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We know far more about the velocity and density distributions of 
gas in ordinary spirals than in barred spirals. There are several 
reasons for this : the absence of a nearby barred spiral, the circum
stance that several of the best objects lie rather far south, the neces
sity to map in two dimensions, and the surprisingly low intensity of the 
emission lines, except in the nucleus and near the ends of the bar. The 
older literature contains several investigations of radial velocities 
measured along the bars of barred spirals (cf. Burbidge, Burbidge and 
Prendergast, 1960 a,b for NGC 7479 and NGC 3504), and it has been known 
for some time that rotation curves taken in different position angles 
through the nuclei of barred spirals are not compatible with simple 
circular motion. It was not until recently, however, that attempts were 
made to map the velocity fields of barred spirals in two dimensions. 
Chevalier and Furenlid (1978) studied NGC 7723, NGC 5383 has been mapped 
by Peterson, Rubin, Ford and Thonnard (1978) in the optical and by 
Sancisi, Allen and Sullivan (1979) in neutral hydrogen, and NGC 1300 
has been mapped by Peterson and Huntley (1980). The most striking result 
of these observations is that the isovelocity contours are elongated 
in the direction of the bars, or, put differently, there is no straight 
line through the center of a barred spiral along which the radial velo
city is constant. This is clear proof that significant non-circular 
motions are present in these galaxies. However, as it is impossible to 
reconstruct a non-axisymmetric velocity field from radial velocity data 
alone, there is no analog for barred spirals of the reduction models 
which are used to estimate local mass densities for ordinary spirals 
from observed rotation curves. 

Theoretical studies have concentrated on the problem posed by non-
circular motions, and on certain morphological features of barred spirals, 
particularly the smooth, rather straight dust lanes often found near 
the leading edges of bars. The underlying mass distribution is assumed 
to be independent of time when viewed in a coordinate system rotating 
at constant angular velocity. The gravitational field is usually taken 
to be invariant under reflection in each of three mutually perpendicular 
planes, although some workers have adopted a two-armed spiral potential 
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in the outer parts of the system. In any case, several parameters are 
required to specify the gravitational field, such as the degree of cent
ral concentration of the galaxy, and the strength, length, axis ratio 
and angular velocity of the bar. The gas is presumed to lie in the equa
torial plane, and to move under the influence of gravitational, centri
fugal, Coriolis and pressure forces. The theoretical problem is to find 
a flow pattern for the gas which is steady in the rotating coordinate 
system. 

Before proceeding to discuss detailed computational results, it may 
be useful to consider certain qualitative aspects of the flow. The centri
fugal and gravitational forces can be derived from an effective potential. 
If we imagine this potential plotted (in three dimensions) as a function 
of position in the equatorial plane, we would have, for an axisymmetric 
galaxy, a surface resembling a volcano with a level rim at the corotation 
radius, and all contour lines (equipotentials) would be circles. Adding 
a strong bar deforms the circular equipotentials into ellipses oriented 
along the bar inside corotation (i.e. inside the crater) and perpendicu
lar to the bar outside. When there is a bar the rim of the volcano can 
no longer be level, but will have two passes (X-type equilibrium points) 
along the major axis of the bar, and two peaks (O-type equilibrium points) 
at right angles to the bar. If we ignore for a moment the pressure and 
inertia of the gas, the flow must be such that the Coriolis force balances 
the forces derived from the potential, which implies that the streamlines 
and equipotentials must coincide. The direction of flow must be in the 
same sense as the rotation of the bar inside corotation, and in the oppo
site sense outside. The flow speed required to give the correct Coriolis 
force depends on the local values of the gravitational and centrifugal 
forces : where these are strong the velocity is high. Near the X and 0 
points, however, the applied forces are weak, and the inertia of the gas 
cannot be neglected. In particular, a stream of gas moving at high speed 
will overshoot the sharp bends where the equipotentials cross the major 
axis of the bar ; the streamlines will be skewed with respect to the 
equipotentials, such that the major axes of the streamlines lead the 
major axis of the bar. In view of the formal analogy between compressible 
gas dynamics and shallow-water theory, we can return to the picture of 
the effective potential surface as a volcano with an elliptical crater, 
and imagine a thin layer of water swirling at high speed within the cra
ter. If the water does not wash over the lip of the crater (as it may 
near the low parts of the rim) it sloshes up against the walls ; it is 
not hard to imagine that a hydraulic jump forms when the flow stalls and 
falls back on itself. The analog of this jump in gas dynamics is a shock, 
and it will evidently be found near the leading edge of the bar. 

The picture sketched above is probably appropriate only for galaxies 
with strong, rapidly rotating bars. If the bar is weak or slowly rotating 
the topology of the equipotentials is the same, but the features are less 
pronounced. In this case the gas may be expected to respond to other dyna
mically significant singularities of the problem, such as the inner and 
outer Lindblad resonances. 
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The dynamics of gas flow in a barred spiral is clearly a difficult 
problem, and one which can be approached on several levels. The simplest 
theories start from the assumption that the pressure is almost everywhere 
negligible, which is plausible, since the random velocities in the gas 
are an order of magnitude lower than the streaming velocities. If there 
were no pressure at all the streamlines of the flow would be identical 
to the orbits of non-interacting particles moving in the prevailing force 
field. The converse is not true : that is, one cannot take an arbitrary 
set of initial conditions for a collection of particles, solve for their 
motions and identify the resulting ensemble of trajectories with the 
streamlines, because the trajectories will cross one another. However, 
there are special sets of initial conditions which give stable periodic 
(loop) orbits, and there may be a family of such orbits which can be 
nested within one another without intersections. A trivial example is the 
family of circular orbits in an axisymmetric galaxy. If the bar contri
butes only a weak tangential component to the force field a slightly 
distorted version of this family may exist which can serve as an approxi
mation to the streamlines. Unfortunately, the direction of elongation of 
the loop orbits changes by 90° at each Lindblad resonance, as well as 
at corotation, and the orbits intersect one another in these regions. If 
there were coupling between particles moving on adjacent orbits one might 
hope that crossings could be avoided. Hydrodynamic computations by Sanders 
and Huntley (1976), Sanders (1977), Berman, Pollard and Hockney (1979) 
and by Sorensen and Matsuda (1982) show that this hope can be realized. 
The loci of closest approach of orbits forms an open two-armed trailing 
spiral pattern extending as far as the outer Lindblad resonance. Some of 
the computations show large density gradients, indicating that shocks 
form where the streamlines are most closely crowded together. 

The stronger the bar, the less likely it is that there exists an 
extensive family of nested stable loop orbits, and consequently the pres
sure must be considered from the outset. The next simplest thing to neg
lecting the pressure alltogether is to include only one component of the 
pressure gradient : the component perpendicular to the shock, say. This 
is the device adopted by Roberts, Huntley and van Albada (1979). These 
authors derive ordinary differential equations for an equivalent one-
dimensional problem which can be solved with relative ease. They find 
that two kinds of streamlines are possible, both of which are usually 
crossed by shocks. For streamlines of the first kind the shock occurs 
after the streamline has reached its maximum distance from the nucleus, 
and post-shock flow is inwards. For streamlines of the second kind, the 
shock intervenes while the gas is still moving outwards ; the post-shock 
flow is directed towards the end of the bar, but eventually returns near
ly parallel to itself after a sharp hairpin ben. Thus, the post-shock 
region is also one of high shear. In both cases a nested family of stream
lines would show standing shock waves along the leading edges of the bar. 
Streamlines of the first kind are frequently found in two-dimensional 
simulations of gas flow in barred spirals. Flows with streamlines of the 
second kind are extremely difficult to model, partly because of resolu
tion problems due to finite grid spacing, and partly because'most codes 
are afflicted with a viscosity of purely numerical origin, which can be 
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devastating in regions of high shear. Van Albada and Roberts (1981) have 
reported the results of a two-dimensional calculation on a fine grid 
which shows a mild version of post-shock outflow. The real extent of the 
phenomenon is difficult to estimate, because the one-dimensional calcu
lation which exhibits the effect most clearly is only an approximation 
to the two-dimensional problem that one would really like to solve. 

The full hydrodynamic problem in two dimensions has been tackled by 
many authors, using various mass models and employing a variety of nume
rical techniques. It is impossible to give an adequate summary in this 
review of the numerous results obtained. One of the earliest investiga
tions of this character is that of Sorensen, Matsuda and Fujimoto (1976), 
who used a fluid-in-cell code. This method was also used by Berman, 
Pollard and Hockney (1979) to investigate the influence of self-gravita
tion of the gas in a spiral driven by a weak oval distortion. The beam 
scheme (Sanders and Prendergast 1974) has been extensively used for model
ling flows in barred spirals (cf. Sanders and Huntley 1976, Huntley 1980, 
Sanders and Tubbs 1980, Schempp 1982). The scheme is simple and rugged, 
but the ruggedness is achieved at the price of large effective transport 
coefficients : the code has roughly the same thermal conductivity, bulk 
and shear viscosity a real gas would have if the mean free path were equal 
to the grid spacing. Increasing the diffusivity of a numerical code blurs 
the shock transitions, increases the apparent rate of gas flow into the 
nucleus, decreases the sharpness of the bend between the spiral arms and 
the bar, increases the angle by which the gas response leads the bar, and 
increases the offset of the shocks within the bar. (Some of these effects 
can also be produced by changing the mass distribution of the galaxy or 
the rotation period of the bar). The influence of grid spacing has been 
studied by van Albada and Roberts (1981), who also compared the beam 
scheme and Godonov methods for the same problem and grid. The two results, 
shown in their figures 5 an 13, are not identical, but the agreement is 
rather more encouraging than otherwise. MacCormack's method has been used 
by Sorensen and Matsuda (1981), a flux-corrected-transport method was 
used by Jones, Nelson and Tosa (according to Matsuda 1981) and van Albada 
has experimented with flux-splitting schemes. Several of the above methods, 
plus others, have been intercompared by van Albada, van Leer and Roberts 
(1982) for a one-dimensional model of flow in a spiral gravitational field. 
Sanders (1977) has used a code due to Lucy which solves the hydrodynamic 
equations by following the motion of particles having finite radii and 
endowed with internal structure. N-body particle codes, supplemented with 
a set of rules to govern the outcome of inelastic collisions between par
ticles, have been used by Matsuda and Isaka (1980) and by Schwarz (1981). 

The main conclusions suggested by these studies are : 

1) A rigidly rotating bar or oval distortion is sufficient to drive 
spiral structure in the gas, with or without self-gravitation ; the ap
pearance of spirals is always accompanied by large departures from circu
lar motion. Weak bars give open spiral patterns which extend throughout 
the gas ; stronger bars give spirals which emerge at sharp angles to the 
bar. 
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2) The gas response leads the bar, by an angle which is greater 
the weaker the bar. 

3) Strong bars favor the appearance of strong shocks within the 
bar. When they occur, they lie near the leading edge, which is just 
where they should be if the identification of shocks and dust lanes is 
correct. 

The conclusions above are relatively insensitive to the choice of 
code or grid spacing. Perhaps the most important aspect of the flow 
that is. sensitive is the rate of infall of gas towards the nucleus. 
Simkin, Su and Schwarz (1980) have suggested that radial inflow induced 
by a rotating bar or oval distortion can feed gas to the nuclei of 
Seyfert galaxies, and Kormendy (1982) has proposed that the flat bulges 
of barred spirals are formed from gas that has drifted into the central 
regions over the lifetime of the bar. It would be premature to estimate 
rates of infall from present numerical computations, but it remains a 
challenging problem for the future. 
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NGC 1300 (CTIO 4m,103aO+UG2, taken by A. Bosma) 
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