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Abstract

Let A" be a compact affine real algebraic variety of dimension 4. We compute the Witt group
of symplectic bilinear forms over the ring of regular functions from X to C. The Witt group is
expressed in terms of some subgroups of the cohomology groups H2k(X, Z) for k = 1,2.
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1. Introduction

Let X be an affine real algebraic variety, that is, X is biregularly isomorphic
to an algebraic subset of R" for some n (for definitions and notions of real
algebraic geometry we refer to [3]). Denote by 3l(X,C) the ring of regular
C-valued functions on X (cf. [3, page 279]). Thus if X is an algebraic subset
of R" and Xc is its Zariski closure in C , then 32(X,C) is canonically iso-
morphic to the localization of the affine ring A(XC) of XQ with respect to the
multiplicatively closed subset

S={fGA(Xc)\f(X)cC\{0}}.

In this note we study symplectic (that is, skew-symmetric) nonsingular bilin-
ear forms over &(X,C)- More precisely, let W-\3l(X,C.)) denote the Witt
group of symplectic bilinear forms over M'(X, C) (cf. Section 2 or [1, 2, 11]).
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In [4, 6] (cf. also Section 2) we have denned the graded subring

k>0

of the cohomology ring Heven(X, Z). Assuming that X is compact, nonsingu-
lar, dim A" = 4, we compute the group W~l(&(X,C)) <g> Z/2 and, in some
cases, also the group W~\£l{X,C)) in terms of the groups ti^%{X,l),
k = 1,2. Combining this result with [4], we obtain that for "most" alge-
braic hypersurfaces X of the real projective space RP5 of sufficiently high
degree, the group W~l(&(X,C)) is zero (the precise meaning of "most" is
explained in Section 2). We also give examples of "exceptional" algebraic
hypersurfaces X in RP5 of arbitrarily high degree with W~l(^(X,C)) ¥= 0.

Let us recall that the real projective space HP" with its usual structure
of an abstract real algebraic variety is in fact an affine variety [3, Theorem
3.4.4]. Hence every algebraic subvariety of RP" is also affine.

2. Results

Let A be a commutative ring with an identity element. A symplectic space
over A is a pair (P, s), where P is a finitely generated projective ^-module and
s: P x P ^> A is a. bilinear nonsingular symplectic form (recall that s is said
to be nonsingular if the homomorphism P —> P* — Hom(P,^4), x —> s(x, •)
is bijective). Every finitely generated projective ^-module Q gives rise to a
symplectic space H(Q) = (Q®Q*,h), where h((x,x*),(y,y*)) = x*(y)-y*(x)
for x, y in Q and x*, y* in Q*. An isometry of symplectic spaces is an
isomorphism of the underlying modules preserving the forms. The orthogonal
sum of two symplectic space (P\,s\) and (Z^,^), denoted by (P\,s\) ± ( i ^ ,^ ) ,
is the symplectic space (P{ © P2,s), where s((xl,x2),(yi,y2)) = Si(xuyi) +
S2(x2,y2) for x\, y\ in P\ and x2, y2 in Pi- Two symplectic spaces {P\,s{)
and (P2,S2) are said to be equivalent if there exist finitely generated projective
^-modules Q\ and Q2 such that the symplectic spaces (Pi,S\) _L H{Q\) and
(P2,si) ± H(Q2) are isometric. The set W~X{A) of equivalence classes of
symplectic spaces over A forms an abelian group with operation induced by
orthogonal sum (we shall use additive notation). The equivalence class of
(P,s) in W-\A) will be denoted by [P,s]. The group W~\A), called the
Witt group of symplectic bilinear forms over A, is an interesting invariant of
^(cf. [1,2, 11]).

Now we need to recall some notions introduced in [4, 6].
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Let V be a quasi-projective nonsingular n-dimensional complex algebraic
variety. One defines the natural ring homomorphism

where A*(V) = @k>QAk{V) is the Chow ring of V and H*(V,Z) is the Cech
cohomology of V, as follows. Let Y c V be a closed irreducible subvari-
ety of dimension k and let {Y} be the elements of A"~k(V) represented by
Y. Denote by [Y] the fundamental class of Y in the Borel-Moore homology
group H*k

M(Y,l) (cf. [5] or [7, Chapter 19]). Then cl({Y}) is the element of
H2n~2k(V,Z) which corresponds, via Poincare duality, to the image of [Y] in
H*k

M(V,l) under the homomorphism H*k
M{Y,l) -> H*k

M(V,l) induced by
the inclusion Y c V. Extending by linearity, cl defines a natural homomor-
phism cl:A*(V)^ H*(V,1). We set

H2k(V,Z) = cl(Ak(V)).

Now let X be an affine nonsingular real algebraic variety and suppose for a
moment that X is embedded in RP" as a locally closed subvariety. We shall
consider RP" as a subset of the complex projective space CP". Let Xc be the
Zariski (complex) closure of X in CP" and let U be a Zariski neighborhood
of X in the set of nonsingular points of Xc. We set

k>0

where H*(iu) is the homomorphism induced by the inclusion mapping
iu: X -»(7. One easily sees that Hg^iX, Z) does not depend on the choice
of U (cf. [4] and [6]).

Given a continuous complex vector bundle £, on X, let c^(^) denote its
/:th Chern class (cf. [10]). We shall consider &(X,C) as a subring of the
ring ^(A", C) of continuous C-valued functions on X (note that <&{X,C) is
dense in ^(X,C) in the C° topology). If P is a finitely generated projective
31{X, C)-module, then W(X, C)®P is a finitely generated projective W(X, C)-
module. We shall denote by & the continuous complex vector bundle on X
associated with W(X,C) ® P in the usual way (cf. [12]).

LEMMA 1. Let X be an affine nonsingular real algebraic variety.
(i) If P is a finitely generated projective 31 (X,C)-module, then c^p) be-

longs to Hlk
ali(X,l) for k>0.

(ii) Ifv is in Hl_ali{X,Z), then there exists an invertible 3?{X,C)-module
L with C\{£L) = v.
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PROOF. Both (i) and (ii) are quite straightforward consequences of the
definition of /7^alg(X,Z); (i) is proved in [4, Theorem 5.3] (cf. also [6]),
while (ii) follows from [4, Proposition 5.1, Remark 5.4] (cf. also the proof
of Lemma 2 below).

LEMMA 2. Let X be a compact affine nonsingular real algebraic variety of
dimension 4.

(i) For every element u in H£_ilg(X, Z), there exists a symplectic space (P, s)
over 31 {X,C) with c2{^p) = u.

(ii) If(P,s) is a symplectic space over &(X,C) and ci{£,p) = 0, then (P,s)
is isometric to H(£?(X, C)"), where In = rank/*.

PROOF. First observe that every finitely generated projective
module M with rankAf > 3 has a unimodular element. Indeed, since
= 4, the complex vector bundle £M admits a nowhere zero continuous sec-
tion (cf. [9, Chapter 8, Proposition 1.1]). This implies, from [13, Theorem
2.2(a)], that M has a unimodular element.

In the proof of (i) we may assume that X is a locally closed subvariety of
RP". Let U be a Zariski neighborhood of X in the set of nonsingular points
of the Zariski (complex) closure of X in CP". By definition of H^%{X, 1),
there exists an element v in A2(U) such that H*(i)(cl(v)) = u, where

is the homomorphism induced by the inclusion mapping /: X —> U. Clearly,
we may assume that U is an affine variety (cf. for example the proof of [4,
Proposition 5.1]). Now it follows from [7, Example 15.3.6] that there exists
an algebraic (complex) vector bundle n on U with Ci(n) = 0 and Ciin) - v,
where Q ( ) stands for the kth Chern class with values in the Chow ring.
Since clo Q = ck (cf. [5, (4.13)], where this relation is proved for k = 1;
by a standard argument, cl o C^ = ĉ  must be true for all k), we obtain
Ci(n\X) = 0 and C2{n\X) = u, where the restriction n\X is considered as a
continuous complex vector bundle on X. It easily follows (cf. [4, Proposition
5.1]) that n\X is topologically isomorphic to a vector bundle of the form £Q

for some finitely generated projective £%{X, C)-module Q. By the remark at
the beginning of the proof, Q = P®F, where F is free and rankP = 2. In
particular,

= 0, c2(&>) = c2(£Q) = u.

Let L = det P. Since C\ (£L) - c\ (£P) = 0, the bundle £L is topologically trivial
(cf. [9, Chapter 16, Theorem 3.4]) and, by virtue of [13, Theorem 2.2(a)], L
is free.
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In order to finish the proof of (i) it suffices to show that there exists a
symplectic nonsingular bilinear form on P. This however is obvious because
det P is free and rank P — 2.

Now we turn to the proof of (ii). First suppose that rank P > 2. Then P has
a unimodular element and, by [2, (4.11.2)], (P,s) is isometric to a symplectic
space of the form (Q,t) ± H(&(X,C))- Since, obviously, c2(fG) = 0, using
induction with respect to rankP, one reduces the proof to the case rankP =
2. In that case, Ci{£,p) — 0 implies that £/> has a nowhere zero continuous
section (cf. [10, page 171, Problem 14-C]). Thus, by [13, Theorem 2.2(a)], P
has a unimodular element and, finally, by [2, (4.11.2)], (P,s) is isometric to

Let X be an affine nonsingular real algebraic variety. Observe that

G{X) = {2« + V2\U € //£.alg(X, Z), V € //<Lalg(*> Z)}

is a subgroup of H£-_al (X, Z). Indeed, if w, are in HQ_.(X, Z) and v, are in
Hi .alg(*,Z) for/ =1 ,2 , then

«?) - (2M2 + uf) = 2(«i - «2 + U1U2 - uf) + («i - w2)
2

is in G{X).
For every finitely generated projective ^'(Ar,C)-module Q, we have

and hence, by Lemma l(i), C2(^geo*) ^s m ^ ( ^ ) - ^ easily follows (again
from Lemma l(i)) that

<px: W

is a well-defined group homomorphism.

THEOREM 3. Let X be a compact affine nonsingular real algebraic variety
of dimension 4. Then the homomorphism

<px:

is surjective and

In particular,

= W-
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is canonically isomorphic to H^^X^/GiX). Moreover, if2H£_alg(X,l) =
0, then <px is bijective.

PROOF. It follows from Lemma 2(i) that <px is surjective.
Now we turn to the proof of k e r ^ = 2W-\£Z{X,C))-
Let [P,s] be in W~X{^{X,Q)- Then

= 2c2(£P) + dgp)2 + G(X) = 0.

This shows that 2W~x{3l{X,£.)) is contained in kerp*.
Suppose that [P,s] is in ker^*. Then c2(^p) = 2u + v2, where u is in

//c-aig(^> ̂ ) an<^ v *s m ^c-aig(^' *)• By Lemma 2(i), there exists a symplectic
space (Q,t) over^'(A',C) such that c2(£Q) = -u. Also, by Lemma l(ii), one
can find an invertible ^(AT,C)-module L with C\{£,L) = v. Let

(P',s') = (P,s) ± (Q,t) ± ((2,0 -L H(L).

Then one obtains

= (2u + v2) - 2u - v2 = 0.

By Lemma 2(ii), [P',s'} = 0 and hence [P,s] = -2[Q,t]. Thus [P,s] is in
2W~\3l(XX)), which shows that k e r ^ is contained in 2W-i(£?(X,C))-

To finish the proof of the theorem, we note that if 2//£_alg(X, Z) = 0, then,
by Lemma 2(ii), 2W~X{M{X,C)) = 0 and hence <px is an isomorphism.

Theorem 3 immediately implies the following

COROLLARY 4. Let X bea compact affine nonsingular real algebraic variety
of dimension 4. Assume that each connected component ofX is nonorientable
as aC°° manifold. Then the groups W~l(^(X,C)) and H*._als(X,l)/G(X)
are canonically isomorphic.

PROOF. Let M be a connected component of X. Since M is nonori-
entable, H\M,T) s Z/2 (cf. [8, (23.28), (22.28), (26.18)]). It follows that
2H4(X, Z) = 0 and hence 2//£.alg(A

r, Z) = 0. Now it suffices to apply Theorem

Our next result says that for a "generic" hypersurface X of RP5 of suffi-
ciently high degree, one has W-l{3Z(X,C)) = 0.

More precisely, let n and k be positive integers. Denote by P(n,k) the
projective space associated with the vector space of all homogeneous polyno-
mials in R[XQ, . . . , xn] of degree k. If an element H in P(n, k) is represented
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by a polynomial G, then V{H) will denote the subvariety of RPn denned by
G.

THEOREM 5. There exists a nonnegative integer ko such that, for every inte-
ger k greater than ko, one can find a subset I.k ofP(5, k) which is a countable
union of proper Zariski closed algebraic subvarieties of P(5,k) and has the
property that for every H in P(5,k)\Zk, the set V{H) is empty or V(H) is
nonsingular, dim V(H) = 4, and W-\3Z{V(H),C)) = 0.

PROOF. Let n be an integer, n > 3. It is proved in [4, Theorem 4.10]
(cf. also [6]) that there exists a positive integer ko such that for every integer
k greater than ko, one can find a subset 2* of P(n, k) which is a countable
union of proper Zariski closed algebraic subvarieties of P(n, k) and has the
property that for every H in P(n,k)\I.k, the set V(H) is empty or V(H) is
nonsingular, dim V(H) = n - 1, and H%?eV(V(H), Z) is equal to the image of
the homomorphism

Jfeven(RP",Z) — Heven{V(H),l)

induced by the inclusion V(H) c RP".
Recall that H2k(RP",Z) s Z/2 for 0 < 2k < n. Moreover, if n > 4, then

the nonzero element u of H4(RP",1) is of the form u = v2, where v is the
nonzero element of H2(RP",1). Hence 2H2k

alg(V(H), Z) = 0 for 0 < 2k < n
and H*^(V(H),Z) = G(V(H)) for H in P(n,k)\I.k.

With n = 5, the conclusion follows from Theorem 3.
REMARK 6. Theorem 5 cannot be much improved. More precisely, for ev-

ery positive integer ko there exists an integer k greater than &o and an element
H2k in P{5,2k) such that V(H2k) is a nonsingular algebraic hypersurface of
RP5 and W-\&{V{H2k),C)) ± 0. Let H2k be the element of P(5,2k) rep-
resented by the polynomial x2^ — ]£/=i xfk. Clearly, V(H2k) is a nonsingular
algebraic hypersurface of RP5 diffeomorphic to the 4-dimensional sphere S4.
Moreover, by [4, Proposition 4.8],

Hliig(V(H2k),l) = H\V(H2k),l) S Z.

Since H2(V(H2k),l) = H2{S\1) = 0, one obtains

Hence, by Theorem 3, W-*(g?(V(H2k),C)) ® Z/2 is isomorphic to Z/2, and
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