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INTEGRAL POINTS ON ELLIPTIC CURVES OVER FUNCTION
FIELDS OF POSITIVE CHARACTERISTIC

AMILCAR PACHECO

Let if be a one variable function field of genus g defined over an algebraically
closed field k of characteristic p > 0. Let E/K be a non-constant elliptic curve.
Denote by MR the set of places of K and let 5 C MK be a non-empty finite subset .

Mason in his paper "Diophantine equations over function fields" Chapter VI,
Theorem 14 and Voloch in "Explicit p-descent for elliptic curves in characteristic p"
Theorem 5.3 proved that the number of S-integral points of a Weiertrass equation of
E/K defined over R$ is finite. However, no explicit upper bound for this number was
given. In this note, under the extra hypotheses that E/K is semi-stable and p > 3,
we obtain an explicit upper bound for this number for a certain class of Weierstrass
equations called 5-minimal.

1. INTRODUCTION

The paper is organised as follows. In Section 2 we introduce some preliminaries on
the canonical height and torsion points of E. In Section 3 we show our main result on
S-integral points.

2. PRELIMINARIES

Let h : E(K) -¥ K be the canonical height of E. Given a place p of K, let vp be the
normalised valuation of K corresponding to p, Kp the completion of K with respect to
«p and Ap : E(Kp) -> K the Neron function associated to p (see [8, Chapter VI]).

Suppose that E/K is semi-stable. Let X be a smooth irreducible projective curve
denned over k with function field K. Denote by <p£ : £ -> X the semi-stable minimal
model of E/K. Let je : X —> P\ be the j-map induced by <pe and pe its inseparable
degree. In the sequel we regard j £ as an element of K.

Goldfeld and Szpiro in [2, Proposition 11] gave an explicit version of a Theorem of
Manin in which h is computed in terms of an intersection number in £. This allows the

Received 27th January, 1998
This work was partially supported by CNPq research grant number 300896/91-3 and Pronex, Brazil.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 SA2.00+0.00.

353

https://doi.org/10.1017/S0004972700032329 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032329


354 A. Pacheco [2]

decomposition h(P) — J2 ^P(P) a n d reduces the problem of finding a lower bound for
pew*-

the canonical height of points P of infinite order of E to bounding Neron's functions at
P. The main ingredient to obtain a global result is the following lemma due to Hindry
and Silverman.

LEMMA 1. [4, Proposition 1.2] Let p 6 MK be such that vp(j£) < 0. For any

distinct points Po, • • • , PN € E(KP) we have £ Ap(Pj ~ pi) > i(N +

DEFINITION 2: Let ®E/K be the minimal discrimimant of E/K and $E/K its con-

ductor. Denote dE/K = degCDE/K) and fE/K = deg(^E/K)- Let aE/K - dE/i</fE/K be

the Szpiro's ratio of E/K. Since E/K is semi-stable, dE/K = deg(j£) = \K : k(j£)\.

CONVENTION. Given a finite set T we denote by \T\ its cardinal.

PROPOSITION 3 . The set Sa = { p e E{K);Ti(P) ^ dE/Ka^2
/K/96\ has at

most 2aE,K elements.

P R O O F : Suppose that |<Sff| > ^cr2
E,K. Let N ^ 1 be any integer such that 2aB,K <

N + 1 ^ ISJ. Let p € MK be such that vp(j£) ^ 0. It follows from [5, Chapter XI,

Theorem 5.1] that for any P € E(K), XP(P) ^ 0. Given Po,--- ,PN £ E{K), let H -

max 7i(Pi). It follows from the triangle inequality that H ^ (l/(AN(N +1))) J2^(pi ~

Pi). Hence, Proposition 1 implies H > (l/(48iV)) ^ ( ( ( # + 1) /«P(JF ' ) ) " MJI1)),

where where ^ denotes the sum over p € MK such that ^p(jf) < 0. Since Y!vp(Jel) =

p p

dE / K and |{p € MK ; «P0«) < ° } | = /s/if, H > (l/(48AT)) ( ( A T + l ) ^ / ^ " ^ - d £ / K ) .

By hypothesis TV + 1 > 2aE/K, therefore H > dE/KaE
2
/K/96. D

COROLLARY 4 . For every P e E{K) of infinite order we have li(P) ^ {dE/K

P R O O F : Suppose that h(P) < dE/K(TE
s,K/1536. For any integer n such that 1 ^

n ^ 4CT|/K., /i(nP) = n2'h(P) = dE/Ka~2
K/96. But this shows that IS^ ^ 4CT|/A:, which

contradicts Proposition 3. D

Corollary 4 implies the following version of a conjecture of Lang (see [3, Theorem
0.2]).

THEOREM 5 . For every P S E(K) of infinite order there exists a constant C2(js, g)

depending on g and on the inseparable degree pe of j £ : X -> F[ such that h(P) ^

C2(J£,9)dE/K, where c2{j£,g) is equal to ((2.18)10-10)p-6c, ifdE/K ^ 24pe(g-l) and to

((3.4)10-1 2)p-<V6, ifdE/K < 24pe(g - 1).
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PROOF: Szpiro's theorem on the minimal discriminant of elliptic curves over func-
tion fields states that ds/K ^ Gpe(2g — 2 + JE/K) (see [9, Theoreme 1]). Hence,
aEl/K ^ (Gp6)"1 - (2<7 - 2)d^K. In the case where ds/K ^ 24pe(g - 1), we obtain
&E/K ^ 12pe. Otherwise, OE/K ̂  ds/K < 24pe(g — 1). These two inequalities and
Corollary 4 prove the theorem. D

REMARK 6. Theorem 5 slightly improves [3, Theorem 0.2] in the sense that the lower
bound for the canonical height of points of infinite order depends polynomially on <7E/K:

instead of exponentially. This had already been remarked and proved for elliptic curves
over number fields by David (see [1, Corollaire 1.5]) using transcendence methods, which
in contrast with Hindry-Silverman's method is global rather than local.

As a consequence of Proposition 3 we obtain an upper bound for the torsion subgroup
E(K)tor of E(K).

THEOREM 7 . \E(K)t0T 7E/K-

REMARK 8. In [2, Theorem 13] Goldfeld and Szpiro proved that E{K)im ^ Upe((2g-
•.2

2)fg}K + 1)1 • It follows from Szpiro's discriminant theorem that the bound of Theorem

7 is twice the bound of [2, Theorem 13]; however the method is different.

3. INTEGRAL POINTS

DEFINITION 9: Let Rs c K be the ring of 5-integers and R*s c Rs the group of

S-units. Let L be a finite extension of K and a € L. Define hL(a) — \L : k(a) , if a ^ k,

otherwise hi{a) — 0. Denote by Si the set of places of L lying over 5. Let g^ be the

genus of L, RSL C L the ring of S^-integers and R*SL C RSL the subgroup of S^-units.

DEFINITION 10: Let y2 = f(x) be a Weierstrass equation for E/K. Suppose that
f(X) € Rs[X) and denote by A its discriminant. This equation is called S-minimal if
hK(A) is minimal subject to f(X) € Rs[X}.

DEFINITION 11: Let f{X) = (X - £\){X - e2){X — e3) be the factorisation of

f{X) in ~K[X\. Given P = {xP,yP) 6 E(RS) and i € {1,2,3}, let tf = xP - e{ and
L = K(ei,e2,£3,6-&I&)- For any permutation {i,l,m} of the elements of {1,2, 3}, let

H = {(& - &)/(& - U), (6 - 6)/(ft + U), te + ft)/(6 - Cm), (6 + 6)/(6 + U)}-
The main result needed to obtain an explicit bound for the number of 5-integral

points of an S-minimal Weierstrass equation for E is an upper bound for the height of
the y-coordinates of integral points (see [3, Proposition 8.2]). Before doing this it is
necessary to obtain an upper bound for the height of 5-units.

PROPOSITION 12 . Let y2 = f(x) be a Weierstrass equation for E/K. Suppose

that f(X) € RS[X], A € R's and p > 2. For any 77 € E we have hL{ri) s$ 2pe(2gL - 2 +

\SL\).
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P R O O F : Let t = (e3 - ei)/(e2 - £1) and denote by y2 = x(x ~ l)(x - t) a Legendre
form of E/K. Note that since the inseparable degree of j £ is pe, j £ € Kp' - Kp'+1. But
je = 28(t2 - t + l)3/(t2(t - I)2), thus t $ U'+l. Furthermore, any permutation of 1, 2
and 3 replaces t by an element of | t , 1 - t, l/t, l / ( i - l),t/(t - 1), {t - l)/t\. Therefore,

for any distinct i, I, m e {1,2,3}, « = (e, - c,-)/(em - e<) = ((& - &)/(& - &»)) ((& +

&)/(& + Cm)) i V'+'• Suppose that for any r/ g H we have T? g I7C+1. Let 0 < r,s ^ e

be the smallest integers such that K G If — LP'+i and r\ e I/' — V'+i, respectively.

Denote Kr = KP' and r]s = ?7P'. Observe that KT, 1 - KT,r)s, I — rjs e R*SL fl (L - L7"). It

follows from [6, Chapter VI, Lemma 10] that hL(Kr),hL(r]s) ^ 2gL - 2 + \SL\. Hence,

hL(K),hL{r)) ^ pehgL - 2 + |S i |V If some t] e E lies in Z/"1"1, then T = KT]'1 $ I/"1'1.

By using the same argument as above we conclude that hL(r) ^ pe[2gL - 2 + 15 ,̂1).

Therefore, hL(r)) — /IL(K) + ^Z,(T) ^ 2pef 2 ^ — 2 + 15^1), which proves the proposition. D

PROPOSITION 1 3 . With the same hypothesis and notation of Proposition 12,
suppose furthermore that p > 3. For any P = (xp,yp) € E(Rs) we have hK(yP/A) ^
48^(2,7-2 + |S | ) .

PROOF: The proof follows the same lines as [3, Proposition 8.2] replacing [3, (42)]
by the inequality of Proposition 12. However, we need to remark that the Riemann-
Hurwitz formula can be applied for L/K, because p > 3 implies that L/K is separable
and has no wild ramification. D

In order to obtain an explicit upper bound for \E(Rs)\, recall from [7, Lemma 1.2
(a)] that E(RS) 4 E(K)t0T (1 + 2y/JJa)rE, where a = minjft(P); P € (E(K) -

E(K)tor) n E{RS)}, P = max{h(P); P € E{RS)} and rE = rank(^(X)). The lower
bound a is obtained from Theorem 5.

REMARK 14. Since p > 3, we write the Weierstrass equation of E/K as y2 = x3 +
Ax + B. Suppose it is 5-minimal. In this case, (3 ^ Pe(12<? + 415| + bdE/K). The proof
of this inequality is the same as in [3, Corollary 8.5] replacing [3, Proposition 8.2] by
Proposition 13.

THEOREM 15 . Suppose that p > 3 and y2 = x3 + Ax + B is an S-minimal
equation for E/K. IfdE/K £ 2Ape{g-\), then E{RS)\ sj 288p2e(((8.57)105)p4ev/i5|)rE;

otherwise E(Rs)\ < (1152)pV

PROOF: Suppose that dE/K > 24pe(^ - 1). Thus g ^ dE/Kp~e/24 + 1 and aE/K ^

12pe. Since \S\ > 1, P/a ^ ((4.59)109)p7e(5 + (12ff + 4|5|)rfE//<-) < ((4.59)10u)p7e \S\.

Theorem 7 implies ^(A')tor ^ 2o2
E/K ^ 288p2e. This proves the first part of the the-

orem. Suppose now that dE/K < 24pe(g - 1). In this case, since |5 | > 1 and g ^ 2,
p/a^ ((2.94)10u)pV(5 + (125 + 4 |5 | )d-^) < ((3.94)1013)pV \S\. It follows from
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Theorem 7 that 2CT|/K. < 2f 24pe(g - 1) J . Hence, the second part of the

theorem is proved. D

REMARK 16. Theorem 15 is an analogue for char(A;) = p > 3 of [3, Theorem 8.1].
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