SYMPLECTIC COMPLEX BUNDLES OVER REAL ALGEBRAIC FOUR-FOLDS

WOJCIECH KUCHARZ

(Received 28 April, 1988)

Communicated by J. H. Rubinstein

Abstract

Let X be a compact affine real algebraic variety of dimension 4 . We compute the Witt group of symplectic bilinear forms over the ring of regular functions from X to C . The Witt group is expressed in terms of some subgroups of the cohomology groups $H^{2 k}(X, \mathbf{Z})$ for $k=1,2$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 57 R 22, 19 G 12.

1. Introduction

Let X be an affine real algebraic variety, that is, X is biregularly isomorphic to an algebraic subset of R^{n} for some n (for definitions and notions of real algebraic geometry we refer to [3]). Denote by $\mathscr{R}(X, \mathbb{C})$ the ring of regular \mathbb{C}-valued functions on X (cf. [3, page 279]). Thus if X is an algebraic subset of \mathbb{R}^{n} and $X_{\mathbb{C}}$ is its Zariski closure in \mathbb{C}^{n}, then $\mathscr{R}(X, \mathbb{C})$ is canonically isomorphic to the localization of the affine ring $A\left(X_{\mathbf{C}}\right)$ of $X_{\mathbf{C}}$ with respect to the multiplicatively closed subset

$$
S=\left\{f \in A\left(X_{\mathbf{C}}\right) \mid f(X) \subset \mathbb{C} \backslash\{0\}\right\}
$$

In this note we study symplectic (that is, skew-symmetric) nonsingular bilinear forms over $\mathscr{R}(X, \mathbb{C})$. More precisely, let $W^{-1}(\mathscr{R}(X, \mathbb{C}))$ denote the Witt group of symplectic bilinear forms over $\mathscr{R}(X, \mathbb{C})$ (cf. Section 2 or $[1,2,11]$).
(C) 1989 Australian Mathematical Society 0263-6115/89 $\$$ A2.00 +0.00

In $[4,6]$ (cf. also Section 2) we have defined the graded subring

$$
H_{\mathrm{C}-\mathrm{alg}}^{\text {even }}(X, \mathbf{Z})=\bigoplus_{k \geq 0} H_{\mathrm{C}-\mathrm{ag}}^{2 k}(X, \mathbf{Z})
$$

of the cohomology ring $H^{\text {even }}(X, \mathbf{Z})$. Assuming that X is compact, nonsingular, $\operatorname{dim} X=4$, we compute the group $W^{-1}(\mathscr{R}(X, \mathbb{C})) \otimes \mathbf{Z} / 2$ and, in some cases, also the group $W^{-1}(\mathscr{R}(X, \mathrm{C}))$ in terms of the groups $H_{\text {C-alg }}^{2 k}(X, Z)$, $k=1,2$. Combining this result with [4], we obtain that for "most" algebraic hypersurfaces X of the real projective space $\mathbf{R} P^{5}$ of sufficiently high degree, the group $W^{-1}(\mathscr{R}(X, \mathbb{C}))$ is zero (the precise meaning of "most" is explained in Section 2). We also give examples of "exceptional" algebraic hypersurfaces X in $R P^{5}$ of arbitrarily high degree with $W^{-1}(\mathscr{R}(X, \mathbb{C})) \neq 0$.

Let us recall that the real projective space $\mathbf{R} P^{n}$ with its usual structure of an abstract real algebraic variety is in fact an affine variety [3, Theorem 3.4.4]. Hence every algebraic subvariety of $R P^{n}$ is also affine.

2. Results

Let A be a commutative ring with an identity element. A symplectic space over A is a pair (P, s), where P is a finitely generated projective A-module and $s: P \times P \rightarrow A$ is a bilinear nonsingular symplectic form (recall that s is said to be nonsingular if the homomorphism $P \rightarrow P^{*}=\operatorname{Hom}(P, A), x \rightarrow s(x, \cdot)$ is bijective). Every finitely generated projective A-module Q gives rise to a symplectic space $H(Q)=\left(Q \oplus Q^{*}, h\right)$, where $h\left(\left(x, x^{*}\right),\left(y, y^{*}\right)\right)=x^{*}(y)-y^{*}(x)$ for x, y in Q and x^{*}, y^{*} in Q^{*}. An isometry of symplectic spaces is an isomorphism of the underlying modules preserving the forms. The orthogonal sum of two symplectic space $\left(P_{1}, s_{1}\right)$ and $\left(P_{2}, s_{2}\right)$, denoted by $\left(P_{1}, s_{1}\right) \perp\left(P_{2}, s_{2}\right)$, is the symplectic space $\left(P_{1} \oplus P_{2}, s\right)$, where $s\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=s_{1}\left(x_{1}, y_{1}\right)+$ $s_{2}\left(x_{2}, y_{2}\right)$ for x_{1}, y_{1} in P_{1} and x_{2}, y_{2} in P_{2}. Two symplectic spaces (P_{1}, s_{1}) and (P_{2}, s_{2}) are said to be equivalent if there exist finitely generated projective A-modules Q_{1} and Q_{2} such that the symplectic spaces $\left(P_{1}, s_{1}\right) \perp H\left(Q_{1}\right)$ and $\left(P_{2}, s_{2}\right) \perp H\left(Q_{2}\right)$ are isometric. The set $W^{-1}(A)$ of equivalence classes of symplectic spaces over A forms an abelian group with operation induced by orthogonal sum (we shall use additive notation). The equivalence class of (P, s) in $W^{-1}(A)$ will be denoted by $[P, s]$. The group $W^{-1}(A)$, called the Witt group of symplectic bilinear forms over A, is an interesting invariant of A (cf. [1, 2, 11]).

Now we need to recall some notions introduced in [4, 6].

Let V be a quasi-projective nonsingular n-dimensional complex algebraic variety. One defines the natural ring homomorphism

$$
\mathrm{cl}: A^{*}(V) \rightarrow H^{*}(V, \mathbf{Z}),
$$

where $A^{*}(V)=\bigoplus_{k \geq 0} A^{k}(V)$ is the Chow ring of V and $H^{*}(V, \mathbf{Z})$ is the Čech cohomology of V, as follows. Let $Y \subset V$ be a closed irreducible subvariety of dimension k and let $\{Y\}$ be the elements of $A^{n-k}(V)$ represented by Y. Denote by $[Y]$ the fundamental class of Y in the Borel-Moore homology group $H_{2 k}^{B M}(Y, Z)$ (cf. [5] or [7, Chapter 19]). Then $\operatorname{cl}(\{Y\})$ is the element of $H^{2 n-2 k}(V, Z)$ which corresponds, via Poincaré duality, to the image of $[Y]$ in $H_{2 k}^{B M}(V, \mathbf{Z})$ under the homomorphism $H_{2 k}^{B M}(Y, \mathbf{Z}) \rightarrow H_{2 k}^{B M}(V, \mathbf{Z})$ induced by the inclusion $Y \subset V$. Extending by linearity, cl defines a natural homomorphism cl: $A^{*}(V) \rightarrow H^{*}(V, \mathbf{Z})$. We set

$$
H_{\mathrm{alg}}^{2 k}(V, \mathbf{Z})=\operatorname{cl}\left(A^{k}(V)\right) .
$$

Now let X be an affine nonsingular real algebraic variety and suppose for a moment that X is embedded in $R P^{n}$ as a locally closed subvariety. We shall consider $\mathbf{R} P^{n}$ as a subset of the complex projective space $\mathbb{C} P^{n}$. Let $X_{\mathbf{C}}$ be the Zariski (complex) closure of X in $\mathbb{C} P^{n}$ and let U be a Zariski neighborhood of X in the set of nonsingular points of $X_{\mathbf{c}}$. We set

$$
\begin{aligned}
& H_{\mathrm{C}-\mathrm{alg}}^{2 k}(X, \mathbf{Z})=H^{*}\left(i_{U}\right)\left(H_{\mathrm{ag}}^{2 k}(U, \mathbf{Z})\right), \\
& H_{\mathrm{C}-\mathrm{alg}}^{\mathrm{eve}}(X, \mathbf{Z})=\bigoplus_{k \geq 0} H_{\mathrm{C}-\mathrm{alg}}^{2 k}(X, \mathbf{Z}),
\end{aligned}
$$

where $H^{*}\left(i_{U}\right)$ is the homomorphism induced by the inclusion mapping $i_{U}: X \rightarrow U$. One easily sees that $H_{C-a l g}^{\text {even }}(X, Z)$ does not depend on the choice of U (cf. [4] and [6]).

Given a continuous complex vector bundle ξ on X, let $c_{k}(\xi)$ denote its k th Chern class (cf. [10]). We shall consider $\mathscr{R}(X, \mathbb{C})$ as a subring of the ring $\mathscr{E}(X, \mathbb{C})$ of continuous \mathbb{C}-valued functions on X (note that $\mathscr{R}(X, \mathbb{C})$ is dense in $\mathscr{E}(X, \mathbb{C})$ in the C^{0} topology). If P is a finitely generated projective $\mathscr{R}(X, \mathbb{C})$-module, then $\mathscr{E}(X, \mathbb{C}) \otimes P$ is a finitely generated projective $\mathscr{C}(X, \mathrm{C})$ module. We shall denote by ξ_{P} the continuous complex vector bundle on X associated with $\mathscr{E}(X, \mathrm{C}) \otimes P$ in the usual way (cf. [12]).

Lemma 1. Let X be an affine nonsingular real algebraic variety.
(i) If P is a finitely generated projective $\mathscr{R}(X, \mathrm{C})$-module, then $c_{k}\left(\xi_{P}\right)$ belongs to $H_{\mathbf{C}-\text { alg }}^{2 k}(X, \mathbf{Z})$ for $k \geq 0$.
(ii) If v is in $H_{\mathbf{C} \text {-alg }}^{2}(X, \mathbf{Z})$, then there exists an invertible $\mathscr{R}(X, \mathbb{C})$-module L with $c_{1}\left(\xi_{L}\right)=v$.

Proof. Both (i) and (ii) are quite straightforward consequences of the definition of $H_{\mathrm{C} \text {-alg }}^{2 k}(X, \mathbf{Z})$; (i) is proved in [4, Theorem 5.3] (cf. also [6]), while (ii) follows from [4, Proposition 5.1, Remark 5.4] (cf. also the proof of Lemma 2 below).

Lemma 2. Let X be a compact affine nonsingular real algebraic variety of dimension 4.
(i) For every element u in $H_{\mathrm{C} \text {-alg }}^{4}(X, \mathbf{Z})$, there exists a symplectic space (P, s) over $\mathscr{R}(X, \mathbb{C})$ with $c_{2}\left(\xi_{P}\right)=u$.
(ii) If (P, s) is a symplectic space over $\mathscr{R}(X, \mathbb{C})$ and $c_{2}\left(\xi_{P}\right)=0$, then (P, s) is isometric to $H\left(\mathscr{R}(X, \mathrm{C})^{n}\right)$, where $2 n=\operatorname{rank} P$.

Proof. First observe that every finitely generated projective $\mathscr{R}(X, \mathbb{C})$ module M with rank $M \geq 3$ has a unimodular element. Indeed, since $\operatorname{dim} X$ $=4$, the complex vector bundle ξ_{M} admits a nowhere zero continuous section (cf. [9, Chapter 8, Proposition 1.1]). This implies, from [13, Theorem 2.2(a)], that M has a unimodular element.

In the proof of (i) we may assume that X is a locally closed subvariety of $\mathbf{R} P^{n}$. Let U be a Zariski neighborhood of X in the set of nonsingular points of the Zariski (complex) closure of X in $\mathbf{C} P^{n}$. By definition of $H_{\mathbf{C} \text {-alg }}^{4}(X, Z)$, there exists an element v in $A^{2}(U)$ such that $H^{*}(i)(\operatorname{cl}(v))=u$, where

$$
H^{*}(i): H^{4}(U, \mathbf{Z}) \rightarrow H^{4}(X, \mathbf{Z})
$$

is the homomorphism induced by the inclusion mapping $i: X \rightarrow U$. Clearly, we may assume that U is an affine variety (cf. for example the proof of [4, Proposition 5.1]). Now it follows from [7, Example 15.3.6] that there exists an algebraic (complex) vector bundle η on U with $C_{1}(\eta)=0$ and $C_{2}(\eta)=v$, where $C_{k}(\cdot)$ stands for the k th Chern class with values in the Chow ring. Since $\mathrm{cl} \circ C_{k}=c_{k}$ (cf. [5, (4.13)], where this relation is proved for $k=1$; by a standard argument, $\mathrm{cl} \circ C_{k}=c_{k}$ must be true for all k), we obtain $c_{1}(\eta \mid X)=0$ and $c_{2}(\eta \mid X)=u$, where the restriction $\eta \mid X$ is considered as a continuous complex vector bundle on X. It easily follows (cf. [4, Proposition 5.1]) that $\eta \mid X$ is topologically isomorphic to a vector bundle of the form ξ_{Q} for some finitely generated projective $\mathscr{R}(X, \mathbb{C})$-module Q. By the remark at the beginning of the proof, $Q=P \oplus F$, where F is free and rank $P=2$. In particular,

$$
c_{1}\left(\xi_{P}\right)=c_{1}\left(\xi_{Q}\right)=0, \quad c_{2}\left(\xi_{P}\right)=c_{2}\left(\xi_{Q}\right)=u .
$$

Let $L=\operatorname{det} P$. Since $c_{1}\left(\xi_{L}\right)=c_{1}\left(\xi_{P}\right)=0$, the bundle ξ_{L} is topologically trivial (cf. [9, Chapter 16, Theorem 3.4]) and, by virtue of [13, Theorem 2.2(a)], L is free.

In order to finish the proof of (i) it suffices to show that there exists a symplectic nonsingular bilinear form on P. This however is obvious because $\operatorname{det} P$ is free and $\operatorname{rank} P=2$.

Now we turn to the proof of (ii). First suppose that rank $P>2$. Then P has a unimodular element and, by [2,(4.11.2)], (P, s) is isometric to a symplectic space of the form $(Q, t) \perp H(\mathscr{R}(X, \mathbb{C}))$. Since, obviously, $c_{2}\left(\xi_{Q}\right)=0$, using induction with respect to rank P, one reduces the proof to the case $\operatorname{rank} P=$ 2. In that case, $c_{2}\left(\xi_{P}\right)=0$ implies that ξ_{P} has a nowhere zero continuous section (cf. [10, page 171, Problem 14-C]). Thus, by [13, Theorem 2.2(a)], P has a unimodular element and, finally, by [2, (4.11.2)], (P, s) is isometric to $H(\mathscr{R}(X, \mathbb{C}))$.

Let X be an affine nonsingular real algebraic variety. Observe that

$$
G(X)=\left\{2 u+v^{2} \mid u \in H_{\mathrm{C} \text {-alg }}^{4}(X, \mathbf{Z}), v \in H_{\mathrm{C} \text {-alg }}^{2}(X, \mathbf{Z})\right\}
$$

is a subgroup of $H_{\mathrm{C} \text {-alg }}^{4}(X, \mathbb{Z})$. Indeed, if u_{i} are in $H_{\mathrm{C} \text {-alg }}^{4}(X, \mathbf{Z})$ and v_{i} are in $H_{\mathrm{C}-\mathrm{alg}}^{2}(X, Z)$ for $i=1,2$, then

$$
\left(2 u_{1}+v_{1}^{2}\right)-\left(2 u_{2}+v_{2}^{2}\right)=2\left(u_{1}-u_{2}+v_{1} v_{2}-v_{2}^{2}\right)+\left(v_{1}-v_{2}\right)^{2}
$$

is in $G(X)$.
For every finitely generated projective $\mathscr{R}(X, \mathbb{C})$-module Q, we have

$$
\begin{aligned}
c_{2}\left(\xi_{Q \oplus Q^{*}}\right) & =c_{2}\left(\xi_{Q} \oplus \xi_{Q^{*}}\right) \\
& =c_{2}\left(\xi_{Q}\right)+c_{2}\left(\xi_{Q^{*}}\right)+c_{1}\left(\xi_{Q}\right) c_{1}\left(\xi_{Q^{*}}\right) \\
& =c_{2}\left(\xi_{Q}\right)+c_{2}\left(\left(\xi_{Q}\right)^{*}\right)+c_{1}\left(\xi_{Q}\right) c_{1}\left(\left(\xi_{Q}\right)^{*}\right) \\
& =2 c_{2}\left(\xi_{Q}\right)-c_{1}\left(\xi_{Q}\right)^{2}
\end{aligned}
$$

and hence, by Lemma $1(\mathrm{i}), c_{2}\left(\xi_{Q \oplus Q^{*}}\right)$ is in $G(X)$. It easily follows (again from Lemma 1 (i)) that

$$
\begin{aligned}
& \varphi_{X}: W^{-1}(\mathscr{R}(X, \mathbb{C})) \rightarrow H_{\mathrm{C}-\mathrm{alg}}^{4}(X, \mathbf{Z}) / G(X) \\
& \varphi_{X}([P, s])=c_{2}\left(\xi_{P}\right)+G(X)
\end{aligned}
$$

is a well-defined group homomorphism.
Theorem 3. Let X be a compact affine nonsingular real algebraic variety of dimension 4. Then the homomorphism

$$
\varphi_{X}: W^{-1}(\mathscr{R}(X, \mathbb{C})) \rightarrow H_{\mathrm{C}-\mathrm{alg}}^{4}(X, \mathbf{Z}) / G(X)
$$

is surjective and

$$
\operatorname{ker} \varphi_{X}=2 W^{-1}(\mathscr{R}(X, \mathbb{C}))
$$

In particular,

$$
W^{-1}(\mathscr{R}(X, \mathbb{C})) / 2 W^{-1}(\mathscr{R}(X, \mathbb{C})) \cong W^{-1}(\mathscr{R}(X, \mathbb{C})) \otimes \mathbf{Z} / 2
$$

is canonically isomorphic to $H_{\mathrm{C} \text {-alg }}^{4}(X, \mathbf{Z}) / G(X)$. Moreover, if $2 \mathrm{H}_{\mathrm{C} \text {-alg }}^{4}(X, \mathbf{Z})=$ 0 , then φ_{X} is bijective.

Proof. It follows from Lemma 2(i) that φ_{X} is surjective.
Now we turn to the proof of $\operatorname{ker} \varphi_{X}=2 W^{-1}(\mathscr{R}(X, \mathbb{C}))$.
Let $[P, s]$ be in $W^{-1}(\mathscr{R}(X, \mathbb{C}))$. Then

$$
\begin{aligned}
\varphi_{X}(2[P, s]) & =c_{2}\left(\xi_{P \oplus P}\right)+G(X) \\
& =c_{2}\left(\xi_{P} \oplus \xi_{P}\right)+G(X) \\
& =2 c_{2}\left(\xi_{P}\right)+c_{1}\left(\xi_{P}\right)^{2}+G(X)=0 .
\end{aligned}
$$

This shows that $2 W^{-1}(\mathscr{R}(X, \mathbb{C}))$ is contained in $\operatorname{ker} \varphi_{X}$.
Suppose that $[P, s]$ is in $\operatorname{ker} \varphi_{X}$. Then $c_{2}\left(\xi_{P}\right)=2 u+v^{2}$, where u is in $H_{\mathrm{C} \text {-alg }}^{4}(X, Z)$ and v is in $H_{\mathbf{C} \text {-alg }}^{2}(X, \mathbf{Z})$. By Lemma 2(i), there exists a symplectic space (Q, t) over $\mathscr{R}(X, \mathbb{C})$ such that $c_{2}\left(\xi_{Q}\right)=-u$. Also, by Lemma $1(i i)$, one can find an invertible $\mathscr{R}(X, \mathbb{C})$-module L with $c_{1}\left(\xi_{L}\right)=v$. Let

$$
\left(P^{\prime}, s^{\prime}\right)=(P, s) \perp(Q, t) \perp(Q, t) \perp H(L) .
$$

Then one obtains

$$
\begin{aligned}
c_{2}\left(\xi_{P^{\prime}}\right) & =c_{2}\left(\xi_{P}\right)+2 c_{2}\left(\xi_{Q}\right)-c_{1}\left(\xi_{L}\right)^{2} \\
& =\left(2 u+v^{2}\right)-2 u-v^{2}=0 .
\end{aligned}
$$

By Lemma 2(ii), $\left[P^{\prime}, s^{\prime}\right]=0$ and hence $[P, s]=-2[Q, t]$. Thus $[P, s]$ is in $2 W^{-1}(\mathscr{R}(X, \mathbb{C}))$, which shows that $\operatorname{ker} \varphi_{X}$ is contained in $2 W^{-1}(\mathscr{R}(X, \mathbb{C}))$.

To finish the proof of the theorem, we note that if $2 H_{\mathrm{C} \text {-alg }}^{4}(X, \mathbb{Z})=0$, then, by Lemma $2(\mathrm{ii}), 2 W^{-1}(\mathscr{R}(X, \mathbb{C}))=0$ and hence φ_{X} is an isomorphism.

Theorem 3 immediately implies the following
Corollary 4. Let X be a compact affine nonsingular real algebraic variety of dimension 4. Assume that each connected component of X is nonorientable as a C^{∞} manifold. Then the groups $W^{-1}(\mathscr{R}(X, \mathbb{C}))$ and $H_{\mathbb{C} \text {-alg }}^{4}(X, \mathbb{Z}) / G(X)$ are canonically isomorphic.

Proof. Let M be a connected component of X. Since M is nonorientable, $H^{4}(M, \mathbf{Z}) \cong \mathbf{Z} / 2$ (cf. [8, (23.28), (22.28), (26.18)]). It follows that $2 H^{4}(X, Z)=0$ and hence $2 H_{\text {C-alg }}^{4}(X, Z)=0$. Now it suffices to apply Theorem 3.

Our next result says that for a "generic" hypersurface X of $\mathbf{R} P^{5}$ of sufficiently high degree, one has $W^{-1}(\mathscr{R}(X, \mathbb{C}))=0$.

More precisely, let n and k be positive integers. Denote by $P(n, k)$ the projective space associated with the vector space of all homogeneous polynomials in $\mathbf{R}\left[x_{0}, \ldots, x_{n}\right]$ of degree k. If an element H in $P(n, k)$ is represented
by a polynomial G, then $V(H)$ will denote the subvariety of $\mathbf{R} P^{n}$ defined by G.

Theorem 5. There exists a nonnegative integer k_{0} such that, for every integer k greater than k_{0}, one can find a subset Σ_{k} of $P(5, k)$ which is a countable union of proper Zariski closed algebraic subvarieties of $P(5, k)$ and has the property that for every H in $P(5, k) \backslash \Sigma_{k}$, the set $V(H)$ is empty or $V(H)$ is nonsingular, $\operatorname{dim} V(H)=4$, and $W^{-1}(\mathscr{R}(V(H), \mathbb{C}))=0$.

Proof. Let n be an integer, $n \geq 3$. It is proved in [4, Theorem 4.10] (cf. also [6]) that there exists a positive integer k_{0} such that for every integer k greater than k_{0}, one can find a subset Σ_{k} of $P(n, k)$ which is a countable union of proper Zariski closed algebraic subvarieties of $P(n, k)$ and has the property that for every H in $P(n, k) \backslash \Sigma_{k}$, the set $V(H)$ is empty or $V(H)$ is nonsingular, $\operatorname{dim} V(H)=n-1$, and $H_{\mathrm{C}-\mathrm{al}}^{\text {even }}(V(H), \mathbf{Z})$ is equal to the image of the homomorphism

$$
H^{\text {even }}\left(\mathbf{R} P^{n}, \mathbf{Z}\right) \rightarrow H^{\text {even }}(V(H), \mathbf{Z})
$$

induced by the inclusion $V(H) \subset \mathbf{R} P^{n}$.
Recall that $H^{2 k}\left(\mathbf{R} P^{n}, \mathbf{Z}\right) \cong \mathbf{Z} / 2$ for $0<2 k \leq n$. Moreover, if $n \geq 4$, then the nonzero element u of $H^{4}\left(\mathbf{R} P^{n}, \mathbf{Z}\right)$ is of the form $u=v^{2}$, where v is the nonzero element of $H^{2}\left(\mathbf{R} P^{n}, \mathbf{Z}\right)$. Hence $2 H_{\mathbf{C} \text {-alg }}^{2 k}(V(H), \mathbf{Z})=0$ for $0<2 k \leq n$ and $H_{\text {C-alg }}^{4}(V(H), \mathbf{Z})=G(V(H))$ for H in $P(n, k) \backslash \Sigma_{k}$.

With $n=5$, the conclusion follows from Theorem 3.
Remark 6. Theorem 5 cannot be much improved. More precisely, for every positive integer k_{0} there exists an integer k greater than k_{0} and an element $H_{2 k}$ in $P(5,2 k)$ such that $V\left(H_{2 k}\right)$ is a nonsingular algebraic hypersurface of $\mathbf{R} P^{5}$ and $W^{-1}\left(\mathscr{R}\left(V\left(H_{2 k}\right), \mathbb{C}\right)\right) \neq 0$. Let $H_{2 k}$ be the element of $P(5,2 k)$ represented by the polynomial $x_{0}^{2 k}-\sum_{i=1}^{5} x_{i}^{2 k}$. Clearly, $V\left(H_{2 k}\right)$ is a nonsingular algebraic hypersurface of $\mathbf{R} P^{5}$ diffeomorphic to the 4-dimensional sphere S^{4}. Moreover, by [4, Proposition 4.8],

$$
H_{\mathrm{C} \text {-alg }}^{4}\left(V\left(H_{2 k}\right), \mathbf{Z}\right)=H^{4}\left(V\left(H_{2 k}\right), \mathbf{Z}\right) \cong \mathbf{Z} .
$$

Since $H^{2}\left(V\left(H_{2 k}\right), \mathbf{Z}\right) \cong H^{2}\left(S^{4}, \mathbf{Z}\right)=0$, one obtains

$$
G\left(V\left(H_{2 k}\right)\right)=2 H_{\text {C-alg }}^{4}\left(V\left(H_{2 k}\right), \mathbf{Z}\right)
$$

Hence, by Theorem $3, W^{-1}\left(\mathscr{R}\left(V\left(H_{2 k}\right), \mathbb{C}\right)\right) \otimes \mathbf{Z} / 2$ is isomorphic to $\mathbf{Z} / 2$, and $W^{-1}\left(\mathscr{R}\left(V\left(H_{2 k}\right), \mathbb{C}\right)\right) \neq 0$.

References

[1] J. Barge and M. Ojanguren, 'Fibrés algébriques sur une surface réele,' Comment. Math. Helv. 62 (1987), 616-629.
[2] H. Bass, 'Unitary algebraic K-theory,' Algebraic K-Theory III, pp. 57-265 (Lecture Notes in Math., vol. 343, Berlin, Heidelberg, New York, Springer 1973).
[3] J. Bochnak, M. Coste and M.-F. Roy, Géométrie algébrique réele, (Ergebnisse Math. Grenzgeb., vol. 12, Springer, 1987).
[4] J. Bochnak, M. Buchner and W. Kucharz, 'Vector bundles over real algebraic varieties,' to appear in K-Theory.
[5] A. Borel and H. Haefliger, 'La classe d'homologie fondamentale d'un espace analytique,' Bull. Soc. Math. France 89 (1961), 461-513.
[6] M. Buchner and W. Kucharz, 'Algebraic vector bundles over real algebraic varieties,' Bull. Amer. Math. Soc. 17 (1987), 279-282.
[7] W. Fulton, Intersection theory, (Ergebnisse Math. Grenzgeb., vol. 2, Springer, 1984).
[8] M. Greenberg and J. Harper, Algebraic topology, (Benjamin/Cummings, 1981).
[9] D. Husemoller, Fibre bundles, (GTM 20, Springer, 1975).
[10] J. Milnor and J. Stasheff, Characteristic classes, (Princeton, Princeton University Press, 1974).
[11] M. Ojanguren, R. Parimala and R. Sridharan, 'Symplectic bundles over affine varieties,' Comment. Math. Helv. 61 (1986), 491-500.
[12] R. Swan, 'Vector bundles and projective modules,' Trans. Amer. Math. Soc. 105 (1962), 264-277.
[13] R. Swan, 'Topological examples of projective modules,' Trans. Amer. Math. Soc. 230 (1977), 201-234.

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, New Mexico 87131
U.S.A.

