
doi:10.1017/S0017089518000447.

LUSTERNIK–SCHNIRELMANN CATEGORY BASED ON THE
DISCRETE CONLEY INDEX THEORY

KATSUYA YOKOI
Department of Mathematics, Jikei University School of Medicine,

Chofu, Tokyo 182-8570, Japan
e-mail: yokoi@jikei.ac.jp

(Received 24 March 2018; accepted 20 September 2018

Abstract. We study Lusternik–Schnirelmann type categories for isolated
invariant sets by the use of the discrete Conley index.

2010 Mathematics Subject Classification. Primary 37B30; Secondary 37B35,
55M30.

1. Introduction. We are primarily concerned with a discrete dynamical system
from an open subset of a locally compact, separable metrizable space X to X (called a
local map).

The category of a space is introduced by Lusternik and Schnirelmann [16]. The
invariant gives an information about the existence of critical points; that is, if there
is a real-valued smooth function on a compact closed manifold with n critical points,
then the manifold is covered by n contractible open subsets [3]. The Conley index
theory is a generalization of Morse theory, which is a tool to analyse the topology
of manifold from the view point of critical points. This theory (or theory of isolated
invariant sets) is introduced and developed by Conley, Easton, Salamon and others
for continuous dynamical systems (flows) [8, 24], and is later extended to the discrete
case [12, 19, 23, 28]. In this paper, we study Lusternik–Schnirelmann type categories
for isolated invariant sets based on the discrete homotopy Conley index, and give a
modification of well-known results concerning Lusternik–Shnirelmann category type
estimates for the number of rest points of flows [20, 21, 25]. By modifying a result of
Szymczak, Wójcik and Zgliczyński [30], we also study the relations between the Conley
indeies/categories in the invariant subspace and in the entire space.

2. The discrete Conley index. We begin with a brief review of the basic definitions
and properties of the discrete Conley index theory in the style of Franks and Richeson
[12].

DEFINITION 2.1. Let f : O ⊆ X → X be a local map, where O is open in a locally
compact, separable metrizable space X . For a given set N ⊆ O, we define the maximal
invariant set InvN to be the set of x ∈ N, such that there exists an orbit {xn} ⊆ N with
x0 = x and f (xn) = xn+1 for n ∈ �. A compact invariant set S is isolated if there exists
a compact neighbourhood N of S such that S = InvN ⊆ Int N. The neighbourhood
N is called an isolating neighbourhood of S. A compact set N is an isolating block, if
f (N) ∩ N ∩ f −1(N) ⊆ Int N.
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REMARK. We note that every isolating block N is an isolating neighbourhood of the
set S = InvN, and every neighbourhood of an isolated invariant set S contains an
isolating block N with S = InvN (see [10, 11]).

DEFINITION 2.2. Let S be an isolated invariant set and suppose (N, L) is a compact
pair contained in the interior of the domain of f . The pair (N, L) is called a filtration
pair for S provided N and L are each the closures of their interiors and

(1) Cl(N \ L) is an isolating neighbourhood of S,
(2) L is a neighbourhood of N− = {x ∈ N | f (x) �∈ Int N} in N, and
(3) f (L) ∩ Cl(N \ L) = ∅.

THEOREM 2.3 [12, Theorem 3.6]. If N is an isolating block and L is any sufficiently
small compact neighbourhood of N− in N, the (N, L) is a filtration pair for S = InvN.

THEOREM 2.4 [12, Theorem 3.7]. Let f : O ⊆ M → M be a local map from an open
subset O of a manifold M to M with an isolated invariant set S. Inside any neighbourhood
of S, there exists a filtration pair (N, L) for S, which is homeomorphic to a finite polyhedral
pair.

Let P = (N, L) be a filtration pair for f . (NL, ∗L) denotes the pointed space that
is obtained by collapsing L to a single point ∗L. In case L is empty, NL is defined to be
the disjoint union of N and the single point space {∗L}. The definition of filtration pair
permits us to define a base-point preserving map fP : NL → NL that fixes the point ∗L

and sends every point z ∈ N \ L to π (f (z)), where π : N → NL is the natural quotient
map. This map fP is called the pointed space map associated to P.

Suppose K is a category. Let X , Y be objects in K and f : X → X , g : Y → Y be
endmorphisms in K. We say that (X, f ) and (Y, g) are shift equivalent [32], if there exist
a couple of morphisms r : X → Y , s : Y → X in K and m ∈ � such that the following
diagrams are commutative.

X
f ��

r

��

X

r

��

Y
g ��

s
��

Y

s
��

X
f m

��

r

��

X

r

��
Y g

�� Y X
f

�� X Y
gm

��
s

����������
Y

THEOREM 2.5 [12, Theorem 4.3]. Suppose P = (N, L) and P′ = (N ′, L′) are
filtration pairs for an isolated invariant set S. Then, (NL, fP) and (NL′ , fP′) are shift
equivalent, where fP and fP′ are the pointed space maps associated to P, P′, respectively.

REMARK. We note by [12, Definition 4.4, Lemma 4.5] that the maps r : NL → N ′
L′ ,

s : N ′
L′ → NL giving a standard shift equivalence preserve a f -invariant subset of S.

DEFINITION 2.6. Let S be an isolated invariant set for a local map f : O ⊆ X → X .
Then, we define the discrete homotopy Conley index Ch(S, f ) of S to be the shift
equivalence class of (NL, [fP]), where NL ∈ Ob(HTop∗) and [fP] ∈ MorHTop∗ (NL, NL).
HTop∗ means the pointed homotopy category of pointed topological spaces.

We here point out the following fact.
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THEOREM 2.7 [12, Proposition 8.2]. Let P = (N, L) be a filtration pair for an
isolated invariant set S. Then, the isomorphism class of (NL, fP) in the sense of Szymczak
[28] is precisely the Conley index of S.

We next introduce some terminology, which are appeared in geometric topology.
A locally compact separable metrizable space X is said to be an absolute neighbourhood
retract (ANR), if X can be closed embedded in separable Hilbert space in such a way
that there exists an open neighbourhood U of X that retracts to X [2, 13]. All locally
contractible finite dimensional spaces are ANR’s. A closed set A in a space X is said to
be a Z-set provided that for every ε > 0 there exists a map h : X → X that is ε-close to
the identity and whose image misses A [1, 6]. Some examples of Z-sets are a topological
manifold X and the boundary A = ∂X ; the subset X × {0} of X × [0, 1] for a space X .
Recall that the Hilbert cube Q is the countable product of copies of the unit interval.
A Hilbert cube manifold (Q-manifold) is a separable metrizable space in which each
point has an open neighbourhood homeomorphic to an open subset of Q.

3. The Conley category and Morse decompositions.

DEFINITION 3.1. Let f : X → X be a map and A ⊆ X . We define the weak category
of f reduced to A, c∗

A(f ), to be the smallest integer n such that A = U1 ∪ · · · ∪ Un,
where the Ui are open in A and each restriction f k|Ui : Ui → X is null-homotopic for
some k.

REMARK. If X is a compact ANR, then c∗
A(f ) is bounded.

EXAMPLE 3.2 [5, 15]. Let f be a self-map on a one-dimensional ANR continuum
X . Then, the shift space lim←−{X, f } is tree-like if and only if c∗

X (f ) = 1.

The following fact is an easy consequence of definitions.

PROPOSITION 3.3. Let f : (X, A) → (X, A), g : (Y, B) → (Y, B) be maps of pairs.
Suppose ((X, A), [f ]), ((Y, B), [g]) are shift equivalent in the homotopy category of pairs.
Then, c∗

A(f ) = c∗
B(g).

DEFINITION 3.4. Let S be an isolated invariant set for a map f . We define the
Conley category cc(S, f ) of S to be the weak category c∗

NL
(fP), where P = (N, L) is a

filtration pair of S and fP : NL → NL is the pointed space map associated to P. For
an f -invariant subset A of S, we define the Conley category ccA(S, f ) of S reduced to
A to be the weak category c∗

A(fP). We will write cc(S) (ccA(S)) for cc(S, f ) (ccA(S, f ),
respectively) when no confusion can arise.

REMARK. The Conley category of S (reduced to A) does not depend on the choice of
a filtration pair of S and it is an invariant for the discrete homotopy Conley index, by
Theorem 2.5, Remark following the theorem and Proposition 3.3.

Let x ∈ X . If σ : � → X is given by σ (n) = xn and x0 = x and f (xn) = xn+1 for
n ∈ �, then we call σ a solution through x. Recall that we define the ω-limit set of x to
be ω(x) = ∩n∈� Cl(∪k≥n{f k(x)}). For any solution σ : � → X through x, we define the
α-limit set to be ασ (x) = ∩n∈� Cl(∪k≥n{σ (−k)}).

DEFINITION 3.5. The collection of pairwise disjoint isolated invariant sets {Si ⊆
S | i = 1, . . . , m} is a Morse decomposition [12] of an isolated invariant set S if for every
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x ∈ S and every solution σ : � → S through x, we have either σ (�) ⊆ Si for some i, or
the ω-limit set ω(x) ⊆ Si and the α-limit set ασ (x) ⊆ Sj for some i < j.

We use a basic property of a Morse decomposition.

PROPOSITION 3.6. Let S be an isolated invariant set with an isolating neighbourhood
N and {S1, . . . , Sm} be a Morse decomposition of S. If x ∈ N satisfies f n(x) ∈ N for
n ∈ �, then there exists � (1 ≤ � ≤ m) such that ω(x) ⊆ S� ∪ S�+1 ∪ · · · ∪ Sm.

Proof. We note that ω(x) ⊆ S. Suppose on the contrary that the intersection
[S \ (S1 ∪ · · · ∪ Sm)] ∩ ω(x) contains a point z. When choosing a solution σ : � → S
through z with σ (�) ⊆ ω(x), the solution σ possesses ω(z) ⊆ Sp and ασ (z) ⊆ Sq for
some 1 ≤ p < q ≤ m, and hence both sets ω(x) ∩ Sp, ω(x) ∩ Sq are non-empty. Take
open sets U and V satisfying Sp ⊆ U , Sq ∪ · · · ∪ Sm ⊆ V and Cl U ∩ Cl V = ∅. Then,
we can find a sequence of numbers m1 < n1 < m2 < n2 < . . . such that f mi (x) ∈ U ,
f ni (x) ∈ V ; if mi ≤ k < ni, then f k(x) /∈ V ; if ni ≤ k < mi+1, then f k(x) /∈ U ; the limit
set of {f mi (x)} ({f ni (x)}) intersects Sp (Sq, respectively).

Let y = limj f nij (x) ∈ Sq. The unboundedness of {ni − mi} yields the existence of a
solution σ̃ through y with ω(y) ⊆ Sq and ασ̃ (y) ∩ V = ∅. This leads to a contradiction
since {S1, . . . , Sm} is a Morse decomposition of S. �

We need a discrete version of a result concerning the Conley index theory for
flows. We provide a sketch of a proof here because we have been unable to find a
precise reference for the discrete case (continuous map); our strategy is essentially by
Conley and Zehnder [9], Salamon [24] and Razvan [22].

LEMMA 3.7 (Salamon [24]). Let S be an isolated invariant set with an isolating
neighbourhood N and {S1, . . . , Sm} be a Morse decomposition of S. We define K = {x ∈
N | f n(x) ∈ N for n ∈ �} and Ki = {x ∈ K | ω(x) ⊆ Si ∪ · · · ∪ Sm} for i = 1, . . . , m.
Then, the collection {Ki | i = 1, . . . , m} has the following properties:

(1) Ki is closed in N with K1 ⊇ · · · ⊇ Km, and
(2) if A is a closed (in K) subset of Ki \ Ki+1 (we let Km+1 = ∅) and U is a

neighbourhood of Si, then there exists n0 ∈ � such that f n(A) ⊆ U ∩ K for n ≥ n0.

Proof. (1): It is clearly K1 = K by Proposition 3.6.
Let i ≥ 2. We define,

S[i] =
m⋃

k=i

Sk ∪
⋃

i≤p<q≤m

C(Sq, Sp; S),

where C(Sq, Sp; S) = {x ∈ S \ (Sq ∪ Sp) | there exists a solution σ : � → S through x
with ασ (x) ⊆ Sq and ω(x) ⊆ Sp}. We note that S[i] is closed in S by [12].

Let {xn} ⊆ Ki with xn → x ∈ K . Suppose on the contrary that x /∈ Ki. Take a
closure compact neighbourhood U of S[i] in K such that Cl U ∩ (S1 ∪ · · · ∪ Si−1) = ∅,
and then find �0 ∈ � with f �0 (x) ∈ K \ Cl U (use Proposition 3.6). By the continuity
of f �0 , we have n0 ∈ � such that f �0 (xn) ∈ K \ Cl U for n ≥ n0. Since xn ∈ Ki, for each
n ≥ n0, we can take kn ∈ � such that f kn (xn) ∈ K \ U and f k(xn) ∈ U for k > kn. We
may assume that f kn (xn) → z ∈ K \ U and k1 ≤ k2 ≤ . . . .

We note that {kn} is unbounded, because of ω(z) ⊆ Si ∪ · · · ∪ Sm. This shows the
existence of a solution σ : � → N through z. Since z ∈ S \ (S1 ∪ · · · ∪ Sm), z would
be an element of S[i] by the definition of a Morse decomposition. This contradicts
z /∈ U ⊇ S[i] and therefore finishes the proof of (1).
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(2): We may assume that U is a compact neighbourhood of Si such that U ⊆ N
and U ∩ Ki+1 = ∅ by (1) and Si ∩ Ki+1 = ∅. Take an open neighbourhood V of Si with
f (V ) ⊆ U . Choose n1 ∈ � such that each x ∈ (U \ V ) ∩ Ki has the property f −n(x) ∩
{f −(n−1)(U) ∩ · · · ∩ f −1(U) ∩ U} = ∅ for some 1 ≤ n ≤ n1. Find a neighbourhood W
of Si with f n(W ) ⊆ V for any 0 ≤ n ≤ n1. Then, we see f n(W ∩ Ki) ⊆ V for n ∈ �.
Let n2 ∈ � be that each x ∈ A satisfies f m(x) ∈ W for some 0 ≤ m ≤ n2. This clearly
concludes f n2+n(A) ⊆ V ⊆ U for n ∈ �. �

We are now in a position to state our main theorem.

THEOREM 3.8. Let f : O ⊆ M → M be a local map from an open subset O of a
manifold M to M with an isolated invariant set S. Suppose {S1, . . . , Sm} is a Morse
decomposition of S. Then, cc(S) ≤ 1 + ∑m

i=1 ccSi (S).

Proof. Let P = (N, L) be a filtration pair of ANR’s for S (Theorem 2.4). Since NL

is a compact ANR, the values cc(S), ccSi (S) are finite. We note that the following maps
f , fP are topological conjugate by π

N \ ⋃∞
k=0 f −k(L)

f ��

π

��

N \ ⋃∞
k=0 f −k(L)

π

��
NL \ ⋃∞

k=0 f −k
P (∗L)

fP �� NL \ ⋃∞
k=0 f −k

P (∗L),

and N \ ⋃∞
k=0 f −k(L) = {x ∈ Cl(N \ L) | f n(x) ∈ Cl(N \ L) for n ∈ �}.

Write K = NL \ ⋃∞
k=0 f −k

P (∗L) and let Ki = {x ∈ NL | ωfP (x) ⊆ Si ∪ · · · ∪ Sm} for
i = 1, . . . , m. Since

⋃∞
k=0 f −k

P (∗L) = ⋃∞
k=0 Int f −k

P (∗L) by [12, Theorem 3.8], K is a
compact set, and we see K = K1 by Proposition 3.6. Under the identification above,
we can use Lemma 3.7 for fP.

For each i (1 ≤ i ≤ m), we shall successively construct an open neighbourhood Vi

of Si in NL such that c∗
Si

(fP) = c∗
Vi

(fP) and Ki ⊆ Vi ∪ · · · ∪ Vm.
Let i = m. When c∗

Sm
(fP) has a value of k, then we can write Sm = A1 ∪ · · · ∪

Ak, where the A� (1 ≤ � ≤ k) are open in Sm and each restriction f n
P |A�

: A� → NL

is null-homotopic for some n. By virtue of [27, Lemma 2.5], [31], we find an open
neighbourhood B� of A� in NL such that B� ⊆ N \ L and each restriction f n

P |B�
: B� →

NL is null-homotopic. The open neighbourhood Um = B1 ∪ · · · ∪ Bk of Sm satisfies
Um ⊆ N \ L and c∗

Sm
(fP) ≥ c∗

Um
(fP).

Apply Lemma 3.7 to A = Km and Sm ⊆ Um, then we obtain nm ∈ � such that
f nm
P (Km) ⊆ Um ∩ K . Now, we let Vm be f −nm

P (Um). The set Vm is also an open
neighbourhood of Sm in NL such that Sm ⊆ f nm

P (Vm) ⊆ Um and Km ⊆ Vm. Hence,
we see c∗

Sm
(fP) = c∗

Vm
(fP).

Suppose that we have constructed Vm, . . . , Vi+1 satisfying our conditions. We
consider the case i. In the same way as the case i = m, we obtain an open neighbourhood
Ui of Si in NL, such that Ui ⊆ N \ L and c∗

Si
(fP) ≥ c∗

Ui
(fP). Apply Lemma 3.7 to A =

Ki \ ⋃m
j=i+1 Vj and Si ⊆ Ui again, then we have ni ∈ � such that f ni

P (Ki \ ⋃m
j=i+1 Vj) ⊆

Ui ∩ K . Then, it is easily seen that the set Vi = f −ni
P (Ui) satisfies the condition in a

similar way. We finish our construction.
Let L �= ∅. K1 = K , NL \ ⋃m

j=1 Vj ⊆ ⋃∞
k=0 Int f −k

P (∗L) and the compactness show

that NL \ ⋃m
j=1 Vj ⊆ Int f −k0

P (∗L) for some k0 ∈ �. By the homotopy extension
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Figure 1. the stream of f .

theorem, we obtain an open neighbourhood of NL \ ⋃m
j=1 Vj in NL such that the

restriction of f k0
P to the open neighbourhood is also null-homotopic. Therefore,

c∗
NL

(fP) ≤ 1 + ∑m
i=1 c∗

Vi
(fP) = 1 + ∑m

i=1 c∗
Si

(fP). In the case of L = ∅, then N = K =⋃m
j=1 Vj and NL = N ∪ {∗L}. Hence, we have our inequality immediately and finally

conclude that cc(S) ≤ 1 + ∑m
i=1 ccSi (S). �

EXAMPLE 3.9. Let f : �2 → �2 be a map defined by f (x) = 2x for x ∈ �2. Then,
we see cc(S) = 2 = 1 + ccS(S), where S = {0}.

EXAMPLE 3.10. Let f be a self-map on [−1, 1] × (−1, 1) defined by f (x, y) =
(x3, sin yπ

2 ) (see Figure 1). Let f̃ be a map on an open Möbius band (defined by
(−1, t) ∼ (1,−t)) induced by f . S is the centre circle of the open Möbius band and
S1 = {(0, 0)}, S2 = {(1, 0)} (Figure 1). We see cc(S) = 3 = 1 + ccS1 (S) + ccS2 (S). The
set NL can be considered as the projective plane �P2, and note that fP � id and the
category of �P2 is 3 [26].

EXAMPLE 3.11. Suppose f is a natural map of the plane such that both rectangles
get mapped as shown below (see Figure 2). This is a variation of the Smale horseshoe
map (see [22]). Then, we see that cc(S) = 2 < 3 = 1 + ccS1 (S) + ccS2 (S), where Si and
S are isolated invariant sets with Si = InvNi (i = 1, 2) and S = Inv(N1 ∪ N2).
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L1

L2

L3

L4

L5

f(L1)

f(L2) f(L3)

f(L4)

f(L5)

Figure 2. N1: the left rectangle, N2: the right rectangle.

4. The Conley indices and categories in the invariant subspace and in the entire
space. The next lemma is extremely useful for proving main results in this section.
The statement is similar in spirit to the concept of a representable index pair in a
Euclidean space �n, i.e., an index pair composed of hypercubes [29, 30].

LEMMA 4.1. Let f : (U, A × {0}) → (A × [0, 1), A × {0}) be a map on an open set
U of A × [0, 1) containing A × {0}, and S ⊆ A × {0} be an isolated invariant set for f .
Then, we have a filtration pair P = (N, L) for S such that

(N, L) ∩ (A × [0, ε]) = (J, K) × [0, ε],

for some compact pair (J, K) of A and 0 < ε < 1.

Proof. Let M be an isolating block for S in A × [0, 1), that is, the set M satisfies
f (M) ∩ M ∩ f −1(M) ⊆ Int M.

Take a small compact neighbourhood M̃ of M satisfying f (M̃) ∩ M̃ ∩ f −1(M̃) ⊆
Int M. Using the compactness, we can obtain a compact neighbourhood J of pr(M ∩
(A × {0})) in A and a small number ε (> 0) such that M ∩ (A × [0, ε]) ⊆ J × [0, ε] ⊆ M̃,
where pr means the projection map from A × [0, 1) to A. Note that for a sufficiently
small γ > 0, the retraction of M ∩ (A × [0, γ ]) to A × {0} is in M̃ ∩ (A × {0}). Then, the
union N = M ∪ (J × [0, ε]) possesses the property f (N) ∩ N ∩ f −1(N) ⊆ Int N. Thus,
N is an isolating block for S that satisfies N ∩ (A × [0, ε]) = J × [0, ε].

By modifying sufficiently small compact neighbourhood of N− = {x ∈ N | f (x) �∈
Int N} in a similar argument to the one of the set N and by retaking small ε if
necessary, we find a compact neighbourhood L of N− in N such that L ∩ (A × [0, ε]) is
the product set of a compact set K in A and [0, ε]. (If N− = ∅ or N− ∩ (A × {0}) = ∅,
then let K = ∅.) The construction together with Theorem 2.3 implies that (N, L) is a
filtration pair for S having our desired property. �

As an application of Lemma 4.1, we give a variation of a series of results (in �n) by
Szymczak, Wójcik and Zgliczyński [30]. Our arguments are essentially based on their
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proofs. We first consider the case of an isolated invariant set being of attracting type. For
a map f : X → X and an isolated invariant set S ⊆ X , we define the unstable and stable
sets of S by W u(S) = {x ∈ X | there exists σ : �− → X such that σ (0) = x, f (σ (n −
1)) = σ (n) for n ∈ �− and ∅ �= ασ (x) ⊆ S} and W s(S) = {x ∈ X | ∅ �= ω(x) ⊆ S},
respectively.

LEMMA 4.2 [30, Theorem 1]. Let f : (X, A) → (X, A) be a self-map defined on a
pair (X, A) satisfying A is closed and collared in X, and S ⊆ A be an isolated invariant
set for f such that W u(S) ⊆ A. Then, we hold Ch(S, f ) = Ch(S, f |A), in particular
cc(S, f ) = cc(S, f |A).

Proof. Let ϕ : A × [0, 1) → X be an open embedding with ϕ(a, 0) = a for a ∈ A.
Choose an open set U in A × [0, 1) such that A × {0} ⊆ U and f ◦ ϕ(U) ⊆ ϕ(A ×
[0, 1)), and write f̃ = ϕ−1 ◦ f ◦ ϕ|U : U → A × [0, 1) and S̃ = ϕ−1(S). We note that
S̃ ⊆ A × {0} is isolated invariant for f̃ and W u

f̃
(̃S) ⊆ A × {0}.

U
f̃ ��

� �

ϕ|U
�

A × [0, 1)
� �

ϕ

�

X
f

�� X.

If we prove that Ch(̃S, f̃ ) = Ch(̃S, f̃ |A×{0}), our assertion follows.
Let P = (N, L) be a filtration pair for S̃ such that

(N, L) ∩ (A × [0, ε]) = (J, K) × [0, ε],

for some compact pair (J, K) of A and 0 < ε < 1 (by Lemma 4.1). Using the product
structure of the filtration pair, we can define the homotopy H : ((N, L) ∩ (A × [0, ε])) ×
[0, 1] → (N, L) ∩ (A × [0, ε]) from the identity map (on the 0-level) to the retraction
map to (N, L) ∩ (A × {0}) (on the 1-level) relative to (N, L) ∩ (A × {0}) by H((x, s), t) =
(x, s(1 − t)) ((x, s) ∈ N ∩ (A × [0, ε]), 0 ≤ t ≤ 1).

We consider the following subspaces of NL:

(NL)ε = {[(x, s)] ∈ NL | (x, s) ∈ N, 0 ≤ s ≤ ε} ∪ {∗L},
(NL)0 = {[(x, 0)] ∈ NL | (x, 0) ∈ N} ∪ {∗L}.

Then the homotopy H induces a homotopy H̄ : (NL)ε × [0, 1] → (NL)ε from the
identity map (on the 0-level) to the retraction map to (NL)0 (on the 1-level) relative to
(NL)0.

The assumption W u
f̃

(̃S) ⊆ A × {0} shows the existence of a number m ∈ �

satisfying (f̃P)m(NL) ⊆ (NL)ε. Taking r = H̄1 ◦ (f̃P)m and the inclusion map s : (NL)0 →
NL, we can easily check that the following diagrams are homotopically commutative.

NL
f̃P ��

r
��

NL

r
��

(NL)0
f̃P|··· ��

s

��

(NL)0

s

��

NL
(f̃P)m

��

r
��

NL

r
��

(NL)0
f̃P|···

�� (NL)0 NL
f̃P

�� NL (NL)0
(f̃P|···)m

��
s

�����������
(NL)0.
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Since the pair (N, L) ∩ (A × {0}) = (J × {0}, K × {0}) is also a filtration pair for
S̃ in A × {0}, and we may consider (NL)0 as J × {0}/K × {0}, the diagrams imply
Ch(̃S, f̃ ) = Ch(̃S, f̃ |A×{0}). This completes our proof. �

We give a statement in the form of a pair of ANR’s.

THEOREM 4.3. Let f : (X, A) → (X, A) be a self-map defined on a pair (X, A) of
ANR’s satisfying A is a Z-set in X, and S ⊆ A be an isolated invariant set for f such that
W u(S) ⊆ A. Then, we hold Ch(S, f ) = Ch(S, f |A), in particular cc(S, f ) = cc(S, f |A).

Proof. It follows from an Edwards’ theorem [6, Theorem 44.1] that (X × Q, A × Q)
is a Q-manifolds pair, and A × Q is obviously a Z-set in X × Q. Thus, A × Q is collared
in X × Q by [6, Theorem 16.2]. We note that S × Q is also isolated invariant for f × idQ

and W u(S × Q) ⊆ A × Q.
Using the general fact (Lemma 4.2) above, we conclude that

Ch(S, f ) = Ch(S × Q, f × idQ)

= Ch(S × Q, f × idQ|A×Q)

= Ch(S, f |A),

and this is precisely the assertion of the theorem. �

By the collaring theorem of Brown [4], we have the following.

COROLLARY 4.4. Let f : (M, ∂M) → (M, ∂M) be a self-map defined on a manifold
M and S ⊆ ∂M be an isolated invariant set for f such that W u(S) ⊆ ∂M. Then, we hold
Ch(S, f ) = Ch(S, f |∂M), in particular cc(S, f ) = cc(S, f |∂M).

We next consider the case of an isolated invariant set being of repelling type.

LEMMA 4.5 [30, Theorem 2]. Let f : (X, A) → (X, A) be a self-map defined on a
pair (X, A) satisfying A is closed and collared in X, and S ⊆ A be an isolated invariant
set for f such that W s(S) ⊆ A. Then, Ch(S, f ) is trivial, i.e. cc(S, f ) = 1.

Proof. Given f̃ and S̃ as in the proof of Lemma 4.2, we obtain a filtration pair
P = (N, L) for S̃ such that (N, L) ∩ (A × [0, ε]) = (J, K) × [0, ε] for some compact
pair (J, K) of A and 0 < ε < 1, by Lemma 4.1 again. Using the product structure
of the filtration pair, we can define the homotopy G : (N, L) × [0, 1] → (N, L) from
the identity map (on the 0-level) to the retraction map to (N, L) ∩ (A × [ε, 1)) (on
the 1-level) relative to (N, L) ∩ (A × [ε, 1)) by G((x, s), t) = (x, max{s, tε}) ((x, s) ∈ N,
0 ≤ t ≤ 1).

Let (NL)ε = {[(x, s)] ∈ NL | (x, s) ∈ N, ε ≤ s < 1} ∪ {∗L}. Then, the homotopy G
induces a homotopy Ḡ : NL × [0, 1] → NL from the identity map (on the 0-level) to
the retraction map to (NL)ε (on the 1-level) relative to (NL)ε.

The assumption W s(S) ⊆ A × {0} shows the existence of a number m ∈ �

satisfying (f̃P)m((NL)ε) = ∗L. Taking r = (f̃P)m ◦ H1 and the trivial map s(NL) = ∗L,
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we can easily check that the following diagrams are homotopically commutative.

NL
f̃P ��

r
��

NL

r
��

NL
s ��

s
��

NL

s
��

NL
(f̃P)m

��

r
��

NL

r
��

NL s
�� NL NL

f̃P

�� NL NL sm
��

s

����������
NL.

Thus, Ch(S, f ) = Ch(̃S, f̃ ) is trivial. �

THEOREM 4.6. Let f : (X, A) → (X, A) be a self-map defined on a pair of ANR’s
satisfying A is a Z-set in X, and S ⊆ A be an isolated invariant set for f such that
W s(S) ⊆ A. Then Ch(S, f ) is trivial, i.e. cc(S, f ) = 1.

Proof. We can proceed our proof in a way similar to what we did in
Theorem 4.3. �

COROLLARY 4.7. Let f : (M, ∂M) → (M, ∂M) be a self-map defined on a manifold
M and S ⊆ ∂M be an isolated invariant set for f such that W s(S) ⊆ ∂M. Then, Ch(S, f )
is trivial, i.e., cc(S, f ) = 1.

EXAMPLE 4.8. f is a natural map of the half-plane, which has the one fixed point
as shown below.

(1) Ch(S, f ) �= Ch(S, f |A), cc(S, f ) = cc(S, f |A), where S = {•} and A = the
horizontal line

����

����

•�� ��

��

		��
��

��
��

�

��
��

��
��

�

�
��

��
��

��

��
��

��
��

�

(2) cc(S, f ) �= cc(S, f |A), where S = {•} and A = the horizontal line

��

��
��

•�� ��

		��
��

��
��

�

��
��

��
��

�
��

��
��

��
�

�����������

(3) Ch(S, f ) = Ch(S, f |A), cc(S, f ) = cc(S, f |A), where S = {•} and A = the
horizontal line

702

https://doi.org/10.1017/S0017089518000447 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000447


L–S CATEGORY BASED ON THE CONLEY INDEX THEORY

���� •�� ��

��

		��
��

��
��

�

��
��

��
��

�

�
��

��
��

��

��
��

��
��

�

ACKNOWLEDGEMENTS. The author was partially supported by the Jikei University
Research Fund.

REFERENCES

1. R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–
383.

2. K. Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44 (Państwowe
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