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ON A THEOREM OF NIVEN 
BY 

ROBERT E. DRESSLER 

Introduction. In [3], Niven proved that for any positive integer k, the density of 
the set of positive integers n for which (n, (cp(n))<k is zero (where q> is the Euler 
to tient function). In this paper, we prove a related result—namely if k and y are 
any positive integers, then the density of the set of positive integers n for which 
(n, <fj(ri))<k is zero (where aô{ri) is the sum ofthe/th powers of the positive divisors 
of ri). We will borrow from Niven's technique, but we must make some crucial 
modifications. 

Before we prove the theorem, we recall the following formula. 

(#) ofr) = IT (Pej+P{e-I]i+ ' * • +jp'+l) 
Vel\n 

THEOREM 1. For any positive integers k and j , the density of the set of positive 
integers nfor which (n, <fy («))<[ ft is zero. That is, ifAjk(m) is the number of positive 
integers n not exceeding m for which (n, (7;(«))<£, then l i m ^ ^ Ajk(m)lm=0. 

Proof. We use the following two results of Niven [3]. 
(1) For any fixed positive integer b, if {/?J is a set of primes for which ^p'T1= oo, 

and if Tis any sequence whose members are divisible by at most b of these primes 
only to the first degree, then d(T)=0 (where d(T) denotes the density of T). 

(2) For a sequence T of positive integers, let Tv be the set of elements of T which 
are divisible by p but not by/?2. If for a set of primes {/?J we have d(T3))=0 for 
for every / and if 2 / ? 7 1 = 0 o , then d(T)=0. 

Since finite unions of sets of density zero are also of density zero, it suffices to 
prove that the density of the set T of positive integers n such that (n, (T5(«))=A: is 
zero. With r defined so that 2r \\j, we define a set of primes {/?J by 

{p.} = {P; p * k and p = 1 (mod 2r+1)} 

By Dirichlet's Theorem, 2i 7 7 1 = = 0 ° anc* so> by (2), it will suffice to show that 
d(T9)=0 for each i. 

Choose an i, and recall (cf. [2, Theorem 4-13]) that the congruence xj= — 1 
(mod/?;) is solvable if and only if (— i)<»<-i>/* = l (mod/?;), where rf=(/,/?t— 1). 
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Since 2 | (/?;—\)jd, it follows that the congruence xj= — 1 (mod/?t) has a solution, 
ti. Let {#J be the sequence of primes of the form ypi+t^ 

Now any member n of Tv can be written n=mpi9 where (m,/^) = l. Also, 
(ctj(m),pi)=l because otherwise/^ | cr^w), whence^ | cr^/i) and so/?,-1 («, (^(w)), 
which is a contradiction of the definition of pi% Thus any prime divisor of m which 
divides m only to the first degree cannot, by (#), be a member of {q8}. For if so, 
<*j(m) would have a factor ^ + 1 = ( ^ + ^ + 1 = ^ + 1=0 (mod/?,), whereas we 
know (GjQn),pt)=l. Since by Dirichlet's Theorem ^,q71=c°, it follows from (1) 
that the set of permissible values for m has density zero. Thus d(T3))=0 and we 
are done. 

Finally, we have the following result. 

THEOREM 2. For any positive integers k and j , the density of the set of positive 
integers nfor which (cp(n), aj(n))<k is zero. 

Proof. If co(m) is the number of distinct prime divisors of the positive integer m 
and £l(m) is the total number of prime divisors of m, then it is known that the 
density of the set of positive integers m satisfying both 

(1) i log log m < co(m) < f log log m 

and 

(2) i log log m < Q(m) < f log log m 

is 1. (cf. [1, Theorem 431]. 
From (1) we see that the density of the set of positive integers m satisfying 

(3) co(m) > 2k 

is 1. Also from (1) and (2) we see that the density of the set of positive integers m 
such that 

A Q(m) 3 
(4) i < - 7 - ; < -

co(m) 2 
i s l . 

Since the density of the set of positive integers m satisfying both (3) and (4) is 1, 
it follows that the density of the set of positive integers m having at least k odd 
prime divisors which divide m only to the first degree is 1. (If co(m)>2fc and m 
has less than k odd prime divisors which divide m only to the first degree then 
Q,(m)lœ(m)>3/2.) For these m, 2k \ cp(m) and 2k | a^m) and so (cp(m), crJ(m))>Â:. 
Thus the density of the set of positive integers n for which (cp(n), ctj(n))<k is zero. 
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