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AUTOMORPHISMS OF A CERTAIN SKEW POLYNOMIAL 
RING OF DERIVATION TYPE 

ISAO KIKUMASA 

1. Introduction. Throughout this paper, all rings have the identity 1 and ring 
homomorphisms are assumed to preserve 1. We use p to denote a prime integer 
and F to denote a field of characteristic p. For an element a in F, we set 

A = F[x]/(xp - a)F[x]. 

Moreover, by D and R, we denote the derivation of A induced by the ordinary 
derivation of F[x] and the skew polynomial ring A[X,D] where aX = Xa+D(a) 
(a E A), respectively (cf. [2]). 

In [3], R. W. Gilmer determined all the B -automorphisms of B[X] for any 
commutative ring B. Since then, some extensions or generalizations of his re­
sults have been obtained ([1], [2] and [5]). As to the characterization of auto­
morphisms of skew polynomial rings, M. Rimmer [5] established a thorough 
result in case of automorphism type, while M. Ferrero and K. Kishimoto [2], 
among others, have made some progress in case of derivation type. 

But, [2] is a study on B -automorphisms of B[X;6] in case that B is a ring 
with a derivation è satisfying the condition 8(N) C TV where N is the union of 
all nilpotent ideals of B. Moreover, in that study, it is shown that this condition 
is fulfilled in the following cases: B is torsion free; B is semiprime. However, 
apart from these cases, we can find no information about this condition. Hence 
the results on [2] can not necessarily be applied to rings of characteristic p. In 
particular, we can never apply it to the ring F[x]/(xp)F[x] with the derivation 
D which is useful in studies of algebra. 

On the other hand, for the algebra A, Jacobson [4, p. 190] mentions a certain 
kind of A-automorphisms of R in case that xp — a is irreducible in F[x]. In 
this case there exists no another kind of A-automorphisms of R, which can 
be easily seen from our theorem or [2]. However, if xp — a is not irreducible 
then A is isomorphic to F[x]/(xp)F[x], hence the problem to determine all the 
A-automorphisms of R has never been solved except in the case that A is a field. 

The aim of this paper is to solve this problem and, as a result, to show an 
automorphism whose type is quite different from ones in [1], [2], [3] and [5]. 

To study this object, we consider the following conditions for the A-linear 
map <j> of R to itself defined by 

(#) X*->f̂ X,"<Il-J , t = 0,l,2,...(n^2,fl^0). 
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(In case n = 1, see Remark 2.) 

(a-i) a\ = 1. 

(a-ii) at = 0 for all i <E{j :2^j ^n mdp\ j}. 

Assume that (a-ii) is fulfilled. Then, it follows from n ^ 2 and an ̂  0 that /? | «. 
Hence there exist integers s and f which satisfy ps = n and pt H s < p(t +1). 
Thus the following conditions can be considered. 

(b-i) DP-\ap)+\±0. 

(b-ii) DP-l(ap2t) + ap
pi = 0 for all ie{j:l£j£ t}. 

(b-iii) a£ = 0 for all ie{j :t+l^j^ s}. 

(b-iv) Dp-\api) = 0 for all ie{j:2£j£s and pf j}. 

2. The main theorem. Our study starts by stating our main theorem. 

THEOREM 1. The map </> is an A-automorphism ofR if and only (̂  (a-i), (a-ii), 
and (b-i)-(b-iv) hold. Furthermore in this case, the inverse map </>_1 of <f> is 
induced by 

X'^lx + ̂ XVbJ , * = 0,1,2,... 

where 

bpj = ^ ( - l ) ' -^ 1 ('.) (DP-\a0) + a^-J(D'"\ap)+iriapi 

i-j \J ' 

for each j . In particular, every A-automorphism ip is necessarily of the above 
form. 

To prove this theorem, we need several lemmas. 

LEMMA 2. Let i, j and k be non-negative integers. 
(\)IfO< i <pk andp\i then 

( ? ) -1 (mod p). 

(2)If0ûj£k then 

e)-c)'-o~* 
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Proof. Since F is of characteristic /?, we have the following equalities in F[X] 
by the binomial theorem: 

u—n V / h=0 

( i+xr = {(i+x)ky = (J2{k
h)x

h) = £ ( * ) V 

and 

(i +xyk = {(i +xf}k = (i +xo* = è (!) z^-
/i=0 ^ ' 

Hence we have (1) and (2) by comparing the coefficients of X1 and Xpj, respec­
tively. 

LEMMA 3. Let B be a commutative algebra over the prime field GF(p) and 6 
a derivation of B such that 6? = 0. Assume that 6(z) = 1 for some z in B. Then 
(I) and (2) hold. 

(1) The map X —• ŷ *_QX}bj {bi G B,n = l,bn ^ 0) induces a B-
endomorphism of B[X;6] if and only if 

(i) b\ = 1 and 

(ii) bt = 0 for all i <E {j : 2 ^ j ^ n andp\j). 

When this is the case, the image ofX takes the form 

so 

x+Y,XPibpi 
1=0 

where SQ is an integer such that pso — n if M =̂  2, and SQ = 0 if n = 1. 
(2) Let I = {b G B : 6(b) = 0}. Then, the center of B[X\6] coincides with 

I[XP], the polynomial ring in Xp over the algebra I. Moreover, B[XP] is the 
unique maximal commutative subalgebra of B[X;8] containing B. 

Proof. Let </>o be the B -linear map of B[X;6] to itself induced by 

x'^lf^rb] , * = o,i,2,.... 

We note that </>o is a 5-endomorphism of B[X\8] if and only if 

bMX) = <fo(X)b+6(b) 
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for any b in B. From this, it is easily seen that </>0 is a Z?-endomorphism of 
B[X;8] if and only if the following equalities hold for any b in B (cf. [2, (1.1)]). 

Y,6k(b)bk = bob* 8(b), 

é (.*,)«*"(,'"i)(%=w o^2). 
* = i - l 

Assume that (/>o is a Z?-endomorphism of B[X\6]. Since 8(z) — 1, £*(z) = 0 
(& ^ 2). Substitute here z for Z? in the above equalities. Then, the condition (i) 
will be easily seen from the first equality. Moreover, from the second equality, 
we have 

zbi-\ +i8(z)bi = bi-iz. 

This enables us to see (ii). 
Conversely, assume that (i) and (ii) are satisfied. If k > i — 1 and p \ k then 

C!1K«-»«.>=o 
for any b in B by Lemma 2 and our assumption 8P = 0. On the other hand, if 
k > i — 1 and/?| k then bk = 0 by (ii). This shows that the above second equality 
holds. Moreover, noting b\ — 1 (i), we have the first equality in a similar way. 
Thus (1) has been proved. 

To see the assertion (2), C will denote the center of B [X : 8]. First, we shall 
prove that I[XP] C C. Let 

/(X) = ]£*%,• (epiEl) 
i=0 

be an arbitrary element in I[XP]. Then, f(X) commutes with every element in 
B. Indeed, it is easily seen that 

bxp -xpb = YJXJ [P ) 6P~j(V 

for any b in B. Then, it follows from Lemma 2(1) and our assumption 8P — 0 
that bXp = Xpb for any b in B. Also, since 8(epi) = 0 (0 ^ i ^ k), f(X) 
commutes with X and so does with every element of B[X;8]. This means that 
I[Xp] C C. 

Conversely, let g(X) = E L O X ' C < (k = 0ick^ 0) belong to C. Since 

0 = g(X}X-Xg(X) = YlX
iS(ci), 

i =0 
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it follows that { c j is contained in /. Hence it is enough to show that Ylier^Ci — 
0 where T = {/ : 0 =5 / =î k and p\ /} . Suppose that YlieT^ci ^ ® anc* l e t m 

be the maximal element in {/ G T : ct ^ 0}. Then, since Xp G C, we have 

MX) - #(X)6 = b I ̂ x'c,-1 - f J^x'a )b (beB) 

which is equal to zero. As is easily seen, the coefficient of Xm~l is mS(b)cm. 
Hence we have mcm = 0 by taking z as b. Since p \m and cm ^ 0, this is a 
contradiction. 

Moreover, since bXp = Xpb for any b in 5 , Z?[XP] is a commutative subalgebra 
of B[X\8] containing B. Let S be a commutative subalgebra of B[X\8] containing 
B. Then, for every element g(X) = ]C?=o^c ' in 5, we have bg(X) — g(X)b 
(b G B). Hence one can easily see that g(X) = Y%=oXplcPi for some integer 
h == 0 as in the above argument. This shows that S C B[XP], and hence B[XP] 
is the unique maximal commutative subalgebra of B[X;6] containing B. 

The following lemma is a special case of the formula (31) of [4, p. 189]. 

LEMMA 4. Let E be an F-algebra. For given a and b in E, define b^ (0 =? 
k =̂  p — 1) inductively as follows: 

b(0) = aandb^ = [b«-l\b] 

where [c, d] = cd — de (c, d G E). If a commutes with all b{k) (1 =5 k =5 p — 2), 
then 

(a + bf = ap + bp + b(p-l\ 

By D*, we denote the derivation of R induced by D, that is, 

V 1=0 7 i=o 

for each Xw=o^^' m ^- Then, we can apply the above lemma to a = 
YlSi=oXpiaPi and b = X in the algebra /? to obtain 

(*) (X + af =Xp+D*p~\a) + ap
1 

because 

Z?(1) = [a,X]=D*(a) and 

fc(t) = D*k{a) = J2XpiDk(api) (0 £ k û p - \) 
i=0 
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which are contained in the maximal commutative subalgebra A[XP] of R by 
Lemma 3. Moreover, we have 

a" = J2xpl^pi 
1=0 

which is used in the subsequent study. 

Proof of Theorem 1. Let <f> be the A-linear map induced by (#) and C the 
center of R. Then C = F[XP] by Lemma 3. Assume that the map </> is an A-
endomorphism of R. Then, by Lemma 3, (a-i) and (a-ii) are satisfied and we can 
write 

s 

$(X) = x + Y,xpiapi-
i=0 

Hence, by (*), we have 

<t>(x") = <Kxy 
s s 

= Xp + ̂ X"iDP-l(api) + J2Xp2iaPi' 
i=0 i=0 

We write here 

n 

<KXp) = Y,XPi<xPi' 
i=0 

Obviously there hold the following equalities: 

api — 0 for all / G {j : s <j < ps = n &nàp\j}\ 

ap=Dp-\ap)+U 

(**) a / ? 2 / =D^- 1 (V/) + </ for a l l /G { j : 0 ^ 7 ^ ^ } ; 
ap2i = ap

pi for all ie{j:t+l^j^ s}; 

api = Dp~\api) for all ie{j:2£j£s and p\j}. 

Then, we note that Dp~l(api) and ap
t (0 =î / =5 s) are in F. Hence, the 

api are contained in F. This shows that the A-endomorphism </> induces an 
F-endomorphism of C. 

Now, assume that the map <j> is an A-automorphism of R. Then, the A-
automorphism </> induces uniquely an F-automorphism of C such that 

n 

i=0 
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As is well-known (cf. [3, p. 331, Theorem 3]), 

Ï = 0 

induces an F-automorphism of the commutative polynomial ring F[Y] if and 
only if ap ^ 0 and api = 0 for all / ^ 2. It follows therefore that (b-i)-(b-iv) 
are fulfilled. 

Next, we shall show the converse. Assume that the conditions (a-i)-(a-ii) and 
(b-i)-(b-iv) are fulfilled. Then, combining (a-i)-(a-ii) with the result of Lemma 
3, we see that the map <j> is an A-endomorphism of R and 

s 

i=0 

Hence <j>{Xp) — OCQ +Xpap by (b-i)-(b-iv) and (**). Thus, the A-endomorphism 
<j> induces an F-automorphism <\>c of C = F[XP] such that 

Xp^a0+Xpap, 

and the inverse map <j>~x of <j>c satisfies 

4>-\xn = -a0ap-
l+Xpap-

1. 

For the A-endomorphism </>, there exists an A-endomorphism I/J of R such that 

s 

^(X) = x + J2 xpibPt and WW = x-

Indeed, by Lemma 3, the map 

s 

X^X + J2XPibPi 
i=0 

induces an A-endomorphism of R for any bpi in A. Putting Y = a0+Xpap, we 
have 

s s 

<H;(X) -x = YjxPiapi+Z)(a°+xPa
PybPi 

i=0 i=0 
s 

1=0 
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because of the commutativity of the center C = F[XP] of R. Therefore, an 
A-endomorphism i/> with 

^•=é(-iy"y+i(j)<Vflp (0£j£s) 

has the property (f>^(X) = X. 
We shall now prove that ilxt>(X) = X. We define (3pi as (**), using bpi in place 

of api. Then, the restriction \/JC of V to F[XP] maps Xp to Y!ï=oXpiPpi- s i n c e 

<j>\l)(X) = X, we have W(XP) = Xp and so (j>c^c(Xp) = Xp. Thus, 

n 

(=0 

Hence, we obtain 

/30 = - a 0 a ; 1 , fip = a~l and MP") = 00 + * % . 

Now we are in a position to complete the proof. Indeed, we have 

s s 

= X>P'V + I > ° +X"MiaPi 
<=o ;=o 

=i2xpjUj+i2(i)^j^ 
j=0 { i=j KJJ 

= J2xpj hpj + £(-1)'-'" (j) < V ^ J 
= 0 

which shows, together with <j)^{X) — X, that 0 is an A- automorphism of R and 

3. Remarks and examples. In the rest of this paper, let y be the image of 
x in A by the canonical homomorphism from F[x] to 

A - F[x]/(xp - a)F[x]. 

We shall now present some interesting results which are obtained from our 
theorem. 

https://doi.org/10.4153/CJM-1990-050-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-050-0


AUTOMORPHISMS OF A CERTAIN SKEW POLYNOMIAL RING 957 

Remark 1. Since each api is an element in A, we can write 

api = X ) yk^pi,k dp** € F). 
k=0 

Then 

P-\ 

< = E ^ and 

Dp~\api) = (p- l)\lfpitP-i = -lpi,P-i 

by Wilson's Theorem. Thus, one can replace the condition (b-i)-(b-iv) with the 
following: 

(b-i)' 7 p , p - i ^ l ; 

(b-ii)' V « \ P - I = Ê ^ 7 £ \ * for a l l / € { y : l ^ 7 ^ r } ; 
k=0 

P-\ 

(b-iii)' E a * 7 ^ = 0 for all/G { 7 : / + 1 ^ 7 ^ 4 ; 
fc=0 

(b-iv)' 7p,-,p-i = 0 for all i G {7 : 2 ^ 7'£ j and p\ 7}. 

Obviously in case a = 0, these relations show that whether or not the A-
endomorphism </> of R is an A-automorphism depends only on the coefficients 
7pi,p-i- of vp_1 and constant terms 7/?,,o of â - (1 ^ / ^ 5"). Therefore the 
coefficients lpi^ of intermediate terms yk (I ^ k è p — 2) can be taken freely, 
and so if p is an odd prime (i.e., p ^ 2) then one can easily make different 
A-automorphisms of R from any given A-automorphism of R. This also means 
that there exist at least |F |^_ 2 ) 5 A-automorphisms of R whose image of X is of 
degree n — ps, where \F\ is the cardinal number of the field F. 

Remark 2. In case n = 1, M. Ferrero and K. Kishimoto [2, Lemma 2] have 
shown that if B is a ring and è is a derivation of B, then the map X —-• bo +Xb\ 
induces a B -automorphism of B[X;6] if and only if b\ is a central unit and 

b0b - bb0 = S(b)(bi - 1) for all b G B. 

Noting D(y) = 1, one will easily see the map X —> «0 +^«i induces an A-
automorphism of /? if and only if a\ = 1. Thus, one can consider Theorem 1 to 
contain the case n = 1. 

Examples. Let a = 0 i.e., A = F[JC]/(JCP)F[JC]. 

1. Suppose that/? = 2. Let maps <f>\ and <fo be A-endomorphisms ofR induced 
by 

X->X + X2y and X-+X + X2yf3 (J3^leF) 
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respectively. Then, by the condition (b-i) in Theorem 1 (or the condition (b-i)' 
in Remark 1), </>i is not an A-automorphism of R. But <f)2 is an A-automorphism 
of R by Theorem 1. When this is the case, then 

(j>i(X2) = 0 and fal(X) = X - X2y(f3 + l) -1/3. 

2. We shall make a note about an interesting property of the coefficients of 

n 

It is easily seen by the condition (b-ii) (or (b-ii)') that api don't have to be 
nilpotent for all / =; 2, though the map </> is an A-automorphism of R. Actually, 
we know by Theorem 1 that the map 

X—>X + Xp+Xp2yp~l 

induces an A-automorphism of/?, though ap = 1 is not nilpotent. This shows that 
there exists an automorphism whose form is quite different from ones known 
before now, because all results in [1], [2], [3] and [5] have shown that a, (/ ^ 2) 
must be nilpotent for the map X.—*- YH=o^lai t o induce a B-automorphism of 
a commutative or skew polynomial ring over a ring B. 
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