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LAMBEK'S OPERATIONAL CATEGORIES

C, B. JAY

An operational category is a category of models for an equational

theory where the interpretation of some operations is

predetermined. Examples include the equational and co-equational

categories of Linton, categories of functors preserving some class

of limits, and algebras for a prop as defined by MacLane. The

chief result is a characterisation of the operational categories

and functors in terms of their internal structure.

0. Introduction

The class of operational categories includes those of Lawvere's

algebraic categories [S] and the equational categories of Linton [9],[JO],

which include the tripleable categories. Since the dual of an operational

category is one too, coequational and cotripleable categories are

operational. The definition of operational category used here is that

introduced by J. Lambek in his lecture to the Midwest Category Theory

Seminar at Waterloo University in 1968, as distinct from that of

O. Wyler in [75].
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162 C. B. Jay

This paper is primarily a summary of [6], though there are new

examples and the notation has been altered. Other generalisations of

equational categories may be found in [3],[4],[14] and [15].

Our chief purpose here is to characterise the operational categories

over some fixed category A . This done by constructing a tower of triples

S based on Cat/A with a limit 5A-Alg whose image in Cat/A consists

of exactly the operational categories and operational functors. In the

process it is proved that there is a fixed, finite theory, from which

every category of operational algebras can be constructed. This allows it

to be shown that categories of algebras for props (MacLane 1111) are also

operational.

I would like to thank Professor J. Lambek for introducing me to

operational categories and the problem of their characterisation, and also

Professor G. M. Kelly for showing me how to present mathematics clearly,

yet concisely.

1. Operational categories

Let U be a Grothendieck universe. All categories used here will

have their set of morphisms in U and the category of these is denoted

Cat . Fix a category A . In some examples there is an element V of U

which is also a Grothendieck universe with A being the category of

V-small sets.

A presentation, (9,#) , consists of a theory 9 : 8 -»• T , by which is

meant a functor that is bijective on objects, and a functor H : A x B -»• C

called the base functor. A morphism of presentations

(J,k) : (_6,tf) •*• (9',ff') consists of j = (j^jj where j'x : 8
1 -» 8 and

j_ : T' -*• T are functors such that 6,7' = J26' • and a functor k : C •* C'

such that kH{\ x j ) = H' . Together they form a category Pres(A) .

We define as follows a functor Op(.A) : Pres(A) -»• Cat/A: it sends a

presentation LB ,H) to U : V -»• A given by the pullback (1.1) where H

corresponds to H , and sends a morphism of presentations to the induced

functor between the pullbacks. An object U -. V •* A of Cat/A ,

identified loosely with the category V , is called a category of

operational algebras if it is the image under OpCA) of some presentation,
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[T,C]

(l.D [8,1]

•+ C8,C]

and it is called an operational category if it is equivalent in Cat/A to

some category of operational algebras. A morphism in Cat/A is an

operational functor if it is equivalent to a functor in the image of Op(A).

Note that Op(A) is neither full nor faithful.

8 may be thought of as a language, the objects being sorts and the

morphisms operations, into which new operations and equations may be added

via 9 . Then H* maps each object of A to an interpretation of 8

in C , and the algebras extend these interpretations of the language to

models of the theory.

For notational convenience, if u) is a morphism of T , that is an

operation, then O.yo may be written as un .

EXAMPLE 1.1. Let N be a skeleton of the category of finite sets so

that N is the language of (one-sorted) finite products and let

K : Set * N " •*• Set be the restriction of the homfunctor. Consider a

category T with finite products and a theory 8 lying in [N ^,7]

(the category of product-preserving functors from N°P to T) . Then the

resulting operational category is the category of algebras for the Lawvere

theory, namely CT, Set]

EXAMPLE 1.2. Let S be the category of V-small sets for some

universe V in U . If A is an S-category, with homfunctor

H : A x A P •*• S and 9 e [A°^,T] then the resulting category of

algebras is equational in Linton's sense.

EXAMPLE 1.3. Given any natural transformation a : F =» G : A •*• B , let

Inv(a) •+• A be the full subcategory of A of objects A for which a
A

is an isomorphism. Then Inv(ot) -*• A is operational. The theory is the

inclusion of the arrow category $ into the chaotic category on two
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elements. The base functor is H : A x 2 -»• B with H A = a^ . For

example, if a is the unit for the reflection from presheaves to sheaves

on some site then Inv(a) is just the sheaves. Also, given a limit (or

a family of limits) in K and a complete category L then the functors

from K to L which preserve the limit (or limits) form a full

operational subcategory of [K,L] .

LEMMA 1.4. If U: V -»• A is a category of operational algebras then

U is faithful, reflects isomorphisms and creates coequalizers of U-split

pairs.

Proof. Let V have a presentation (_6 ,H) . Since 9 is bijective

on objects, [8,1] has the desired properties, and these are preserved by

pullbacks. D

LEMMA 1.5. Let U : V •* A be a category of operational algebras.

Then U°p : ifp + kop and [/,£/] ; [/,0] -»• IV,K] as well as the pullback

of V by any A1 -»• A are all categories of operational algebras.

Proof. B°P and J x 6 as well as 9 are all bijective on

objects. D

Lemma 1.4 together with Beck's Tripleability Theorem ([12]) yields

the following result.

THEOREM 1.6 (Lambek). !/:P+A is tripleable if and only if U is

operational and has a left adjoint. •

Conversely, if V has and U preserves pullbacks then U is

operational if it creates coequalizers of f-split coequalisers

(see [6]).

2. Operational retracts

Let (8,ff) be a presentation and U : V -*• A the resulting category

of operational algebras. Consider a diagram in A of the following

type:
X

(2 .1) A ^ UD .
y

For each morphism a in T define <j>w by
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( 2 . 2 ) <f>u = jJ

LEMMA 2 . 1 . <j> is a functor from T to C if and only if

H(yx,l) = 1 and for each composite u ' u of morphisms in T

(2.3) H(y,l).^.H(xy,l).^D.H(x,l) = H(y ,1) (u'u)

Further, if § is a fimctor then (A,§) is an algebra.

Proof. H(yXjl) = 1 if and only if <(> preserves identities and <j>

satisfies (2.3) if and only if it preserves composites. For the second

statement note that if H(yx,l) = 1 then <j>8 = H(A,-) . •

In the light of the above proposition we define a diagram (A,y,D,x)

as in (2.1) to be an operational retract if H{yx,l) = 1 and (2.3) holds.

Then (2.2) defines an algebra structure for A .

EXAMPLE 2.2. Let U : V -*• A be a category of operational algebras.

Given a £/-split coequalizer diagram in A

U

t

with

y.Uf = y.Ug

yx = l
(2-4) uf.t-i

Ug.t = xy

then Lemma 1.4 implies that (A,y,D,x) is an operational retract. (It is

instructive to prove (2.3) directly from (2.4).)

LEMMA 2.3. Let U : V •* A be a category of operational algebras and

(A,y,D,x) be an operational retract determining the algebra {A,§) . Then

(i) If y = y'.Vf for some f : D + D' then (A,y',D',x') (with

x' = Uf.x) is another operational retract determining (A,§) .

(ii) If D is the algebra determined by some operational retract

(A'jy',D';X') then (A,yy',D',x'x) is another operational retract

determining (A,$) .
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Proof. For (i) note that the components of the natural transformation

are given by H(Uf,l) and so

H(y,l).oiD.H(x,l) = H{y' ,1) .Spf.tjj

= R(y' ,l).^D,.Hlx
> ,1) •

The proof of (ii) is trivial. 0

Given an arbitrary functor U : V -*• A , then there are some retracts,

namely the shuffle retracts defined below, which are forced to be

operational retracts if V is an operational category.

Let U : V -s- A be an object of Cat/A and let = be the smallest

equivalence relation on diagrams in A of the form

A _£_+ UD -M-+ A'

such that (yUf,D,x) = (y,D' ,Uf.x) where / : D ->• D' in V . This is

called a right shuffle of f over D . (The equivalence classes may be

thought of as the connected components of an appropriate category of

functors.) Similarly let s be the smallest equivalence relation on

diagrams in A of the form

A X •> UC —Z-+ UD V -> A'

iz^Uz' in general) such that if (z,D,x) = {z',D',x') then

(y.C,z,D,x) = (y,C,z ',£>', a;1) and if {y.C.z) = (y',C',z') then

(y,C,z,D,x) s (y' ,C ,z' ,D,x) Chere shuffling occurs over C and D ) .

The (.1-)shuffle retracts are those retracts (y,D,x) such that

(y,D,xy,D,x) = (y,D,l,D,x) . The domain of x is called the domain of the

retract. A C1-) shuffle morphism between shuffle retracts from (y,D,x)

to (y' ,D' ,x') is a morphism f : dom x •+ dom x1 such that

ify,D,x) = (y'.D'.x'f) .

Define S^ : Cat/A ->• Cat/A as follows: S,V is the category of

shuffle retracts and shuffle morphisms with S U :S V •> A sending shuffle

retracts to their domains and shuffle morphisms to themselves as morphisms

of A . Given G -. V -*• V' in Cat/A , S^ty.D.x) = (y,GD,x) and

S^Gf = f . S± underlies a triple (.Ŝ .n,̂ ) with unit n-n : Q -> S^V and

multiplication p^ : S/D -»• S-.V given by
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and

(«/', {y,D,x),x') I >• (y'y,D,xx')

f\ * f
respectively. The proof that the triple is well-defined may be found in

[6]. A typical S.-algebra will be denoted (V,dQ,d~) where

d = U : V -> A and d, : S..V -> V is the structure map.

If V is operational then the shuffle retracts are operational

retracts and V is an S_-algebra. Not all S.-algebras are operational,

however: let (V,d ,d~) be an S.-algebra such that (y,D,x) and

(j/',D',x') are shuffle retracts with d.{y',D',x') = D . Then in general

it does not follow that (yy',D',x'x) is a shuffle retract, and so by

Lemma 2.3Cii) not all operational retracts are 1-shuffle retracts. In an

effort to obtain this property we enlarge our equivalence relations.

Given an S^-algebra (,V,dQ,dj) , let = be the smallest

equivalence relation containing = such that if (y,D,x) is a shuffle

retract with d±{y',D',x') =D then (yy',D',x'x) =2 (y,D,x) . The

definition of B is the same as that of 1 with =• replaced by = . B y

replacing = and s by = 2 and = respectively, we obtain

definitions of 2-shuffle retract, 2-shuffle morphism and of a triple S

on 5,-Alg. The S.,-algebras are not all operational either since the

closure problem revealed by Lemma 2.3(ii) remains. Iteration of this

process yields for each n a triple S . on 5 -Alg for all finite n .

Let 54-Alg be the limit of the S -Alg with their forgetful

functors Un : 5^-Alg -»• S^^-Alg tand 5Q-Alg = Cat/A) . Then the

objects of SA-Alg are CP,Wn>) where, for each n , (P,dQ,dll... ,d )

is an S -algebra and the morphisms are those functors which are S -

homomorphisms for each n . The induced forgetful functor

https://doi.org/10.1017/S0004972700003038 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003038
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u* : S*~A1<3 -* Cat/A has a left adjoint Ft with U^F* = 5 . Since

differs from S^-Alg i t follows that U^ is not tripleable.

Clearly, all operational categories are 5^-algebras and there is a

commuting triangle

Pres(A)

In turn, i t will be shown that 5^-algebras "are" operational categories

by constructing a right inverse for E . The presentations thus

constructed will all employ the same theory, 9. .

3. The characterisation theorem

DEFINITION 3.1. The standard theory 8 : B -*• T is given as

follows: 8 is freely generated by the graph

and T is generated by
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and t h e e q u a t i o n s

guioc = y

B ' u ' a 1 = y'

w'co = 1

cow1 = 1 .

8. is the inclusion. (See [2] for a construction of a category from a

sketch). PresQ (A) is the subcategory of Pres(A) with the objects of

the form LQ0,H} and morphisms (J,k) where j is the identity.

THEOREM 3.2. There is a right inverse M for E factorising

through Pres. (A) such that Op (A).A? = y*. Consequently, the following

are equivalent:

(i) U : V -*• A is operational,

(ii) U : V -»• A underlies an S^.-algebra,

(iii) U : V ->- A is operational with respect to 8Q .

Proof. For each 5A-algebra a base functor will be constructed.

Other details may be found in [6]. Firstly, for any U : V -> A in Cat/A ,

define CD by the pushout (in Cat )

1x6,.
0 PxT

-+ CD
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(Note in passing that 0pn (A) has a left adjoint, whose value at V is

(6 ,H ) , though Op(A) never does.)

CD may be generated by the following sketch: each object A in A

yields a copy of 8Q in A x 8Q whose image in CD is written

Since 1 x 6 is bijective on objects, H. is and so all objects of CD

are of the form A- . Each object D of V yields a pair of inverses

to and u)1 in CD pictured as follows:

where A = UD . They also satisfy the equations

lA°'Da'A

Given f : A -> A' in A we have /. = H {f,B.) :A. -> A', for each i .
u \J "L 1* %•
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The f.'s compose as they do in A and commute with the morphisms from

BQ , for example f o^ = a.,fQ . Given / : D •* D' in V then Uf has

the additional property that (Uf) u_ = co_,(Uf). and similarly for to'

S.P is given by the pullback

Now when (V,{d }) is an S^-algebra we define q. : CO •*• C-.V to

the quotient of CO given by imposing the relations

be

whenever D' = d (y,D,x) for some n-shuffle retract. Then

is a pullback (where H. = qJlQ) as required. D

Note that M is not left adjoint to E and S*-Alg is not

equivalent to Pres_(A) .

4. Props

We may ask that our presentations have some extra structure, say, a

monoidal structure or that of finite products, and perform our

constructions, not in Cat , but in some other appropriate category, say,

the category of symmetric monoidal categories and strong symmetric

monoidal functors, denoted StM . Below we examine the monoidal case
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(see [5] for terminology), in which props (MacLane [/I]) become examples

of theories. In this paper all monoidal categories and functors are

assumed symmetric.

Denote by StM(B,C) the monoidal category of strong monoidal

functors from B to C and let (") : Cat •* Stm be the left bi-adjoint

([7 31) to the forgetful functor, with unit n : C •> C .

A monoidal presentation (9jff) consists of a prop 9 , by which is

meant a strong monoidal functor 6=(9,6,9):8->-T in which 9 is

bijective on objects, and a (strong monoidal) functor

H = ih.h.h0) •. A -»- Stm(8,C) .

PROPOSITION 4 .1 . Let (9,ff) be a monoidal presentation. Then there
is a pullbaak

-* StM(T,0

StM(9,l)

StM(8,O

in StM and U = (u,u,u ) •. V -*• A is strict.

Proof. I t i s well known that StM has al l pseudo-limits (as
defined in [7]) . The pullback u : V •*• A of StM(9,l) by h in Cat
i s equivalent to a subcategory of the pseudo-pullback determined by the
presentation. The result follows. D

A s t r i c t monoidal functor U : V •*• A arising from a monoidal
presentation as above is called a category of prop algebras. Any category
equivalent to such a category of algebras i s called proppable.

EXAMPLE 4.2. Let P be a skeleton of 1 . I ts objects may be
identified with the natural numbers and

Pim.n) =
m i- n

m - n

where P is the permutation monoid on n elements. On objects the
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tensor i s given by addit ion. Let 6 : P -> T be a s t r i c t prop. Then T

i s a prop in MacLane's sense ( [ / ! ] ) . Let A be a monoidal category.

Define H = {h,%,h°) -. A •* StM(P,A) by (hA)n = AU = A 8 A ® . . . ® A

(n times) and (hA)a i s the composite of symmetries which permutes the

A's in (hA)n according to a , together with the obvious choices of h

and hu. Then V = StMCT,A] i s proppable in Barr ' s sense ( [ / ] ) .

Note that the following square (whose horizontal maps are the

inclusions)

StM (T,C) • LT,C1

StM(6,l) [6,1]

StM(B.C) • [S,C]

is not a pullback. Thus, i t is not immediate that proppable categories

are ope rationa1.

THEOREM 4.3. The following are equivalent:
(i) U •. V •> A is proppable,

(ii) U is strict monoidal and operational,
(iii) U is proppable with respect to 6 .

Proof. (iii) => (i) is trivial.

(i) =» (ii) : U i s s t r i c t monoidal by Proposition 4.1 and straight-
forward verification shows that V i s an 5^-algebra. Now use
Theorem 3.2.

(ii) =* ( i i i ) : Without loss of generality assume that V i s a
category of algebras with presentation (QQ,HQ) as in the proof of

(ii) °* (i i i) in Theorem 3.2. H does not underly a monoidal functor.

This problem is overcome by choosing a Cj) and

Q- = (q2,q2,q2) : C^V -*• C^O with the following property: there is a

strong monoidal functor H = (h ,h ,hy) such that h = qH and for any

monoidal category 1/ , StM(C2P,f) is equivalent to the full subcategory

of StM(C V,V) of monoidal functors R = (r,r,r°) such that rE
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under l i es a strong monoidal functor. Then, as in Theorem 3.2, we have the

pullback

StM(FQ,l)

StM(B0,C2P)

showing that V is proppable over A . D
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