a non-zero right ideal of finite order n. Then 
any maximal orthogonal set of minimal idempotents in K contains n elements, and 
if$Jl= {ei, e2j . . . , en} is such a set, then K = eA, where e = ei + e2 + . .. + en. 

Proof. Let 2JÎ be a maximal orthogonal set of minimal idempotents in K. By 
Theorem 2.1, Stft must be a finite set (note that if {fi, . . . ,fk} is an orthogonal 
set of minimal idempotents, then the sum/ i A + . . . + fk A is direct), so we 

https://doi.org/10.4153/CJM-1968-048-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-048-2


498 BRUCE A. BARNES 

write 2DÎ = {ei, e^ . . . , ev). Now assume that g is a minimal idempotent in K 
such that ek g = 0 for 1 < k < p. By the maximality of 9ft, gek T6- 0 for some k, 
1 < & < p. By renumbering the elements of 9ft we may assume that gej 9^ 0 if 
1 < j < w and ge;- = 0 if j > m. Let 

Since fg = g 9e 0, then / 7̂  0. I t is easy to verify that ekf = fek = 0 for all &, 
1 < ife < p. Also 

/ = ^ - Ç ge*J/ = gf = /, 

and / 4 = gf4. = g ̂ 4 ; thus / is a minimal idempotent. This contradicts the 
definition of 9ft as a maximal orthogonal set of minimal idempotent in K. Thus 
there can be no minimal idempotents g Ç K such that ek g = 0 for all ek G 9ft. 

Now take v 6 i£ and define 

Then ek w = 0 for all &, 1 < & < p. If w 5̂  0, then since wA C K C »SA, there 
exists g £ EA such that g 6 w.4. But then ^ g = 0 for 1 < k < p. Therefore w 
must be 0. Thus it follows that for any v £ K, 

v 

Lete = ei + e2 + . . . + eP. We have proved t ha tK = eA. 
It remains to be shown that p = n. First by Theorem 2.1, p < w. But p 

cannot be strictly less than n by the definition of the order of an ideal and the 
fact tha t i£ = ei A + . . . + ev A. This completes the proof of the theorem. 

If K is any left or right ideal of finite order and 9ft is a maximal orthogonal 
set of minimal idempotents in K, we shall call 9ft an orthogonal basis for K. I t 
is not difficult to verify that if K is a left ideal of finite order and / is a left 
ideal such that J (Z K, then / has finite order ; furthermore, if J is properly 
contained in K, then the order of J is strictly less than the order of K, and any 
orthogonal basis for / can be extended to an orthogonal basis for K. 

Now we turn to the investigation of the elements in SA, although we state the 
next lemma more generally for elements in k(h(SA)). 

LEMMA 2.3. Assume that u 6 k(h(SA)). Furthermore, assume thatR[A (1 — u)m] 
is of finite order and that on(l — u) = m. Then 

(1) 5r(l -u) = m; 
(2) ,4(1 — u) = ^4(1 — e), where e is an idempotent in SA such that 

R[A(\ - u)] = eA. 

Proof. By Theorem 2.2 there exists an idempotent em £ SA such that 
R[A(1 - u)m] = em A. Now consider the left ideal M = A((l - u)m - em) 
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which is of the form A(l — v) where v G k(h(SA)). We shall prove that 
R[M] = 0. Suppose that Mx = 0. Then (1 - u)mx = emx and 

(1 - u)2mx = (1 - u)mem x = 0. 

But since a j(l - w) = m, thenjR[-4(l - ^)2w] = J?[4(l - u)m]\ it follows that 
(1 — u)mx = 0 and em x = 0. But x G i^[^4(l — tt)OT], and hence x = em x = 0. 
Thusi?[if] = 0 and, by (1.1), M" = A. 

Now suppose that y G -4(1 — ^)w for some w > m. Then ;yew = 0. But also 
3; = JS((1 — ^ ) m — em) for some 2 6 A. Then sem = ;yew = 0, and hence 
y = 2(1 - ^ ) w .Thus^ G -4(1 — w)w, and it follows that 

4 ( 1 - ^) n = A{1 - u)m. 

This proves in fact that dr(l — u) = m. 
Since ikf = A, we have A(l — u)m + Aem = A. 

R[A(1 -u)] CR[A(X -u)% 

and is therefore of finite order. Let e be an idempotent in SA such that 
R[A(1 - u)] = eA.LetB = k(h(SA)), and let iV = 5 (1 - u) + £e. iV is a lef t 
ideal of 5 , and it is easy to verify that the right annihilator of N in B is 0. 
Since B is a modular annihilator algebra and N is a modular left ideal of B, 
it follows that B = N. Thus 

i ^ C ^ = 5(1 - u) + Be C -4(1 - u) + 4e . 

But also ,4(1 - w)m C 4 ( 1 - ^).Then 

A = 4 ( 1 - u)m + Aem C .4(1 - u) + 4e. 

Assume that s G 4 ( 1 — e). z is of the form z = w(l — u) + ye for some 
w, y G 4 . But ye = ze = 0. Thus z = w(l — #), and it follows that 
4 ( 1 -u)= 4 ( 1 - e). 

Next we prove our main result concerning elements of the socle of A. All 
considerations are completely algebraic, as they have been up to this point in 
the paper. 

THEOREM 2.4. Assume that s G SA. Then 
(1) R[A(1 — s)] and L[(l — s)A] are of finite order; 
(2) a i(l — s) = 8i(l — s) = aT{\ — s) = 5r(l — s) and all these quantities 

are finite ; 
(3) 41(1 — s) = .4(1 — e) where e is an idempotent in SA such that 

R[A(1 - s)] = eA; 
(4) v(s) is finite. 

Proof. Let K = R[A(1 - s)]. If x G K, then (1 - s)x = 0, and thus 
x = sx £ sA. But then X C ^ , and since s A is of finite order, K must be of 
finite order. By a similar proof, we find that L[(l — 5) 4 ] is of finite order. 
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Next we prove that at(l — s) is finite. Suppose it is not; then setting 
Kn = R[A(1 — s)n], we have that Kn is a proper subset of Kn+i for all n > 0. 
We may choose an orthogonal sequence {ek} C EA with the property that 
en 6 Kn (choose first orthogonal bases Wn for each Kn such that Wn+i is an 
extension of $Jln ; next, choose ek to be an element in 9Wfc not in 2ft ̂ - I ) . But then 
(1 — s)wew = 0, and this implies that en Ç s A. This contradicts the fact that s A 
is of finite order. Therefore ai(l — s) must be finite. With a similar proof we 
find that aT(l — s) is finite. By Lemma 2.3 (1) we have a z( l — s) = <5r(l — s) 
and a r ( l — s) = 5j(l —5). Finally, «^(1 — 5) = 5 (̂1 — s) since when the 
ascent and descent of an everywhere defined linear operator are both finite, 
they are equal by (8, Theorem 5.41-E, p. 273). This completes the proof of (2). 

Now having proved (2), (3) follows immediately by Lemma 2.3 (2). 
Lastly, we prove (4). Assume that {\k} is an infinite sequence of distinct non

zero elements in <r(s). We may assume that there is a sequence {ek} d EA such 
that sek = \jc ek ; see (1.1). It follows that ek G ŝ 4 for all k. Suppose that there 
are xk Ç A such that 

ei Xi + e2 x2 + . . . + en xn = 0 

and that en xn 9^ 0. Then 

&n Xn
 := : 6\ X\ ~y~ . . . -f~ 6n—i Xn—\. 

Therefore 
0 = (Xi — u)(\2 — u) . . . (Xw_i — u)en xn 

= (Xi — XW)(X2 — \n) . . . (Xn_i — ^n)enxn. 

This contradiction implies that for any n > 1, the sum 

ex A + e2 A + . . . + en A 

is direct. This in turn contradicts the fact that s A has finite order. 

3. The elements in k(h(SA)). In this section we generalize the results of 
§2 concerning elements in SA to the elements in k(h(SA)). The first theorem is an 
easy extension of Theorem 2.4 (1). 

THEOREM 3.1. If u G A is quasi-regular modulo SA, then R[A{\ — u)] and 
L[(l —u)A] are of finite order. In particular, this conclusion holds whenever 
u e Kh(sA)). 

Proof. If u is left quasi-regular modulo SA, then there exists w 6 A and 
s £ SA such that (1 - w)(l - u) = (1 - s). Then A {I - s) C A(l - u). It 
follows that R[A(1 - u)] C ^ ( l - s)], and since R[A(1 — s)\ is of finite 
order by Theorem 2.4 (1), theni?[^4(l — u)\ must have finite order. Similarly, 
if u is right quasi-regular modulo SA, then L[(l — u)A] must have finite order. 
Now B = k(h(SA)) is a modular annihilator algebra, and thus B/SA is a 
radical algebra. It follows in the case when u G k(h(SA)) that u is quasi-regular 
modulo SA. 
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We shall usually find it necessary in this section to assume that A is a 
normed algebra. The proof of the next theorem depends in a crucial way upon 
this assumption. In the proof we use a version of a result proved by A. F. 
Ruston concerning a bounded linear operator T defined on a Banach space X 
which has the property that limn_>œ \\Tn — Cn\\

lln = 0 (where || • || is the 
operator norm) for some sequence {Cn] of completely continuous operators on 
X. Ruston's proof of the result we use (7, Lemma 3.2, p. 323) does not require 
X to be a Banach space in the given norm. The conclusion of Ruston's Lemma 
3.2 is that the ascent of / — T must be finite where I is the identity operator 
o n X . 

THEOREM 3.2. Let A be a normed algebra with norm || • ||. Assume that 
u 6 k(h(SA)). Then at(l — u) and ar(l — u) are finite. 

Proof. We prove only that «j(l — u) is finite. Denote the right ideal 
R[A(1 - u)] H (1 - u)nA by Kn. Assume that Kn ^ 0 for all n > 0. Now by 
Theorem 3.1, R[A(l — u)] is of finite order. Also note that for all k > 0, 
(1 — u)k+1A C (1 — u)kA. It follows that there exists an integer m such that 
whenever n > m, then Kn = Km. Since Km 9e 0, there exists an e £ EA such 
that e Ç Km. Then e G Kn for all n > 0. It follows that for all integers k > 0, 

e e (R[A(1 - u)] H Ae) C\ (1 - u)*Ae. 

Let a —> Ta be the left regular representation of A on Ae(Ta(xe) = axe for 
all xe £ Ae). Aeis a. normed linear space and Ta is a bounded operator on Ae. 
Now by assumption u Ç k(h(SA)). Therefore there exists a sequence {sn} (Z SA 
such that ||^w — sn\\

1/n —»0 as n —» oo by (1.2). Let \Ta\ denote the operator 
norm of Ta on the normed linear space Ae. Then we have immediately that 
\Tu

n — TSn\
1/n —> 0 as n —» oo. But it can be shown that TSn is an operator of 

finite rank on Ae. By Ruston's result (see the discussion preceding the state
ment of this theorem), the ascent of I — Tu on Ae must be finite. Lemma 3.4 
(9, p. 22) implies that a linear operator W has finite ascent if and only if there 
exists an integer p such that the intersection of the null space of W with the 
range of Wv is 0. Letting W represent the operator I — Tu on Ae, we have that 
(R[A(1 — u)\ C\ Ae) C\ (1 — u)vAe must be 0 for some p. This is a contradic
tion, and we conclude that Km = 0 for some m. But now let W represent the 
left multiplication operator on A determined by (1 — u). 

0 = Km = R[A(1 - u)] H (1 - u)mA, 

and this last object is exactly the intersection of the null space of W with the 
range of Wm. Therefore a (̂1 — u) is finite. 

THEOREM 3.3. Assume that A is a normed algebra. Ifu Ç k(h(SA)), then 
(1) OLI{\ — u) — 8t(l — u) = ar(l — u) = 8r(l — u) and all these quantities 

are finite ; 
(2) ^4(1 — u) = A (I — e), where e is an idempotent in SA such that 

R[A(1 - u)] = eA. 
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Proof. By Theorem 3.1, R[A(1 — u)k] is of finite order for all k > 1. By 
Theorem 3.2, a z(l — u) and ar(l — u) are finite. Now (2) follows directly 
from Lemma 2.3 (2). Also by Lemma 2.3 (1), at(l — u) = ôr(l — u). Then 
since the ascent and descent of an operator are equal if they are finite by (8, 
Theorem 5.41-E, p. 273), it follows that 

di(l — u) = on(l — u) = br(l — u) = aT(l — u). 

The next theorem concerns the spectrum of elements in k(h(SA)). I t has a 
direct application to modular annihilator algebras which we state as a corollary. 

THEOREM 3.4. Assume that A is normed with norm || • ||. If u Ç k(h(SA)), 
then G(U) is either finite or countable and has no non-zero limit points. 

Proof. Assume that X ̂  0 is in a(u), and that {Xn} is a sequence of distinct 
non-zero elements in a(u) such that \n —» X as n —» °°. We may assume by 
appealing to (1.1) that there exists a sequence [en\ C EA with the property 
that (\n — u)en = Ofor^ > 1. By Theorem 3.3 (1), 

ar(l — u) = <5r(l — u) = m 

for some integer m. Let K = L[(\ - u)mA\. By (8, Theorem 5.41-F, p. 273) 
A = A (X - u)m + K. Now define M to be the left ideal 

{v £ A\ \\ven/\\en\\ \\ —> 0 as n —> œ }. 

Now (X - u)mek = (X - \k)
mek for all k > 1, and therefore 4̂(X - u)m C M. 

It also follows that ek G (X — ^)w^4 for all & > 1. Therefore i ^ = 0 for all 
ifc > l . T h e n X C Af, and finally A = K + A(\ - u)m C M. But 

ll«e*/IW| II = \^k\ 

for all k, which implies that u (? M, a contradiction. 

COROLLARY. If A is a semisimple normed modular annihilator algebra, then the 
spectrum of any element in A is either finite or countable, and has no non-zero limit 
points. 

THEOREM 3.5. Assume that A is normed. Then if u G k(h(SA)), the order of 
R[A(l — u)} is the same as the order of L[(l — u)A\. If u £ SA, the same 
conclusion holds without the hypothesis that A have a norm. 

Proof. We prove the theorem for the case where u G k(h(SA)) and A is 
normed. By Theorem 3.1, we may assume thati^[^4(l — u)] has finite order n 
and thatL[( l — U)A] has finite order m. The proof proceeds by induction on n. 
In the case when n = 0, m = 0 by Theorem 3.3 (1). Now assume that n > 1, 
and that the theorem holds for all k such that 0 < k < n. First note that 
m > 1, again by Theorem 3.3 (1). Let $Jl = {ei, . . . , en} be a maximal 
orthogonal set of minimal idempotents inR[A(1 — u)], and let 

SR = {/l , . . . , /m} 

be a maximal orthogonal set of minimal idempotents in L[(l — u)A]. 
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Suppose that /* Aei = 0 for all k, 1 < k < m. Let P = L[Aei] ; then P is a 
primitive ideal of ^4. Let 5 = A/P, and let 7r: 4̂ —» 5 be the natural projection 
of A onto the quotient algebra B. Note that B is a primitive normed algebra 
and that ir(u) € k(h(SB)). Clearly w(ei) 9e 0 and (1 — w(u))ir(ei) = 0. 
Then there exists x G A such that ir(x) 9e 0 and 7r(x)(l — TT(U)) = 0 by 
Thorem 3.3 (l).Now by (1, Proposition 3.1 (1), p. 567), P = L[i4é?J = 
P[ei A]. Then since ir(x — xu) = 0, e± A(x — xu) = 0. Thus 

(a Ax) CA(f! + ...+fm) C P ; 
hence (ei Ax) C P- Then (ei A)(ei Ax) = 0, and it follows that e\ Ax = 0. 
Thus7r(x) = 0, a contradiction. 

Therefore there exists some j , 1 < / < m, such that fj Aei 9e 0. We may 
assume tha t / = 1. Choosey 6 A such tha t / i^e i ^ 0, and letw — u + fiyei; 
note that w £ &(h(SA)). Assume that .4(1 — *̂ )y = 0. Then 

(1 - u)v = (/i yei)». 
Multiplying this equation on the left b y / i , we have that (fiyei)v = 0. It 
follows that 0 = A(fiyeiv) = 4̂tfi z/, and hence that ex i; = 0. But also 
(1 — u)v = 0. Thus 

v = {ex + e2 + . . . + en)v = (g2 + . . . + e„)v. 
Therefore P[4.(l — w)] = (#2 + . . . + en)A. In a similar fashion we find that 
L[(l — w)^4] = A(f2 + . . . +/m). By the induction hypothesis, it follows that 
n = m. 

The last theorem of this section is a summary of the main results given in this 
paper. We use the notations J/(yV), a(W), and b(W) to stand for the null space, 
the ascent, and the descent of a linear operator W, respectively. We hope that 
the notation and the particular formulation of the results presented in this 
theorem will make explicit the concept of a generalized Fredholm theory for 
elements in k(h(SA)). 

THEOREM 3.6. Assume that A is a semisimple normed algebra, and that 
u Ç k(h(SA)). Let a —> Ta be the left regular representation of A on A, and let 
a —> T'a be the right regular representation of A on A. Assume that X is a non-zero 
scalar. Then: 

(1) The orders ofJY(\I — Tu) and JY(\I — T'u) are finite and equal. 
(2) a(\I - Tu) = 8(\I - Tu) = a(\I - V u) = d(\I - T'u) and all these 

quantities are finite. 
(3) The equation (\I — Tu)x = y has a solution x 6 A if and only if zy = 0 

for all z 6 ^V(\I — T'u). The equation (\I — Tr
u)x = y has a solution x £ A 

if and only if y z = 0 for all z Q.yVÇkl — Tu). 
(4) The equation (\I — Tu)x = y has a solution x Ç A for all given y £ A, 

except for at most a countable set of X. If there is an infinite sequence of such 
exceptional values {\n}, then \n —> 0 as n —» 00 . 

(5) If u G S A, then (l)-(4) hold without the assumption that A have a norm, 
and in fact in (4) only a finite number of exceptional values is possible. 
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