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Heat kernel asymptotics for real powers
of Laplacians
Cipriana Anghel
Abstract. We describe the small-time heat kernel asymptotics of real powers Δr , r ∈ (0, 1) of a non-
negative self-adjoint generalized Laplacian Δ acting on the sections of a Hermitian vector bundle
E over a closed oriented manifold M. First, we treat separately the asymptotic on the diagonal of
M ×M and in a compact set away from it. Logarithmic terms appear only if n is odd and r is rational
with even denominator. We prove the non-triviality of the coefficients appearing in the diagonal
asymptotics, and also the non-locality of some of the coefficients. In the special case r = 1/2, we give
a simultaneous formula by proving that the heat kernel of Δ1/2 is a polyhomogeneous conormal
section in E ⊠ E∗ on the standard blow-up space Mheat of the diagonal at time t = 0 inside [0,∞) ×
M ×M.

1 Introduction

Let Δ be a self-adjoint generalized Laplacian acting on the sections of a Hermitian
vector bundle E over an oriented, compact Riemannian manifold M of dimension
n. Denote by pt the heat kernel of Δ, i.e., the Schwartz kernel of the operator e−t Δ .
It is known since Minakshisundaram–Pleijel [21] that pt(x , y) has an asymptotic
expansion as t ↘ 0 near the diagonal

pt(x , y) t↘0∼ t−n/2e−
d(x ,y)2

4t

∞
∑
j=0

t jΨj(x , y),(1.1)

where d(x , y) is the geodesic distance between x and y, and the Ψj ’s are recursively
defined as solutions of certain ODE’s along geodesics (see, e.g., [4, 5]). This asymptotic
expansion applied to D∗D, where D is a twisted Dirac operator, plays a leading role
in the heat kernel proofs of the Atiyah–Singer index theorem (see [6, 7, 12]).

Bär and Moroianu [2] studied the short-time asymptotic behavior of the heat kernel
of Δ1/m , m ∈ N∗, for a strictly positive self-adjoint generalized Laplacian Δ. They give
explicit asymptotic formulæ separately in the case when t ↘ 0 along the diagonal
Diag ⊂ M × M, and when t goes to 0 in a compact set away from the diagonal. The
asymptotic behavior depends on the parity of the dimension n and of the root m.
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368 C. Anghel

More precisely, logarithmic terms appear when n is odd and m is even. They use the
Legendre duplication formula, and the more general Gauss multiplication formula for
the Γ function (see, e.g., [22]). Another crucial argument in [2] is to use integration by
parts in order to show that the Schwartz kernel q−s of the pseudodifferential operator
Δ−s , s ∈ C, defines a meromorphic function when restricted to the diagonal in M × M.

1.1 Small-time heat asymptotic for real powers of Δ

The purpose of this paper is to study the short-time asymptotic of the Schwartz
kernel ht of the operator e−t Δr

, where r ∈ (0, 1) and Δ is a non-negative self-adjoint
generalized Laplacian, like, for instance, Δ = D∗D for a Dirac operator D. We give
separate formulæ as t goes to 0 in [0,∞) × Diag, and when t ↘ 0 in [0,∞) × K, where
K ⊂ M × M is a compact set disjoint from the diagonal. In Theorem 6.1, we obtain
that ht ∣[0,∞)×K ∈ t ⋅ C∞ ([0,∞) × K) is a smooth function vanishing at least to order
1 at {t = 0}. The asymptotic along the diagonal depends on the parity of n (like in
[2]) and on the rationality of r. In Theorem 7.1, the most interesting case occurs when
logarithmic terms appear. This happens only if n is odd, r = α

β is rational, and the
denominator β is even. In that case,

ht ∣Diag

t↘0∼
(n−1)/2
∑
j=0

t−
n−2 j

2r ⋅ A− n−2 j
2r

+
∞
∑
j=1

α∤2 j+1

t
2 j+1

2r ⋅ A 2 j+1
2r

+
∞
∑
j=1
β∤ j

t j ⋅ A j +
∞
∑
l=1

l odd

t l β
2 log t ⋅ B l .

(1.2)

Similar expansions are proved in Theorem 7.1 in all the other cases. Furthermore,
we prove the non-triviality of the coefficients appearing in the diagonal asymptotics
(Theorem 1.1), and also the non-locality of some of them (Theorem 1.3).

In the special case r = 1/2, Bär and Moroianu [2] described the small-time asymp-
totic behavior of ht on the diagonal and away from it separately. In Theorem 1.4,
we give an uniform description of the transition between the on- and off-diagonal
behavior by proving that the heat kernel of Δ1/2 is a polyhomogeneous conormal
section in E ⊠ E∗ on the standard blow-up space [[0,∞) × M × M , {t = 0} × Diag].

1.2 Comparison to previous results

Fahrenwaldt [11] studied the off-diagonal short-time asymptotics of the heat kernel
of e−t f (P), where f ∶ [0,∞) �→ [0,∞) is a smooth function with certain properties,
and P is a positive self-adjoint generalized Laplacian. The function f (x) = x r , r ∈ (0, 1)
does not satisfy the third condition in [11, Hypothesis 3.3], which seems to be crucial
for the arguments and statements in that paper, so the results of [11] do not seem to
apply here.

Duistermaat and Guillemin [10] give the asymptotic expansion of the heat kernel of
e−tP , where P is a scalar positive elliptic self-adjoint pseudodifferential operator. The
order of P in [10] seems to be a positive integer. It is claimed in [1] that this asymptotic
holds true in the context of fiber bundles. Furthermore, Grubb [16, Theorem 4.2.2]
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Heat asymptotic of powers of Laplacians 369

studied the heat asymptotics for e−tP in the context of fiber bundles when the order
of P is positive, not necessary an integer. In Theorem 7.1, we obtain the vanishing of
some terms appearing in [16, Corollary 4.2.7] in our particular case when P = Δr is a
real power of a self-adjoint non-negative generalized Laplacian Δ, r ∈ (0, 1). We also
show that the remaining terms do not vanish in general.

Theorem 1.1 For each r ∈ (0, 1), none of the coefficients in the small-time asymptotic
expansion of ht appearing in Theorem 7.1 vanishes identically for every generalized
Laplacian Δ.

The logarithmic coefficients B l and the coefficients A j for j ∉ Z can be computed in
terms of the heat coefficients for e−tΔ appearing in (1.1). It is well known that the heat
coefficients of a generalized Laplacian are locally computable in terms of the curvature
of the connection on E, the Riemannian metric of M and their derivatives (see, e.g.,
[5]). This is no longer the case for the coefficients of positive integer powers of t from
Theorem 7.1 as we shall see now.

By applying Theorem 7.1 for r ∈ (0, 1) and a set of geometric data, namely a
hermitic vector bundle E over an oriented, compact Riemannian manifold (M , g),
a metric connection ∇ and an endomorphism F ∈ EndE, F∗ = F, we produce an
endomorphism A l (M , g ,E, hE ,∇, F) ∈ C∞ (M , EndE) for each index l appearing
in (1.2).

Definition 1.1 (i) We say that a function A which associates to any set of geometric
data (M , g ,E, hE ,∇, F) a section in C∞(M , EndE) is locally computable if for
any two sets of geometric data (M , g ,E, hE ,∇, F), (M′ , g′ ,E′ , hE′ ,∇′ , F′)which
agree on an open set (i.e., there exist an isometry α ∶ U �→ U ′ between two open
sets U ⊂ M, U ′ ⊂ M′, and a metric isomorphism β ∶ E∣U �→ E′∣U′ which preserves
the connection and βx ○ Fx ○ β−1

α(x) = F′α(x)), we have

βx ○ Ax ○ β−1
α(x) = Aα(x),

for any x ∈ U .
(ii) A scalar function a defined on the set of all geometric data (M , g ,E, hE ,∇, F)

with values in C is called locally computable if there exists a locally computable
function C as in (i) above such that a = ∫M Tr C dvolg for any (M , g ,E, hE ,∇, F).

(iii) A function A as in (i) is called cohomologically locally computable if there exists a
locally computable function C as in (i) such that for any (M , g ,E, hE ,∇, F),

[Tr A dvolg] = [Tr C dvolg] ∈ Hn
dR (M) .

Remark 1.2 (i) If a function A is locally computable, then the integral
a ∶= ∫M Tr A dvolg is locally computable.

(ii) A function A is cohomologically locally computable if and only if
a ∶= ∫M Tr A dvolg is locally computable.

Theorem 1.3 If r is irrational, the heat coefficients A j in Theorem 7.1 (and in particular
in (1.2)) are not locally computable for integer j ≥ 1. If r = α

β is rational, then A j are
not locally computable for j ∈ N/{l β ∶ l ∈ N}. All the other coefficients can be written in
terms of the heat coefficients of e−t Δ , hence they are locally computable.
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370 C. Anghel

Consider the asymptotic expansion in [10, Corollary 2.2’] for a scalar admissible
operator, i.e., an elliptic, self-adjoint, positive pseudodifferential operator P of positive
integer order d:

e−tP t↘0∼
∞
∑
l=0

A l(P)t(l−n)/d +
∞
∑
k=1

Bk(P)tk log t.

Gilkey and Grubb [14, Theorem 1.4] proved that the coefficients a l(P) for l ≥ 0 and
bk(P) for k ≥ 1 from the corresponding small-time heat trace expansion

Tr e−tP t↘0∼
∞
∑
l=0

a l(P)t(l−n)/d +
∞
∑
k=1

bk(P)tk log t(1.3)

are generically non-zero in the above class of admissible operators. In Theorem 1.1,
we prove the same type of statement. However, in our case, the order of the operator
Δr is 2r; thus, it is integer only for r = 1/2. Even in this case, the non-vanishing result
in Theorem 1.1 is not a consequence of [14, Theorem 1.4] since, in our case, we do not
consider the whole class of admissible operators of fixed integer order d in the sense of
Gilkey and Grubb [14], but the smaller class of square roots of generalized Laplacians.

Furthermore, in [14, Theorem 1.7], it is proved that the coefficients a l(P) in (1.3)
corresponding to t(l−n)/d , for (l − n)/d ∈ N, are not locally computable. Remark that
the meaning of “locally computable” in [14] is different from our Definition 1.1. More
precisely, in the definition of Gilkey and Grubb, a locally computable function A has to
be a smooth function in the jets of the homogeneous components of the total symbol
of the operator. A locally computable coefficient in the sense of Gilkey and Grubb [14]
is clearly locally computable in the sense of Definition 1.1(ii).

For r = 1/2, Bär and Moroianu [2] remark that for odd k = 1, 3, . . ., the coefficients
Ak in (1.2) corresponding to tk appear to be non-local. In Section 9, we clarify this
remark by proving that they are indeed non-local in the sense of Definition 1.1 (i)
(Theorem 1.3). In fact, we prove that the Ak ’s are not cohomologically local. By Remark
1.2 (ii), it also follows that the integrals ak ∶= ∫M Tr Ak dvolg are not locally computable
in the sense of Definition 1.1 (ii). Therefore, the ak ’s for odd k are also not locally
computable in the sense of Gilkey and Grubb [14].

For d = 1, the non-local coefficients in the heat expansion (1.3) in [14] are
an+1 , an+2 , . . ., whereas in our case corresponding to r = d/2 = 1/2, the non-local
coefficients are a1 , a3 , . . .. Despite some formal resemblances, it appears therefore that
the results of the present paper are quite different from those of [14].

1.3 The heat kernel as a conormal section

Recall that a smooth function f on the interior of a manifold with corners is said to
be polyhomogeneous conormal if for any boundary hypersurface given by a boundary
defining function θ, f has an expansion with terms of the form θk logl θ toward
{θ = 0} (only natural powers l are allowed). In [19], Melrose introduced the heat
space M2

H by performing a parabolic blow-up of the diagonal in M × M at time t = 0.
The new space is a manifold with corners with boundary hypersurfaces given by
the boundary defining functions ρ and ω0. Then the heat kernel pt has the form
ρ−nC∞(M2

H), and it vanishes rapidly at {ω0 = 0} (see [19, Theorem 7.12]).
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In the special case r = 1/2, we are able to give a simultaneous formula for the
asymptotic behavior of ht as t goes to zero both on the diagonal and away from it.
We can understand better the heat operator e−t Δ1/2

on a homogeneous (rather than
parabolic) blow-up heat space Mheat, the usual blow-up of {0} × Diag in [0,∞) ×
M ×M. The new added face is called the front face and we denote it ff, whereas the
lift of the old boundary is the lateral boundary, denoted lb.

Theorem 1.4 If n is even, then the Schwartz kernel ht of the operator e−t Δ1/2

belongs to ρ−n ω0 ⋅ C∞(Mheat), while if n is odd, ht ∈ ρ−n ω0 ⋅ C∞(Mheat) + ρ log ρ ⋅ ω0 ⋅
C∞(Mheat).

Theorem 1.4 improves the results of [2] twofold. First, it holds true for non-
negative generalized Laplacians. Second, while Bär–Moroianu describe the asymptotic
behavior of ht on the diagonal and away from it separately, this theorem also gives a
precise, uniform description of the transition between these two regions by showing
that ht is a polyhomogeneous conormal section on Mheat with values in E ⊠ E∗.

Note that throughout the paper, integral kernels act on sections by integration with
respect to the fixed Riemannian density from M in the second variable, so ht does not
contain a density factor. We feel that in the present context this exhibits more clearly
the asymptotic behavior.

Based on the study of the case r = 1/2 and on the separate asymptotic expansions
of the heat kernel ht of Δr , r ∈ (0, 1) as t goes to 0 given in Theorems 6.1 and 7.1, we
can conjecture that the heat kernel ht is a polyhomogeneous conormal function for
all r ∈ (0, 1) on a “transcendental” heat blow-up space Mr

heat depending on r. We leave
this as a future project.

2 The heat kernel of a generalized Laplacian

Let E be a Hermitian vector bundle over a compact Riemannian manifold M of
dimension n. Consider Δ to be a generalized Laplacian, i.e., a second-order differential
operator which satisfies

σ2(Δ)(x , ξ) = ∣ξ∣2 ⋅ idE .

For example, if ∇ is a connection on E and F ∈ Γ(EndE), F∗ = F, then ∇∗∇+ F is a
symmetric generalized Laplacian on E.

Suppose that Δ is self-adjoint. Since M is compact, the spectrum of Δ is discrete
and L2(M ,E) splits as an orthogonal Hilbert direct sum

L2(M ,E) =
⊥
⊕

λ∈Spec Δ
Eλ ,

where Eλ is the eigenspace corresponding to the eigenvalue λ of Δ. Moreover,
dim Eλ < ∞ and by elliptic regularity, the eigensections are smooth (see, e.g., [8]). Let
e−t Δ be the heat operator defined as

e−t ΔΦ = e−tλΦ,

for any Φ ∈ Eλ , λ ∈ Spec Δ.
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Definition 2.1 The heat kernel of a self-adjoint elliptic pseudodifferential operator P
acting on the sections of E is the Schwartz kernel of the operator e−tP .

If we denote by {Φ j} an orthonormal Hilbert basis of Δ-eigensections, then the
heat kernel pt(x , y) satisfies

pt(x , y) = ∑
j

e−tλ j Φ j(x) ⊗ Φ∗j (y)

in C∞ ((0,∞) × M × M).
Recall that the L2-product of two sections s1 , s2 ∈ Γ(E) is given by

⟨s1 , s2⟩L2(E) = ∫
M

hE(s1 , s2)dvolg ,

where g is the metric on M and hE is the Hermitian product on E.
Let y ∈ M be a fixed point. We work in geodesic normal coordinates defined by the

exponential map

expy ∶ Ty M �→ M .

Since M is compact, there exists a global injectivity radius ε. For x close enough to y
(d(x , y) ≤ ε), take x ∈ Ty M the unique tangent vector of length smaller than ε such
that x = expy x. Let

j(x) =
exp∗y dx

d x
,

namely the pull-back of the volume form dx on M through the exponential map expy
is equal with j(x)d x. More precisely,

j(x) = ∣det (dx expx0
) ∣ = det1/2 (g i j(x)) .

Denote by τy
x ∶ Ex �→ Ey the parallel transport along the unique minimal geodesic

xs = expy(s x), where s ∈ [0, 1], which connects the points x and y. The heat kernel
pt(x , y) belongs to the space C∞ ((0,∞) × M × M ,Ex ⊗ E∗y) and pt(x , y) satisfies
the heat equation

(∂t + Δx) pt(x , y) = 0.

Furthermore, limt→0 Pts = s, in ∥ ⋅ ∥0, for any smooth section s ∈ Γ(M ,E), where

(Pts)(x) = ∫
M

pt(x , y)s(y)dg(y),

where dg(y) is the Riemannian density of the metric g. The next theorem is due to
Minakshisundaram and Pleijel (see, for instance, [4, 21]).

Theorem 2.1 The heat kernel pt has the following asymptotic expansion near the
diagonal:

pt(x , y) t↘0∼ (4πt)−n/2e−
d(x ,y)2

4t

∞
∑
i=0

t i Ψi(x , y),
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where Ψi ∶ Ey �→ Ex are C∞ sections defined near the diagonal. Moreover, the Ψi ’s are
given by the following explicit formulæ:

Ψ0(x , y) = j−1/2(x)τx
y ,

τy
x Ψi(x , y) = − j−1/2(x)∫

1

0
s i−1 j−1/2(xs)τy

xs Δx Ψi−1(xs , y)ds.

The asymptotic sum in Theorem 2.1 can be understood using truncation and
bounds of derivatives as in [5]. We prefer the interpretation given in [19], where the
heat kernel pt is shown to belong to ρ−nC∞(M2

H) on the parabolic blow-up space M2
H

and to vanish rapidly at the temporal boundary face {ω0 = 0} (see Section 10).

Example 2.2 Let Tn = (S1)n = Rn/(2πZ)n be the n-dimensional torus with the
standard product metric g = dθ2

1 ⊗ ⋅⋅⋅ ⊗ dθ2
n . Consider the trivial bundle E = C over

Tn with the standard metric hE, the trivial connection ∇ = d, and the zero endomor-
phism F. Let Δ1 be the Laplacian on Tn given by the metric g. The eigenvalues of Δ1
are {k2

1 + ⋅⋅⋅ + k2
n ∶ k1 , . . . , kn ∈ Z}. Let φ l(ξ) = 1√

2π e i l ξ be the standard orthonormal
basis of eigenfunctions of each ΔS 1 . Then, for θ = (θ1 , . . . , θn) ∈ Tn , the heat kernel pt
of Δ1 is the following:

pt(θ , θ) = ∑
(k1 , . . . ,kn)∈Zn

e−t(k2
1+⋅⋅⋅+k2

n)φk1(θ1)φk1(θ1) . . . φkn(θn)φkn(θn).

Since φ l(ξ)φ l(ξ) = 1
2π , for any ξ ∈ S1, we get

pt(θ , θ) = 1
(2π)n ∑

(k1 , . . . ,kn)∈Zn

e−t(k2
1+⋅⋅⋅+k2

n).

Remark that the Fourier transform of the function ft ∶ Rn �→ R, ft(x) = e−t∣x ∣2 is
given by

f̂t(ξ) = πn/2

tn/2 e−
∣ξ∣2
4t .

Using the multidimensional Poisson formula (see, for instance, [3]), we obtain that

pt(θ , θ) = 1
(2π)n ∑

k∈Zn
ft(k) = ∑

k∈Zn
f̂t(2πk) = πn/2

(2π)n t−n/2 + πn/2

(2π)n t−n/2 ∑
k∈Zn/{0}

e−
π2 ∣k∣2

t .

Since the last sum is of order O(e− 1
t ) as t → 0, it follows that the first coefficient in

the asymptotic expansion at small-time t of pt is πn/2

(2π)n and all the others vanish.

From now on, suppose that Δ is non-negative (i.e., hE (Δ f , f ) ≥ 0, for any f ∈
C∞(M ,E)). For s ∈ C, we define the complex powers Δ−s ∈ Ψ−2s (M ,E) of Δ as

Δ−s Φ = { λ−sΦ, if Φ ∈ Eλ , λ ≠ 0,
0, if Φ ∈ Ker Δ .

Remark that (Δs)s∈C is a holomorphic family of pseudodifferential operators. Let
r ∈ (0, 1). We denote by ht the heat kernel of Δr , namely the Schwartz kernel of the
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operator e−t Δr
. We have seen that

pt(x , x) t↘0∼ t−n/2
∞
∑
j=0

t j a j(x , x),(2.1)

with smooth sections a j(x , x) ∈ Ex ⊗ E∗x .

3 The link between the heat kernel and complex powers of the
Laplacian

Proposition 1 (Mellin Formula) With the notations above, for Rs > 0, we have

Δ−s = 1
Γ(s) ∫

∞

0
ts−1 (e−t Δ − PKer Δ) dt,

where PKer Δ is the orthogonal projection onto the kernel of Δ.

Proof It is straightforward to check that both sides coincide on eigensections Φ ∈ Eλ ,
λ ∈ Spec Δ. Since {Φ j} j is a Hilbert basis, the result follows. ∎

We will write PKer Δ(x , y) for the Schwartz kernel ∑k φk(x) ⊗ φ∗k(y), where {φk}
is an orthonormal basis in Ker Δ. Denote by q−s the Schwartz kernel of the operator
Δ−s . Let us first study the poles and the zeros of q−s away from the diagonal.

Proposition 2 Let K be a compact in M × M/Diag. Then, for (x , y) ∈ K, the func-
tion s &→ q−s ∣K ∈ C∞ (K ,E ⊠ E∗) is entire. Moreover, q−s ∣K vanishes at each negative
integer s.

Proof For Rs > 0, let fx , y(s) = ∫
∞

0 ts−1 (pt(x , y) − PKer Δ(x , y)) dt. Remark that

fx , y(s) = ∫
∞

0
ts−1 (pt(x , y) − PKer Δ(x , y)) dt

= ∫
∞

1
ts−1 (pt(x , y) − PKer Δ(x , y)) dt

+ ∫
1

0
ts−1 pt(x , y)dt − PKer Δ(x , y) ⋅ ∫

1

0
ts−1dt.

Since pt(x , y) − PKer Δ(x , y) decays exponentially fast as t goes to ∞, the first integral
is absolutely convergent in Ck norms. The heat kernel pt vanishes with all of its
derivatives as t ↘ 0 in the compact K, thus the second integral is also absolutely
convergent. The last integral term is well-defined for Rs > 0, and it extends to a
meromorphic function onCwith a simple pole in s = 0. Therefore, s ↦ fx , y(s) extends
to a meromorphic function on C. By Proposition 1 and the identity theorem, the
equality of meromorphic functions

Γ(s)q−s(x , y) = fx , y(s)

holds for any s ∈ C. In particular, we obtain q0(x , y) = −PKer Δ(x , y). Furthermore,
q−s ∣K is an entire function and vanishes in s = −1,−2, . . .. ∎

Remark 3.1 The fact that q−s ∣K vanishes for negative integers s also follows from the
fact that then Δ−s is a differential operator.
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Now we check the behavior of q−s along the diagonal. It is no longer holomorphic
there, and the coefficients a j(x , x) from (2.1) appear as residues of q−s(x , x).

Proposition 3 Let x ∈ M. Then the function s ↦ Γ(s)q−s(x , x) has a meromorphic
extension from the set {s ∈ C ∶Rs > n

2 } to C with simple poles in s ∈ {0} ∪ { n
2 − j ∶ j ∈

N}. The residue of Γ(s)q−s(x , x) in s = n
2 − j, j ≠ n

2 , is a j(x , x). If n is even, then the
residue of Γ(s)q−s(x , x) in s = 0 is a n

2
(x , x) − PKer Δ(x , x). If n is odd, the residue

in s = 0 is −PKer Δ(x , x) and the meromorphic extension of q−s(x , x) vanishes at
s ∈ {−1,−2, . . .}.

Proof Consider the function fx ,x(s) = ∫
∞

0 ts−1 (pt(x , x) − PKer Δ(x , x)) dt for
Rs > n

2 . We have

fx ,x(s) = ∫
∞

0
ts−1 (pt(x , x) − PKer Δ(x , x)) dt

= ∫
∞

1
ts−1 (pt(x , x) − PKer Δ(x , x)) dt

+ ∫
1

0
ts−1 pt(x , x)dt − PKer Δ(x , x) ⋅ ∫

1

0
ts−1dt.

The first integral is absolutely convergent, as seen in the proof of Proposition 2. The last
integral term is meromorphic with a simple pole at s = 0 with residue −PKer Δ(x , x).
Let us analyze the behavior of the second term Ax(s) = ∫

1
0 ts−1 pt(x , x)dt.

Using (2.1), we have that for N ≥ 0,

tn/2 pt(x , x) =
N
∑
j=0

t j a j(x , x) + RN+1(t, x),

where RN+1 is of order O(tN+1) as t → 0. Furthermore, we obtain

Ax(s) =∫
1

0
ts− n

2 −1 t
n
2 pt(x , x)dt =

N
∑
j=0

∫
1

0
ts− n

2 −1 t j a j(x , x)dt +∫
1

0
ts− n

2 −1RN+1(t, x)dt

=
N
∑
j=0

a j(x , x) 1
s − n

2 + j
+ ∫

1

0
ts− n

2 −1RN+1(t, x)dt.

Thus s ↦ Ax(s) extends to a meromorphic function on C with simple poles in
{ n

2 − j ∶ j = 0, N + 1}. Using again Proposition 1 and the identity theorem, we deduce
the equality

Γ(s)q−s(x , x) = fx ,x(s),

for any s ∈ C. It follows that Γ(s)q−s(x , x) is meromorphic on C with simple poles
in s ∈ {0} ∪ { n

2 − j ∶ j ∈ N}. Moreover, the residue of Γ(s)q−s(x , x) in a pole n
2 − j is

a j(x , x), and the conclusion follows. ∎

For p ∈ C and ε > 0, let Bε(p) be the open disk centered in p of radius ε. We need
the following technical result.
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Proposition 4 Consider α < β, and let ε > 0, l ∈ N.
• If K is a compact set disjoint from the diagonal, then the function s &→ Γ(s)q−s ∣K is

uniformly bounded in {s ∈ C ∶ α ≤Rs ≤ β}/Bε(0) in the Cl norm on K.
• The function s &→ Γ(s)q−s ∣Diag

defined on {s ∈ C ∶ α ≤Rs ≤ β}/⋃ j∈N∪{ n
2 } Bε( n

2 −
j) �→ Cl (Diag,E⊗ E∗) is uniformly bounded.

Proof With the same argument as in the proof of Proposition 2, the restriction of
the Cl norm on K of the function s ↦ fx , y(s) is absolutely convergent in {s ∈ C ∶ α ≤
Rs ≤ β}/Bε(0), hence it is uniformly bounded.

As in the proof of Proposition 3, the Cl norm along Diag of s &→ fx ,x(s) con-
verges absolutely in {s ∈ C ∶ α ≤Rs ≤ β}/⋃ j∈N∪{ n

2 } Bε( n
2 − j), thus the conclusion

follows. ∎

4 The behavior of quotients of Gamma functions along
vertical lines

A fundamental result used in [2] is the Legendre duplication formula

Γ(s)
Γ ( s

2)
= 1√

2π 2s− 1
2 Γ ( s + 1

2
) ,

together with the rapid decay of the Gamma function in vertical linesRs = τ (see, e.g.,
[22]). These results are replaced in our case by the following estimate.

Proposition 5 The function s &→ Γ(s)
Γ(rs) decreases in vertical lines faster than ∣s∣−k , for

any k ≥ 0, uniformly in each strip {s ∈ C ∶ α ≤R(s) ≤ β}, for any α, β ∈ R.

Proof For z ∈ C/R−, recall the Stirling formula (see, for instance, [23])

log Γ(z) = (z − 1
2
) log z − z + 1

2
log(2π) + Ω(z),

where log is defined on its principal branch, and Ω is an analytic function of z. For
∣ arg z∣ < π and ∣z∣ → ∞, Ω can be written as

Ω(z) =
N−1
∑
j=1

B2 j

2 j(2 j − 1)z2 j−1 + RN(z),

where B2 j are the Bernoulli numbers (B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , etc.). Moreover,

the error term satisfies

∣RN(z)∣ ≤ ∣B2N ∣
2N(2N − 1) ⋅

sec2N( arg z
2 )

∣z∣2N−1 ;

thus, RN(z) is of order O (∣z∣−2N+1) as ∣z∣ → ∞ (see, for instance, [22, equation
(2.1.6)]). For s ∉ (−∞, 0), it follows that

Γ(s)
Γ(rs) = s−s(r−1)es(r−1)r

1
2−rs eΩ(s)−Ω(rs) .
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Let s = a + ib, a ∈ R fixed. As ∣b∣ → ∞, the difference ∣Ω(s) − Ω(rs)∣ → 0; thus,
∣eΩ(s)−Ω(rs)∣ → 1. Note that ∣r 1

2−rs ∣ = ∣r 1
2−ra ∣ and ∣e(r−1)s ∣ = e(r−1)a , so these terms are

bounded. We show in Lemma 4.1 that for any k ≥ 0, ∣s∣k ∣ss ∣ goes to 0 as Rs = a is fixed
and ∣ Im s∣ tends to ∞. It follows that the quotient Γ(s)

Γ(rs) indeed decreases in vertical
lines faster than ∣s∣−k , for any k ≥ 0, uniformly in vertical strips. ∎

Lemma 4.1 Let k ≥ 0. If a ∈ R is fixed and ∣b∣ → ∞, then ∣(a + ib)k+a+ib ∣ tends to
zero.

Proof Let s = a + ib ∉ (−∞, 0) and set log(a + ib) = x + iy. Then x = log
√

a2 + b2,
y = arg s ∈ (−π, π); hence,

∣ss+k ∣ = ∣e(k+a+ib) log(a+ib)∣ = e(k+a)x−by = e(k+a) log
√

a2+b2−b arg s .

Since b = tan arg s ⋅ a, the exponent is equal to

(k + a) log
√

a2 + b2 − b arg s(4.1)

= (k + a) log a + k + a
2

log (1 + tan2 arg s) − a tan arg s ⋅ arg s.

If a > 0, then arg s ↗ π
2 or arg s ↘ − π

2 , and in both cases t ∶= tan arg s tends to ∞. The
exponent (4.1) behaves as the function t &→ log(1 + t2) − t; therefore, as t →∞, the
exponent goes to −∞ and the statement of the claim follows.

If a < 0, then arg s ↘ π
2 or arg s ↗ − π

2 . In the first case when arg s ↘ π
2 , it follows

that t = tan arg s → −∞. The exponent (4.1) behaves as ± log(1 + t2) + t; hence, the
conclusion follows. While if arg s ↗ − π

2 , then t →∞, and the exponent (4.1) behaves
as ± log(1 + t2) − t; thus, the exponent tends again to −∞. Therefore, ∣sk+s ∣ goes to
zero, which ends the proof. ∎

5 Link between the complex powers of Δ and the heat kernel of Δr

Proposition 6 (Inverse Mellin Formula) For Rτ > 0, the operators e−t Δr
and Δ−s are

related by the following formula:

e−t Δr
− PKer Δ = 1

2πi ∫Rs=τ
t−s Γ(s)Δ−rs ds.

Proof The equality holds on each eigensection Φ j corresponding to an eigenvalue
λ j ∈ Spec Δ. Since {Φ j} j is a Hilbert basis, the result follows. ∎

Set τ > n
2r . Then the Schwartz kernel q−rs of Δ−rs is continuous and by the inverse

Mellin formula, we get an identity which relates the Schwartz kernels ht and q−rs :

ht(x , y) − PKer Δ(x , y) = 1
2πi ∫

Rs=τ
t−s Γ(s)q−rs(x , y)ds

= 1
2πi ∫

Rs=τ
t−s Γ(s)

Γ(rs) ⋅ Γ(rs)q−rs(x , y)ds.

Now let k > 0. By changing τ to τ + ε (for a small ε > 0) if needed, we can assume that
τ − k ∉ { n

2 − j ∶ j ∈ N} ∪ {0}. Using Propositions 4 and 5, we can apply the residue
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formula and move the line of integration to the left:

ht(x , y) = 1
2πi ∫

Rs=τ−k
t−s Γ(s)

Γ(rs) ⋅ Γ(rs)q−rs(x , y)ds

+ ∑
s∈−N∪{ n−2 j

2r ∶ j∈N}
Ress (t−s Γ(s)q−rs(x , y)) + PKer Δ(x , y).

(5.1)

Notice that −N ∪ { n−2 j
2r ∶ j ∈ N} is the set of all possible poles of s ↦ Γ(s)q−rs(x , y),

but some of them might actually be regular points. We will study the sum (5.1) in detail
in Theorems 6.1 and 7.1.

Let K be a compact set in M × M/Diag and l ∈ N. Remark that the integral term
in (5.1) is of order O (tk−τ) in Cl(K ,E ⊠ E∗). Indeed,

∥∫
Rs=τ−k

t−s Γ(s)q−rs ∣K ds∥ l ≤ t−τ+k ⋅ ∫
s=τ−k+iu

∥ Γ(s)
Γ(rs) ⋅ Γ(rs)q−rs ∣K∥ l du,

and using again Propositions 4 and 5, the claim follows. Furthermore, when k goes to
∞, we get

ht ∣K
t↘0∼

∞
∑
α=0

tα ⋅ Ress=−α (Γ(s)q−rs ∣K) + t0 ⋅ PKer Δ ∣K ,(5.2)

The meaning of the asymptotic sign in (5.2) is that if we set hN
t to be the right-hand side

in (5.2) restricted to α ≤ N , then the difference ∣∂ j
t (ht ∣K − hN

t ) ∣ is of order O(tN+1− j)
in Cl(K ,E ⊠ E∗), for any N , j ∈ N.

Remark that using again Propositions 4 and 5, the integral term in (5.1) is of order
O (tk−τ) in Cl(Diag,E⊗ E∗). Therefore when k tends to ∞, we obtain

ht ∣Diag

t↘0∼ ∑
α∈(−N)∪{ n−2 j

2r ∶ j∈N}
t−α ⋅ Ress=α (Γ(s)q−rs ∣Diag

) + t0 ⋅ PKer Δ ∣Diag ,(5.3)

in the sense of the following:

Definition 5.1 Consider l ∈ N and let A, B ⊂ R. We say that ht ∣Diag

t↘0∼ ∑α∈A tα cα +
∑β∈B tβ log t ⋅ cβ if for any k, N ∈ N, the difference

∂ j
t
⎛
⎝

ht ∣Diag − ∑
α≤N

tα cα − ∑
β≤N

tβ log t ⋅ cβ
⎞
⎠

is of order O(tN+1− j log t) in Cl(Diag,E⊗ E∗).

6 The asymptotic expansion of ht away from the diagonal

Theorem 6.1 The Schwartz kernel ht of the operator e−t Δr
is C∞ on [0,∞) ×

(M × M/Diag). Furthermore, let K ⊂ M × M/Diag be a compact set. Then the Taylor
series of ht ∣K as t ↘ 0 is the following:

ht ∣K
t↘0∼

∞
∑
j=1

t jqr j ∣K
(−1) j

j!
.
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Moreover, if r = α
β is rational with α, β coprime, then the coefficient of t j vanishes for

j ∈ βN∗.

Proof Let j ∈ N. Using Propositions 4 and 5, (−s)(−s − 1) . . . (−s − j +
1)t−s− j Γ(s)

Γ(rs)Γ(rs)q−rs ∣K is L1 integrable onRs = τ − k inCl(K ,E ⊠ E∗), for sufficiently
large k and for any l ∈ N. It follows that ht is C∞ on (0,∞) × (M × M/Diag). By
Proposition 2, the function s ↦ q−rs(x , y) is entire for any (x , y) ∈ K. Since
Ress=− j Γ(s) = (−1) j

j! , using (5.2) we get

ht ∣K
t↘0∼

∞
∑
j=0

t jqr j ∣K
(−1) j

j!
+ PKer Δ ∣K .

We obtained in the proof of Proposition 2 that q0 ∣K = −PKer Δ ∣K ; thus,

ht ∣K
t↘0∼

∞
∑
j=1

t jqr j ∣K
(−1) j

j!
,

and therefore ht∣K is C∞ also at t = 0, and vanishes at order 1. Moreover, using again
Proposition 2, if r = α

β is rational and j is a non-zero multiple of β, then qr j ∣K ≡ 0 and
the conclusion follows. ∎

7 The asymptotic expansion of ht along the diagonal

To obtain the coefficients in the asymptotic of ht along the diagonal as t ↘ 0, we
need to compute the residues from (5.3). Some of them are related to the heat
coefficients a j ’s of pt due to Proposition 3. We will distinguish three cases. If n is even,
Γ(s)q−rs(x) has simple poles in { n

2r , n−2
2r , . . . , 2

2r } ∪ {0,−1, . . .} and the residues will
give rise to real powers of t. If n is odd and either r is irrational or r is rational with
odd denominator, Γ(s)q−rs(x) has simple poles in {0,−1, . . .} ∪ { n−2 j

2r ∶ j = 0, 1, . . .}.
Otherwise, if n is odd and r is rational with even denominator, then there exist some
double poles which give rise to logarithmic terms in the asymptotic expansion of ht .

Theorem 7.1 Let a j(x , x) be the coefficients in (2.1) of the heat kernel pt of the non-
negative self-adjoint generalized Laplacian Δ. The asymptotic expansion of the Schwartz
kernel ht of the operator e−t Δr

, r ∈ (0, 1) along the diagonal when t ↘ 0 is the following:

(1) If n is even, then

ht ∣Diag

t↘0∼
n/2−1

∑
j=0

t−
n−2 j

2r ⋅ A− n−2 j
2r

+ an/2 +
∞
∑
j=1

t j ⋅ A j .

If r = α
β is rational, for j = l β, l ∈ N∗, we obtain that qr j(x , x) = (−1) j ⋅ j! ⋅

a n
2 +l α(x , x), and the coefficient of t l β can be described more precisely as

A l β = a n
2 +l α .
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(2) If n is odd and either r ∈ R/Q or the denominator of r is odd, then

ht ∣Diag

t↘0∼
(n−1)/2
∑
j=0

t−
n−2 j

2r ⋅ A− n−2 j
2r

+
∞
∑
j=1

t j ⋅ A j +
∞
∑
j=1

t
2 j+1

2r ⋅ A 2 j+1
2r

.

Moreover, if r = α
β is rational and β is odd, then A l β ≡ 0 for any l ∈ N∗.

(3) If n is odd, r = α
β is rational and its denominator β is even, then

ht ∣Diag

t↘0∼
(n−1)/2
∑
j=0

t−
n−2 j

2r ⋅ A− n−2 j
2r

+
∞
∑
j=1

α∤2 j+1

t
2 j+1

2r ⋅ A 2 j+1
2r

+
∞
∑
j=1
β
2 ∤ j

t j ⋅ A j

+
∞
∑
l=1

l odd

t l β
2 ⋅ A l β

2
+
∞
∑
l=1

l odd

t l β
2 log t ⋅ B l β

2
.

In all these cases, the coefficients are

A− n−2 j
2r

(x) =
Γ ( n−2 j

2r )

Γ ( n−2 j
2 )

⋅ 1
r
⋅ a j(x , x), A j(x) = (−1) j

j!
⋅ qr j(x , x),

A 2 j+1
2r
(x) =

Γ (− 2 j+1
2r )

Γ (− 2 j+1
2 )

⋅ 1
r
⋅ a n+2 j+1

2
(x , x), B l β

2
(x) = (−1)l β

2

r (l β
2 )!Γ (−l β

2 ⋅ r)
⋅ a n+l α

2
(x , x),

A l β
2
(x) = (−1)l β

2

(l β
2 )!Γ(−rl β

2 )
⋅ FPs=−l β

2
(Γ(rs)q−rs(x , x)) + FPs=−l β

2
( Γ(s)

Γ(rs)) ⋅
a n+l α

2 (x ,x)

r
.

Proof We compute the coefficients from (5.3) by using Proposition 3. ∎

7.1 The case when n is even

For j ∈ {0, 1, . . . , n/2 − 1}, we have

Ress= n−2 j
2r

(t−s Γ(s)
Γ(rs)Γ(rs)q−rs(x , x)) = t−

n−2 j
2r ⋅

Γ( n−2 j
2r )

Γ( n−2 j
2 )

⋅
a j(x , x)

r
.(7.1)

The residue in s = 0 is given by

Ress=0 (t−s Γ(s)q−rs(x , x)) = Ress=0 (t−s Γ(s)
Γ(rs)Γ(rs)q−rs(x , x))

= r ⋅ 1
r
(a n

2
(x , x)− PKer Δ(x , x)) = a n

2
(x , x)− PKer Δ(x , x),

thus the coefficient of t0 in the asymptotic expansion (5.3) is a n
2
(x , x).
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7.1.1 The case when n is even and r is irrational

Let j ∈ N∗. Then

Ress=− j (t−s Γ(s)q−rs(x , x)) = t j (−1) j

j!
⋅ qr j(x , x).(7.2)

Therefore, in this case, the asymptotic expansion of ht is the following:

ht(x , x) t↘0∼
n/2−1

∑
j=0

t−
n−2 j

2r
Γ ( n−2 j

2r )

Γ ( n−2 j
2 )

a j(x , x)
r

+ a n
2
(x , x) +

∞
∑
j=1

t j (−1) j

j!
qr j(x , x).

7.1.2 The case when n is even and r = α
β is rational with (α, β) = 1

Some of the coefficients qr j(x , x) from (7.2) can be expressed in terms of the ak ’s from
(2.1). Remark that Γ(s)

Γ(rs) has simple poles in {−1,−2, . . .}/{−1
r , −2

r , . . .}. For j ∈ N∗, s ∶=
− j

r ∈ {−1,−2, . . .} if and only if j is a multiple of α, which is equivalent to s = −l α
r = −l β

for some l ∈ N∗. In this case, we obtain

Ress=−l β (t−s Γ(s)q−rs(x , x)) = Ress=−l β (t−s Γ(s)
Γ(rs)Γ(rs)q−rs(x , x))

= t l βr ⋅ 1
r

a n
2 +l α(x , x) = t l β a n

2 +l α(x , x).

Hence, for rational r = α
β , if j = l β, l ∈ N∗, we conclude that

qr j(x , x) = (−1) j ⋅ j! ⋅ a n
2 +l α(x , x),(7.3)

and ht(x , x) has the following asymptotic expansion as t ↘ 0:

n/2−1

∑
j=0

t−
n−2 j

2r
Γ ( n−2 j

2r )

Γ ( n−2 j
2 )

a j(x , x)
r

+ a n
2
(x , x) +

∞
∑
j=1
β∤ j

t j (−1) j

j!
qr j(x , x) +

∞
∑
l=1

t l β a n
2 +l α(x , x).

7.2 The case when n is odd

For j ∈ {0, 1, . . . , (n − 1)/2}, the coefficient of t−
n−2 j

2r is computed as in (7.1). Further-
more, in s = 0,

Ress=0 (t−s Γ(s)q−rs(x , x)) = Ress=0 (t−s Γ(s)
Γ(rs) ⋅ Γ(rs)q−rs(x , x))

= r ⋅ −1
r
⋅ PKer Δ(x , x) = −PKer Δ(x , x);

hence, there is no free term in the asymptotic expansion of ht as t goes to zero.
Now we have to compute the residues of the function t−s Γ(s)q−rs(x , x) in

s ∈ {−1,−2, . . .} and s ∈ {−1
2r , −3

2r , . . .}.
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7.2.1 The case when n is odd and r is irrational

Then these sets are disjoint; thus, all poles of the function Γ(s)q−rs(x) are simple. For
j ∈ N∗, the coefficient of t j is obtained as in (7.2). Furthermore, for j ∈ N, we get

Ress=− 2 j+1
2r

(t−s Γ(s)
Γ(rs) ⋅ Γ(rs)q−rs(x , x)) = t

2 j+1
2r ⋅

Γ(− 2 j+1
2r )

Γ(− 2 j+1
r )

⋅
a n+2 j+1

2
(x , x)

r
.(7.4)

Therefore, the small-time asymptotic expansion of ht is the following:

ht(x , x) t↘0∼
n/2−1

∑
j=0

t−
n−2 j

2r ⋅
Γ ( n−2 j

2r )

Γ ( n−2 j
2 )

⋅
a j(x , x)

r
+
∞
∑
j=1

t j ⋅ (−1) j

j!
qr j(x , x)

+
∞
∑
j=0

t
2 j+1

2r ⋅
Γ (− 2 j+1

2r )

Γ (− 2 j+1
2 )

⋅
a n+2 j+1

2
(x , x)

r
.

7.2.2 The case when n is odd and r = α
β is rational

Consider the sets

A ∶= {−1,−2, . . .}, B ∶= {−1
2r , −3

2r , . . .}, C ∶= {−1
r , −2

r , . . .}.

Remark that A is the set of negative poles of s &→ t−s Γ(s)q−rs(x , x), and A/C is the
set of poles of the function s &→ Γ(s)

Γ(rs) . Clearly B and C are disjoint. Moreover, A∩ C =
{−l β ∶ l ∈ N∗}. Furthermore, if β is odd, then A∩ B = ∅, and otherwise if β is even,
then A∩ B = {−l β

2 ∶ l ∈ 2N + 1}. Such an s = − 2 j+1
2r = l β

2 ∈ A∩ B is a double pole for
Γ(s)qrs(x).

7.2.3 Suppose that β is odd

Then A and B are disjoint. Thus, for s = − 2 j+1
2r ∈ B, j ∈ N, the residue of

t−s Γ(s)qrs(x , x) is the one computed in (7.4).
For s = − j ∈ A/C (which means that j ∈ N∗, β ∤ j), the residue of t−s Γ(s)q−rs(x , x)

in s is the one computed in (7.2).
If s = −l β = − l α

r ∈ A∩ C for some l ∈ N∗, then Γ(s) has a simple pole in s and by
Proposition 3, (the meromorphic extension of) q−rs(x , x) vanishes at s = −l β. Hence,
the product t−s Γ(s)q−rs(x , x) is holomorphic in s = −l β and t l β , l ∈ N∗, does not
appear in the asymptotic expansion.

Therefore, if r = α
β is rational and β is odd, we obtain

ht(x , x) t↘0∼
n/2−1

∑
j=0

t−
n−2 j

2r ⋅
Γ ( n−2 j

2r )

Γ ( n−2 j
2 )

⋅
a j(x , x)

r
+
∞
∑
j=0

t
2 j+1

2r ⋅
Γ (− 2 j+1

2r )

Γ (− 2 j+1
2 )

⋅
a n+2 j+1

2
(x , x)

r

+
∞
∑
j=1
β∤ j

t j (−1) j

j!
⋅ qr j(x , x).
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7.2.4 Assume now that β is even

For s = − 2 j+1
2r ∈ B/A ( j ∈ N with α ∤ 2 j + 1), the residue is computed as in (7.4). For

s = − j ∈ A/ (B ∪ C) (namely j ∈ N∗, β
2 ∤ j), the residue is computed as in (7.2).

For s ∈ C ∩ A (namely s = −l β, l ∈ N∗), the residue is again 0. Indeed, Γ(s) has a
simple pole in −l β and by Proposition 3, (the meromorphic extension of) q−rs(x , x)
vanishes in −l β, thus t l β does not appear in the asymptotic expansion of ht .

Finally, if s = − l α
2r = −l β

2 ∈ A∩ B, l ∈ 2N + 1, then s is a double pole for
Γ(s)q−rs(x , x). We write the Laurent expansions of the functions t−s , Γ(s)

Γ(rs) , and
Γ(rs)q−rs(x , x), respectively, in s = − l α

2r = −l β
2 =∶ −k:

t−s = tk − tk log t +O(s + k)2 ,
Γ(s)
Γ(rs) = (−1)k

k! ⋅ Γ(−kr)(s + k)−1 + ⋅⋅⋅,

Γ(rs)(q−rs(x , x)) = 1
r

a n+l α
2
(x , x)(s + k)−1 + ⋅⋅⋅.

Thus, we finally obtain that

Ress=−k (t−s ⋅ Γ(s)
Γ(rs) ⋅ Γ(rs)q−rs(x , x)) = tk ⋅ (−1)k

k!Γ(−kr) ⋅ FPs=−k (Γ(rs)q−rs(x , x))

+ tk FPs=−k (
Γ(s)
Γ(rs)) ⋅

a n+l α
2 (x ,x)

r

+ tk log t ⋅ (−1)k

k!Γ(−kr)
a n+l α

2 (x ,x)

r
.

8 Non-triviality of the coefficients

Let us prove Theorem 1.1. Recall the definition of the zeta function of a non-negative
self-adjoint generalized Laplacian Δ:

ζΔ(s) ∶= ∑
λ∈Spec Δ/{0}

λ−s = ∫
M

q−s(x , x)dg(x).

This series is absolutely convergent for Rs > n
2 and extends meromorphically to C

with possible simple poles in the set

{n
2
− j ∶ j ∈ N/{n

2
}}

(see, for instance, [13]).
Consider the trivial bundle C over a compact Riemannian manifold M. As in [17],

let (Δ+ξ)ξ>0 be a family of generalized Laplacians indexed by ξ > 0, and denote by
qξ
−s the Schwartz kernels of the operators (Δ+ξ)−s . Note that for Rs > n

2 ,

∫
M

qξ
−s(x , x)dx = Tr (Δ+ξ)−s = ζΔ+ξ(s) = ∑

λ j∈Spec Δ
(λ j + ξ)−s .(8.1)
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Since for Rs > n
2 the sum is absolutely convergent, we obtain

d
dξ

ζΔ+ξ(s) = −s ⋅ ∑
λ j∈Spec Δ

(λ j + ξ)−s−1 = −s ⋅ ζΔ+ξ(s + 1).

By induction, it follows that for Rs > n
2 ,

d
dξk ζΔ+ξ(s) = (−1)k s(s + 1) . . . (s + k − 1) ⋅ ζΔ+ξ(s + k).(8.2)

Using the identity theorem, (8.2) holds true on C as an equality of meromorphic
functions. Consider s ∈ R/(−N) and k ∈ N large enough such that s + k > n

2 . Since
ζΔ+ξ(s + k) is a convergent sum of strictly positive numbers, the right-hand side is
non-zero. Thus, for any fixed s ∈ R/(−N), on any open set U ⊂ (0,∞), the function
ξ &→ ζΔ+ξ(s) is not identically zero on U, and by (8.1), qξ

−s(x , x) cannot be constant
zero on M. Hence, for s = −r j ∉ −N, there exist ξ0 ∈ (0,∞) and x0 ∈ M such that
the coefficient qξ0

r j (x0 , x0) of the asymptotic expansion of the Schwartz kernel ht of
e−t(Δ+ξ0)r

is non-zero.
Now suppose that r j ∈ N. Then r = α

β is rational and j is a multiple of β, j ∶= l β. If
n is odd, we already proved in Theorem 7.1 that t l β does not appear in the asymptotic
expansion of ht as t ↘ 0. Furthermore, if n is even, by (7.3), qr j(x , x) is a non-zero
multiple of the coefficient a n

2 +l α(x , x) in the asymptotic expansion (2.1) of the heat
kernel pt . It is well known that the heat coefficients in (2.1) are non-trivial (see, for
instance, [13]). It follows that all coefficients obtained in Theorem 7.1 indeed appear in
the asymptotic expansion, proving Theorem 1.1.

9 Non-locality of the coefficients A j(x) in the asymptotic
expansions

Let us prove Theorem 1.3. We give an example of an n-dimensional manifold and a
Laplacian for which the coefficients A j(x) = (−1) j

j! qr j(x ,x), j ∈ N∗, r j ∉ N appearing
in Theorem 7.1 are not locally computable in the sense of Definition 1.1 (i). Let
Tn = Rn/ (2πZ)n be the n-dimensional torus from Example 2.2. Let Δg be the
Laplacian on Tn given by the metric g = dθ2

1 + ⋅⋅⋅ + dθ2
n .

Remark that the eigenvalues of Δg are {k2
1 + ⋅⋅⋅ + k2

n ∶ k1 , . . . , kn ∈ Z}. Let
φ l(t) = 1√

2π e i l t be the standard orthonormal basis of eigenfunctions of each ΔS 1 .
Then, for Rs > n

2 and θ = (θ1 , . . . , θn) ∈ Tn , the Schwartz kernel of Δ−s
g is given by

qΔg
−s (θ , θ) = ∑

(k1 , . . . ,kn)∈Zn/{0}
(k2

1 + ⋅⋅⋅ + k2
n)
−s φk1(θ1)φk1(θ1) . . . φkn(θn)φkn(θn).

Consider the n-dimensional zeta function

ζn(s) ∶= ∑
(k1 , . . . ,kn)∈Zn/{0}

(k2
1 + ⋅⋅⋅ + k2

n)
−s = ∑

k∈N∗
k−s Rn(k),
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where Rn(k) is the number of representations of k as a sum of n squares. Since
φ l(t)φ l(t) = 1

2π for any t ∈ S1, it follows that

qΔg
−s (θ , θ) = 1

(2π)n ζn(s),(9.1)

for any Rs > n
2 , and clearly qΔg

−s is independent of θ.
Now let us change the metric locally on each component S1. Let U be an open

interval in S1, and ψ ∶ S1 �→ [0,∞) a smooth function with supp ψ ⊂ U . Consider
the new metric (1 + ψ(θ)) dθ2 on each S1. Then there exist p > 0 and an isometry
Φ ∶ (S1 , (1 + ψ(θ)) dθ2) �→ (S1 , p2dθ2). Remark that the Laplacian on S1 given by
the metric p2dθ2 corresponds under this isometry to p−2 times the Laplacian for the
metric dθ2. Let

g̃ =
n
∑
j=1

(1 + ψ(θ j)) dθ2
j gp =

n
∑
j=1

p2dθ2
j = p2 g .

Then clearly Φ × ⋅⋅⋅ × Φ ∶ (Tn , g̃) &→ (Tn , gp) is an isometry, and let Δ̃, Δp be the
corresponding Laplacians on Tn . Denote by qΔ̃

−s and qΔp
−s the Schwartz kernels of the

complex powers Δ̃−s and Δ−s
p . We have for Rs > n

2 ,

qΔp
−s (θ , θ) = 1

(2πp)n ∑
k=(k1 , . . . ,kn)∈Zn/{0}

(p−2k2
1 + ⋅⋅⋅ + p−2k2

n)
−s = p2s

(2πp)n ζn(s).

(9.2)

Remark that

qΔp
−s (θ , θ) = qΔ̃

−s (Φ(θ), Φ(θ)) ,

and both of them are independent of θ. By (9.2), for Rs > n
2 , we obtain

qΔ̃
−s (θ , θ) = p2s−n

(2π)n ζn(s).(9.3)

Now we prove that ζn(s) has a meromorphic extension on C with so-called trivial
zeros at s = −1,−2, . . .. By Proposition 1, for Rs > n

2 , we have

ζn(s)Γ(s) = ∫
∞

0
ts−1 ∑

k=(k1 , . . . ,kn)∈Zn/{0}
e−t(k2

1+⋅⋅⋅+k2
n)dt = ∫

∞

0
ts−1F(t)dt,

where F(t) ∶= ∑k=(k1 , . . . ,kn)∈Zn/{0} e−t(k2
1+⋅⋅⋅+k2

n). Using the multidimensional Poisson
formula (see, for instance, [3]), it follows that

1 + F(t) = ∑
k∈Zn

ft(k) = ∑
k∈Zn

f̂t(2πk) = πn/2 t−n/2 (1 + F (π2

t
)) ,

and therefore

F(t) = −1 + πn/2 t−n/2 + πn/2 t−n/2F (π2

t
) .
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Since F(t) goes to 0 rapidly as t →∞, the function A(s) = ∫
∞

1 ts−1F(πt)dt is entire.
Remark that

ζn(s)Γ(s) = ∫
π

0
t−s F(t)dt + ∫

∞

π
ts−1F(t)dt

= πs (− 1
s
+ 1

s − n
2
+ A(n

2
− s) + A(s)) ,

so

π−s ζn(s)Γ(s) = − 1
s
+ 1

s − n
2
+ A(n

2
− s) + A(s).(9.4)

Therefore, ζn extends meromorphically to C with a simple pole in s = n
2 and zeros

at s = −1,−2, . . .. Furthermore, since the RHS is invariant through the involution s ↦
n
2 − s, it follows that ζn(s) does not have any other zeros for s ∈ (−∞, 0). We obtain
the well-known functional equation of the Epstein zeta function

π−s ζn(s)Γ(s) = πs−n/2ζn (
n
2
− s) Γ (n

2
− s)

(see, for instance, [9, equation (63)]). Remark that for r ∈ (0, 1) and j ∈ N∗ with r j ∉ N,
ζn(−r j) is not zero.

Using the identity theorem, it follows that (9.1) and (9.3) hold true as an equality of
meromorphic functions on C, and furthermore, we get

qΔg
r j (θ , θ) ≠ qΔ̃

r j(θ , θ),

for r j ∉ N. Since we modified the metric locally in U n ⊂ Tn and the corresponding
kernel qΔ̃

r j changed its behavior globally, it follows that it is not locally computable in
the sense of Definition 1.1 (i).

Furthermore, let us see that the heat coefficients A j(x) = (−1) j

j! qr j(x , x) for j = N∗,
r j ∉ N are not cohomologically local in the sense of Definition 1.1 (iii). We argue by
contradiction. Let j be fixed. Suppose that there exists a function C, locally computable
in the sense of Definition 1.1 (i), such that

∫
Tn

qΔg
r j dvolg = ∫

Tn
C(g)dvolg , ∫

Tn
qΔ̃

r j dvol g̃ = ∫
Tn

C(g̃)dvol g̃ .(9.5)

Using (9.1) and (9.3), it follows that

(2π)n ζn(−r j) = ∫
Tn

C(g)dvolg , (2πp)n p−2r jζn(−r j) = ∫
Tn

C(g̃)dvol g̃ .

Remark that in the case of the trivial bundle with the trivial connection over a
locally homogeneous Riemannian manifold (M , h) (i.e., such that every two points
have isometric neighborhoods), the function C(M , h) ∈ C∞(M) is constant on M.
This follows directly from Definition 1.1 (i). Therefore, C(g), C(g̃), and C(gp) are
constant functions.

Since (Tn , g̃) is (globally) isometric to (Tn , gp), it follows that C(g̃) = C(gp).
Furthermore, since (Tn , gp) is locally isometric to (Tn , g) and C(gp), C(g) are
constant functions, it also follows that they are equal: C(gp) = C(g). Hence we
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conclude that C(g̃) = C(gp) = C(g) =∶ C, for some C ∈ C, and thus we have

∫
Tn

C dvol g̃ = ∫
Tn

C dvolgp .(9.6)

Since gp = p2 g, we obtain that

∫
Tn

C dvolgp = pn ∫
Tn

C dvolg ,(9.7)

and then using (9.5)–(9.7), we get

(2πp)n p−2r jζn(−r j) = pn ⋅ (2π)n ζn(−r j).

But, we proved above that ζn(−r j) does not vanish for r j ∉ N. We obtain a contradic-
tion because p−2r j ≠ 1 for r ∈ (0, 1), j = 1, 2, . . ..

10 Interpretation of ht on the heat space for r = 1/2

In Theorems 6.1 and 7.1, we studied the asymptotic behavior of the heat kernel ht of
Δr , r ∈ (0, 1) for small-time t in two distinct cases: when we approach t = 0 along the
diagonal in M × M, and when we approach a compact set away from the diagonal. We
now give a simultaneous asymptotic expansion formula for both cases when r = 1

2 .
Furthermore, in order to understand the asymptotic behavior as t goes to zero in any
direction (not just the case when t goes to 0 in the vertical one),we will pull-back the
formula on a certain linear heat space Mheat.

In [19], Melrose used his blow-up techniques to give a conceptual interpretation
for the asymptotic of the heat kernel pt . Recall that the heat space M2

H is obtained by
performing a parabolic blow-up of {t = 0} × Diag in [0,∞) × M × M. The heat space
M2

H is a manifold with corners with boundary hypersurfaces given by the boundary
defining functions ρ and ω0. The heat kernel pt belongs to ρ−nC∞(M2

H), and vanishes
rapidly at the boundary hypersurface {ω0 = 0} (see [19, Theorem 7.12]).

In order to study the Schwartz kernel ht of e−t Δ1/2
, we introduce the linear heat

space Mheat, which is just the standard blow-up of {0} × Diag in [0,∞) × M × M (see
[20] for details regarding the blow-up of a submanifold). Let ff be the front face, i.e.,
the newly added face, and denote by lb the lateral boundary which is the lift of the old
boundary {0} × M × M. The blow down map is given locally by

βH ∶ Mheat �→ [0,∞) × M × M βH(ρ, ω, x′) = (ρω0 , ρω′ + x′ , x′),

where

ω ∈ Sn
H = {ω = (ω0 , ω′) ∈ Rn+1 ∶ ω0 ≥ 0, ω2

0 + ∣ω′∣2 = 1}.

Proof of Theorem 1.4 We want to show that ht ∈ ρ−n ω0 ⋅ C∞(Mheat) + ρ log ρ ⋅ ω0 ⋅
C∞(Mheat), and in fact, the second (logarithmic) term does not occur when n is even.
First, we deduce the unified formula for ht as t ↘ 0 both on the diagonal and away
from it. By Mellin formula 1 and inverse Mellin formula 6, for τ > n, we get
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ht(x , y) − PKer Δ(x , y) = 1
2πi ∫

Rs=τ
t−s Γ(s)

Γ ( s
2 )

Γ ( s
2
) q−s/2(x , y)ds

= 1
2πi ∫

Rs=τ
t−s Γ(s)

Γ ( s
2 )
∫
∞

0
T

s
2−1 (pT(x , y) − PKer Δ(x , y)) dTds.

We use the Legendre duplication formula as in [2] (see, for instance, [22]):

Γ(s)
Γ ( s

2)
= 1√

2π
2s− 1

2 Γ ( s + 1
2

) ,

obtaining that ht(x , y) − PKer Δ(x , y) is equal to

1√
4π

1
2πi ∫

Rs=τ
∫
∞

0
(2

√
T

t
)

s

Γ ( s + 1
2

)(pT(x , y) − PKer Δ(x , y)) dTds.

Set X ∶= 2
√

T
t . Using Propositions 4, 5, and Fubini, we first compute the integral in s.

Changing the variable S = s+1
2 and applying the residue theorem, we get

1
2πi ∫

Rs=τ
X s Γ ( s + 1

2
) ds = 2

2πi ∫
RS= τ+1

2

X2S−1Γ(S)dS = 2
∞
∑
k=0

(−1)k

k!
X−2k−1

= 2X−1e−X−2
= t√

T
e−

t2
4T .

Thus, we obtain

ht(x , y) − PKer Δ(x , y) = t
2
√

π ∫
∞

0
T−3/2e−

t2
4T (pT(x , y) − PKer Δ(x , y)) dT .(10.1)

Since pT(x , y) − PKer Δ(x , y) decays exponentially as T goes to infinity, it follows that
the integral from 1 to ∞ in the right-hand side of equation (10.1) is of the form t ⋅
C∞t ,x , y ([0,∞) × M2). Furthermore, by the change of variable u = t

2
√

T
, we have

− t
2
√

π ∫
1

0
T−3/2e−

t2
4T dT ⋅ PKer Δ(x , y) = − 2√

π ∫
∞

t/2
e−u2

du ⋅ PKer Δ(x , y).

Since ∫
∞

t/2 e−u2
du tends to

√
π

2 as t ↘ 0, the term − t
2
√

π ∫
1

0 T−3/2e− t2
4T dT PKer Δ(x , y)

will cancel in the limit as t → 0 with −PKer Δ(x , y) from the left-hand side of (10.1).
Let us study the remaining integral term t

2
√

π ∫
1

0 T−3/2e− t2
4T pT(x , y)dT . By Theo-

rem 2.1,

pT(x , y) = T−n/2e−
d(x ,y)2

4T

N
∑
j=0

T j a j(x , y) + RN+1(T , x , y),

where the remainder RN+1(T , x , y) is of order O(T N+1); therefore,

t
2
√

π ∫
1

0
T−3/2e−

t2
4T pT(x , y)dT = t

2
√

π ∫
1

0
T−3/2e−

t2
4T RN+1(T , x , y)dT

+ t
2
√

π∫
1

0
T−3/2e−

t2
4T T−n/2e−

d(x ,y)2
4T

N
∑
j=0

T j a j(x , y)dT .
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Since RN+1(T , x , y) is of order O(T N+1), the first integral is again of type t ⋅ C∞t ,x , y . By
changing the variable u = t2+d(x , y)2

4T in the second integral, we get

t
2
√

π

N
∑
j=0

a j(x , y)∫
1

0
T−

n+3
2 + j e−

t2+d(x ,y)2
4T dT

= t
2
√

π

N
∑
j=0

a j(x , y)( t2 + d(x , y)2

4
)
− n+1

2 + j

∫
∞

t2+d(x ,y)2
4

u
n+1

2 − j−1e−udu

= t
2
√

π

N
∑
j=0

a j(x , y)Γ (n + 1
2

− j, t2 + d(x , y)2

4
)( t2 + d(x , y)2

4
)
− n+1

2 + j

,

where Γ(z, ξ) ∶= ∫
∞

ξ uz−1e−udu is the upper incomplete Gamma function. We con-
clude that ht(x , y) is equal to

t ⋅ C∞t ,x , y + t
2
√

π

N
∑
j=0

a j(x , y)Γ (n + 1
2

− j, t2 + d(x , y)2

4
)( t2 + d(x , y)2

4
)
− n+1

2 + j

.

(10.2)

∎

10.1 The case when n is even

If z > 0, then one can easily check that Γ(z, ξ) ∈ ξzC∞ξ [0, ε) + Γ(z), for some ε > 0.
Furthermore, for z ∈ (−∞, 0]/{0,−1,−2, . . .},

Γ(z, ξ) = − 1
z

ξz e−ξ + 1
z

Γ(z + 1, ξ)

= ξz e−ξ
a−1
∑
k=0

−1
z(z + 1) . . . (z + k) ξk + 1

z(z + 1) . . . (z + a)Γ(z + a, ξ)

= ξzC∞ξ [0, ε) + 1
z(z + 1) . . . (z + a − 1)Γ(z + a, ξ),

where a is a positive integer such that z + a > 0. Thus, for a non-integer z < 0, we have

Γ(z, ξ) = ξzC∞ξ [0, ε) + 1
z(z + 1) . . . (z + a − 1)Γ(z + a).

We want to interpret equation (10.2) on the heat space Mheat; thus, we pull back (10.2)
through βH :

β∗H h = ρω0β∗HC∞t ,x , y + 1
2
√

π ρω0
N
∑
j=0
( ρ2

4 )
− n+1

2 + j
β∗H a j(x , y)Γ (n + 1

2
− j, ρ2

4
)

= ρω0β∗HC∞t ,x , y + 1
2
√

π ρ−n ω0

n/2
∑
j=0

ρ2 j2n+1−2 j β∗H a j(x , y)Γ (n + 1
2
− j)

+ 1
2
√

π ρω0

n/2
∑
j=0

β∗H a j(x , y)C∞ρ2 [0, ε) + 1
2
√

π ρω0
N
∑

j=n/2+1
β∗H a j(x , y)C∞ρ2 [0, ε)
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+ 1
2
√

π ρ−n ω0
N
∑

j=n/2+1
ρ2 j2n+1−2 j β∗H a j(x , y) 2−n/2+ j

(n + 1 − 2 j) (n + 3 − 2 j) . . . (−1)Γ ( 1
2
) .

Since Γ ( n+1
2 − j) =

√
π(n−2 j−1)!!

2n/2− j for j ∈ {0, 1, . . . , n/2}, it follows that

β∗H h = ρω0β∗HC∞t ,x , y + ω0ρC∞ρ2[0, ε) + ρ−n ω0

n/2
∑
j=0

ρ2 j2n/2− j(n − 2 j − 1)!!β∗H a j(x , y)

+ ρ−n ω0
N
∑

j=n/2+1
ρ2 j (−1) j−n/22n/2− j

(2 j − n − 1)!!
β∗H a j(x , y).

(10.3)

The case ρ ≠ 0 and ω0 → 0 corresponds to x ≠ y and t ↘ 0 before the pull-back.
We obtain that β∗H h is in C∞(Mheat) and it vanishes at first order on lb, which is
compatible with Theorem 6.1.

If ρ → 0 and ω0 = 1, which corresponds to x = y and t ↘ 0, then β∗H h =
ρ−n ω0 ∑N

j=0 ρ2 j A j(x), where we denoted by A j(x) the coefficients appearing in (10.3).
Again, this result is compatible with Theorem 7.1, and moreover, the coefficients are
precisely the ones from [2, Theorem 3.1].

Remark that formula (10.3) is stronger than Theorems 6.1 and 7.1. If both ρ and ω0
tend to 0 (with different speeds), it describes the behavior of ht as t goes to zero from
any positive direction (not only the vertical one).

10.2 The case when n is odd

Remark that for small ξ, we have

Γ(0, ξ) = ∫
∞

ξ
t−1e−tdt = ∫

1

ξ

e−t − 1
t

dt + ∫
1

ξ
t−1dt + ∫

∞

1
t−1e−tdt

= − log ξ + C∞ξ [0, ε).

Furthermore, if p is a negative integer, inductively we obtain

Γ(−p, ξ) = e−ξ ξ−p

p!

p−1

∑
k=0

(−1)k(p − k − 1)!ξk + (−1)p

p!
Γ(0, ξ)

= ξ−pC∞ξ [0, ε) − (−1)p

p!
log ξ + C∞ξ [0, ε).

We pull-back equation (10.2) on the heat space Mheat:

β∗H h = ρω0β∗HC∞t ,x , y + 1
2
√

π ρω0
N
∑
j=0

( ρ2

4 )
− n+1

2 + j
β∗H a j(x , y)Γ (n + 1

2
− j, ρ2

4
)

= ρω0β∗H a j(x , y) + 1
2
√

π ρω0

(n−1)/2
∑
l=0

β∗H a j(x , y)C∞ρ2[0, ε)

+ 1√
π

ρ−n ω0

(n−1)/2
∑
j=0

ρ2 j β∗H a j(x , y)2n−2 jΓ (n + 1
2

− j)
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+ 2√
π

ρ−n ω0
N
∑

j=(n+1)/2
ρ2 j log ρβ∗H a j(x , y)2n−2 j (−1) j− n+1

2 +1

( j − n+1
2 )!

+ 2√
π

ρ−n ω0
N
∑

j=(n+1)/2
ρ2 j β∗H a j(x , y)2n−2 j (−1) j− n+1

2

( j − n+1
2 )!

log 2

+ 1
2
√

π ρω0
N
∑

j=(n+1)/2
β∗H a j(x .y)C∞ρ2[0, ε)

+ 1√
π ρ−n ω0

N
∑

j=(n+1)/2
ρ2 j β∗H a j(x , y)2n−2 j (−1) j− n+1

2

( j − n+1
2 )!

C∞ρ2[0, ε).

Therefore, we obtain

β∗H h = ρω0β∗HC∞t ,x , y + ω0ρC∞ρ2[0, ε) + ω0ρ−nC∞ρ2[0, ε)

+ 1√
π

ρ−n ω0

(n−1)/2
∑
j=0

ρ2 j β∗H a j(x , y)2n−2 j (n + 1
2

− j)!

+ 2√
π

ρ−n ω0
N
∑

j=(n+1)/2
ρ2 j log ρβ∗H a j(x , y)2n−2 j (−1) j− n+1

2 +1

( j − n+1
2 )!

+ 2√
π

ρ−n ω0
N
∑

j=(n+1)/2
ρ2 j β∗H a j(x , y)2n−2 j (−1) j− n+1

2

( j − n+1
2 )!

log 2.

(10.4)

If ρ ≠ 0 and ω0 → 0 (corresponding to x ≠ y and t ↘ 0 before the pull-back on
Mheat), we obtain that β∗H h ∈ C∞(Mheat) and it vanishes at order 1 at lb, which is
compatible with the result of Theorem 6.1.

In the case ρ → 0 and ω0 = 1 which corresponds to x = y and t ↘ 0, we
obtain β∗H h = ρ−nC∞ρ2 + ρ−n ∑N

j=0 ρ2 j A j(x) + ρ−n ∑N
j=(n+1)/2 ρ2 j log ρB j(x), where we

denoted by A j and B j the coefficients appearing in (10.4). This result is compatible with
Theorem 7.1 and again, we find some of the coefficients appearing in [2, Theorem 3.1].

11 The heat kernel as a polyhomogeneous conormal section

Let us recall the notions of index family and polyhomogeneous conormal functions
on a manifold with corners with two boundary hypersurfaces. (For an accessible
introduction, see [15], and for full details of the theory, see [18].) A discrete subset
F ∈ C ×N is called an index set if the following conditions are satisfied:
1) For any N ∈ R, the set F ∩ {(z, p) ∶Rz < N} is finite.
2) If p > p0 and (z, p) ∈ F, then (z, p0) ∈ F.
If X is a manifold with corners with two boundary hypersurfaces B1 and B2 given
by the boundary defining functions x and y, a smooth function f on

○

X is said to
be polyhomogeneous conormal with index sets E and F, respectively, if in a small
neighborhood [0, ε) × B1, f has the asymptotic expansion

f (x , y) x↘0∼ ∑
(z , p)∈F

az , p(y) ⋅ xz logp x ,
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where az , p are smooth coefficients on B2, and for each az , p there exists a sequence of
real numbers bw ,q , such that

az , p(y) y↘0∼ ∑
(w ,q)∈E

bw ,q ⋅ yw logq y.

One can prove that f is a polyhomogeneous conormal function on X with index sets
Fp = {(k, 0) ∶ k ∈ Z, k ≥ −p} and F0 = {(n, 0) ∶ n ∈ N} if and only if f ∈ y−pC∞(X).
Furthermore, f is a polyhomogeneous conormal function on X with index sets F′ =
{(n, 1) ∶ n ∈ N∗} and F0 if and only if f ∈ C∞(X) + log y ⋅ C∞(X). Therefore, we can
restate Theorem 1.4 as follows:

Theorem 11.1 For r = 1
2 , the heat kernel ht of the operator e−t Δ1/2

is a polyhomogeneous
conormal section on the linear heat space Mheat with values in E ⊠ E∗. The index set for
the lateral boundary is

Flb = {(k, 0) ∶ k ∈ N∗}.

If n is even, the index set of the front face is

Fff = {(−n + k, 0) ∶ k ∈ N},

whereas for n odd, the index set toward ff is given by

Fff = {(−n + k, 0) ∶ k ∈ N} ∪ {(k, 1) ∶ k ∈ N∗}.

It seems reasonable to expect that the Schwartz kernel ht of the operator e−t Δr

for r ∈ (0, 1) can be lifted to a polyhomogeneous conormal section in a certain
“transcendental” heat space Mr

Heat depending on r with values in E ⊠ E∗. However,
already in the case r = 1/3, our method leads to complicated computations involving
Bessel modified functions. We therefore leave this investigation open for a future
project.
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