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A LIMIT THEOREM FOR BROWNIAN 
MOTION IN A RANDOM SCENERY 

BRUNO REMILLARD AND DONALD A. DAWSON 

ABSTRACT. We find the limiting distribution ofl/an Jjf V(BU)du,t G [0,1 ], where 
{Bu}u>o is the standard Brownian motion on Kd, V is a particular random potential 
and {an}n>i is a normalizing sequence. 

1. Introduction. In Kesten and Spitzer (1979), the authors studied among other 
things the limiting behavior of 

(1.1) Wn(t)/an=l/an £ &4, f € [0 , l ] 
0<k<nt 

where {Sk}k>i is the symmetric nearest neighbor random walk on Zd, {^a}aezd a r e 

i.i.d random variables independent of the random walk and normalized in such a way 
that E(£a) = 0 and E(&) = 1. 

They proved that when d—\ and an — n3/4 or when d > 3 and an — n1/2, Wn(-)/ an 

converges weakly to a self- similar process; moreover the process is Gaussian if d > 
3. The only open problem left was to study the case d = 2; it was conjectured that 
an — («logft)1/2 was the appropriate normalization and the limiting distribution was 
Gaussian. 

In this article, instead of considering Wn as defined by (1.1), we study the following 
process 

rnt 

**(') = Jf0 v(Bu)du, re [0,1], 

where { Bu}u>o is a Brownian motion independent of the random scenery { £a }aez
d ancl 

V(x) = ti[x+u],x G Kd, where [x] — i\x\\..., [xd]), [•] being the integer part and U is 
uniformly distributed over Tj = [0,1 )d; it is also assumed that U, {Bu}u>o and {ia}aezd 

are all independent. 

REMARK. Let (7\£ )a = £*+« ,k,aeZd and define 

T*(£,u) = (T[X+U]£,x + u — [x + «]), x G Rd,u G 7^. 

If V is defined by V((£, uj) = &, then V(x) takes the form V(x, £, U) = V(rx(^, [/)), 
and it is easy to prove that rxory — rx+y and the joint law /x of (£, U) is stationary and 
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ergodic with respect to {rx}xe^d. Moreover the process {TB,(£, U)}t>o is a reversible 
Markov process and /x is an invariant ergodic measure for the process. 

The main result of this paper is that Xn{-)j\jn\ogn converges weakly to a suitably 
scaled Brownian motion in the open case d—2. The proof that the conjecture of Kesten 
and Spitzer is true follows in an analogous way. 

The study of the asymptotic behavior of So V(Bu)du is motivated by the fact that this 
process plays an important role in the study of large deviations for diffusion processes 
with random coefficients (cf. Dawson and Remillard (1989)). 

In Section 2, we prove the following Theorem. 

THEOREM. Let (£2, f ,\i)bea probability space, { ik}kezd be *• i-d random variables 
with mean 0 and variance 1, U a random variable which is uniformly distributed over 
[0, \)d — Td and independent of{ £*; A: G Z d}. Further let P be the Wiener measure over 
X = C([0, oo); Kd) starting from 0 at time 0. We write Bt to designate the canonical 
Wiener process; in the following *Ŵ2 stands for the law of oB. 

SetVQc) = £[X+u],x£ WLd,Xn(t) = $V{Bu)du,ne N,f € [0,1]. Then under P<g> /i 
a) Case d — 1: Xn/ n3/4 => Z e C([0,1]; R) where Z has the following represen

tation: Z(t) = Jo° lt(x)dZ\(x) + JQ° l>t(— x)dZ2(x), where B,Z\,Z2are3 indepen
dent 1-dimensional Wiener processes and £t(-) is the local time of B i.e. 

f lA(Bu) du= [ lt(x) dx, A e #(R ), t > 0. 
JO J A 

b) Case d = 2: P <g> /x o (Xn/ ^n\ogn)~l => Wl/lT on C([0,1]; R) 
c) Case d > 3: P <g> /i o (Xn/y/n)'1 => ^ 2 on C([0,1];R), where aj = 

h* ^ifd(x)dx mdfd(x) = n ( l ^ a ) , * e R d . 

2. Proof of the theorem. 
PROOF. Let X(t) = Jo V(BU) du, t > 0, and let a2(t) = E(X2(tj), where £ stands for 

the expectation with respect to P <g> \i. Then 

(2.1) £(X(0) = 0 W and a2(0 = 2 f f E(V(BU)V(BS)) du ds. 

Now for JC, j G Z d 

E(V(x)V(y)) = E(V(0)V(y-x)) = E(^0^X+U]) = 

/R d l[.]=oV*+M]=o^ = hd(y-x) = jKde
i<x>y-x>fd(\)d\, 

where /^ is defined in (c) above and 

d 

hd(x) = H(l - |*i|)l{|*.-|<i}. d > 1. 
1=1 
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Therefore 
a2(t) = 2 fJSJKdE{ei<x^-B^)fd(\)d\ duds 

- 2 / o 7 o 7 a ^ " ^ ( A ) J A J w ^ 
Next lim^oo a2(t)/1 = +00 if d = 1,2 and lim,-^ ^ = a j , a2

d = JRd pfpr/̂ A ) d\ G 
(0,00) when d > 3. Adapting a result of Kipnis and Varadhan (1986), we obtain c). 

Next a) follows from an adaptation of the results of H. Kesten and F. Spitzer [1979], 
so we only indicate how to prove it. 

PROOF OF a). By stationarity 

E((Xn(t)-Xn(s))2/n3'2} = 

where lt(-) is the local time of B. 
From the scaling property of B,E[n~3/2£2

t(x)) = -j^E[£2(x/ y/n))91 > 09x G R. 
Hence 

Ei^XnW-Xnis))2 jn*'2) <E[JK lfa(x)dx) = |f-s |3 /2Z<(/R *?(*)<&) 

It follows from Billingsley (1968) that { P 0 / i o (X„/ n3/4)"1 }n>j is tight. 
Next 

P®li(supJ+ Hnt(x + u)du> e « 3 / 4 ) - > 0 Vf G [0,1]. Pi 

It follows that for every 0 = to < h < • • • < tm < 1 and c*i • • -, am G 

Jjm£(exp{/f>;(^ 

= ^ e x p { - i / R ( Ç a X ^ ( x ) - V . W ) ) 2 ^ } ) 

which completes the proof. 

PROOF OF b). Set a(t) = (tlogt)1/2, t > 2, and let/?,(£) = Jg l[Bs+u]=kds. Further 
let 0 (t) = Ytkez2 P2(^X t > 0- From now on we will write P and £* instead of P 0 /i and 

& G Z 2 • 

Assume 

A 1 : l ima 2 (0/f l 2 (0= ~ 
t—>oo 7T 

and 
A2: \im E(02(t)/a\tj) = \ , and therefore E(02(t)) < ?a(t) 
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where a is increasing and a(t) ~ ^ (logf)2, which means lim,-^ -^—^ — ^ . Then 

(2.3) {P o [Xnl a(n))~l } ^ 2 is tight (in C[0,1]; R ) 

and 

(2.4) lim E(e1^ "faw-x^)/«»A = e~^ ET=i «/(*-*H) 
«—•00 V / 

for any 0 = r0 < f i < • • • < tm < 1 and a7 G R. 
Clearly (2.3) and (2.4) are equivalent to b). So suppose that Ai and A2 hold. To prove 

(2.3) it suffices to prove (cf. Billingsley (1968, Theorem 8.2)) 

(2.5) limlimsupPf sup \Xn(t) - Xn(s)\ > 3y/2ea(n)) = 0 Ve > 0. 

0<t-s<6 

Put 

A(n,e96) = ( sup "£tHpnt(k) -pns(k))2 < e2a\n)\ 
1 0 < s < K l k ] 

0<t-s<8 

and set m = [1/5]. Let w > 0 be given and set ^Ku = ^{\^\<u},Ck,u = £* —£*,i«. Since 
pt{k) is increasing in t for fixed /c, 

/>(A(rc,e,£)c) 

< P( sup E^2(Pn(^)(fc) -P«(fc))2 > e2a\n)) 

m—1 , 2 \ 

< ZP{Z^{Pn(j+2)s(k)~p„jè(k)) > eV(n) . 
7=0 K k ' 

By definition Q = Ç £, + <& and £(£<„) < «4. Therefore 

(2.6) P(A(rc,e,S)c) < —JL—E(0\2n6)) + _ a 2 (2^ )£ ( (^ ) , 

where we have used Markov's inequality in both terms and the stationarity of £[u+Bt],u 

mdC[u+Bt],w 

It follows from (2.6), A\ and A2 that 

(2.7) limsupP(A(n,e,6)c) < 16w4<5/eV + - ^ E ^ ) 
rt—KX) 7T C 

for every è G [0,1] and w > 0. 
Let 6 —• 0 and then u —• oo in (2.7) to verify that 

limlimsupP(A(n,e,5)c) - 0. 
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Now suppose that \>6>t — s>0. Then since X(t) — £* ikPt(k), 

P(A(n,e,6)n {\Xn(t)-Xn(s)\ > V2ea(n)}) 

P(E^j(pnt(k)-PnS(k))(pntU)-Pns(j)) > c V w ) <_ _ 

< 
e 
T T r A fe tâj{pn,(k) ~ Pnsikj) {Pnt(j) - Pns(j)))2) 

a \n) V \^j J J 

2 _<^. , ,^ , 2\t-s\2 

-—-E(e\n\t-s\))< ' 4
l CnmdCn^l/7r\byA2. 

It follows from Billingsley (1968) that 

K Ô2 

limsupP(A(«,e,^)n { sup \Xn(s)-Xn(j8)\ > >/2ea(n)}) < - \ -
n—>oo jS <s<(j+l )6 e 

for some finite constant K\ (ind. from 8 and e). Combining the last inequality with 

limlimsupP(A(«,e,<5)c) = 0 

we get (2.5) thus completing the proof of (2.3). 
i _Mi We will now prove (2.4). Set Yn = supkpn(k) and qt(x) = j^e * . Clearly 

P(Yn >e)< (Cfl(/I))"'E^(PÎ(*)) 
k 

< (ea(n)) Jj\ f I qtl(x2 - xx) - • >qtj-tj_x{xj - Xj-X)dxdt 

where 
Sn = {0<h<---<tj<n}. 

Define h{t,x) =• STlqt(y — x)dy, x £ T2,t > 0. By elementary calculus h(t,0) < 

h(Ux) < h(t,x0)Vx e r2, where x0 = U, \). Therefore p(Yn > e) < (ea(n))~Jj\ 

n(joh(t,xo)dt) . Now h(t,x0) < 1 and for large t h(t,xo) ~ ^ so $Qh{t,xo)dt ~ 

2^1ogn. Choosing j = 3, we get limn_^00P(y„ > e) = 0 Ve > 0. Using this and 
Ptih) < /?„(£) V0 < t < n, k G Z2, we can prove easily that 

lim 
n — • o o 

= 0 

where 

X„ = 
1 _m_ 1 m 

'n = -T-Z<Xj{Xn(tj)-Xn(tj-l)),Zn(k)= — - £a,(/>w/*)-/>„,,_,(*)), 
<2 W y= l # W y= l 

and 0 = ô < î < • • • < m̂ < 1, a, G R are fixed. Therefore (2.4) will follow if we can 
prove that 

p 1 m 

£2*(*)-^-£<*/(*,-*,_,). 
k ^ j=\ 
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Suppose that t > s > 0. By stationary o\t - s) = E((X(t) - X(sj) J, so 

E(T,kPt(k)Ps(k)) = \{o2(t) + CT2(S) - a2(t - sj) and it follows from A\ that 

E(pkPnt(k)pns(k)) ~ ±a\n).Thus 

0 < E{^~^ J2{Pntj(k) - PntM(k))(pntt(k) ~ (*)))-> o 

whenever j ^ t, and 
1 m 

£ z * ( * ) - > - £ « / ( ' y - - ' i - i ) 

in probability since E\ ( ^ Zk(pnt(k) -pns(k))2 - £(f - s)j J —> 0 by A2 and station-

arity, 0 < s < t < 1. This completes the proofs of (2.3) and (2.4) assuming that A\ and 
A2 are verified. 

PROOFOFAi. By(2.1),(2.2)a2(0 = 2 So Jo JR2 h2(x)qu(x)dxduds, and /i2 has com
pact support. Since gM(-) ~ ^ uniformly on compacts, it then follows easily that 
a 2 ( f )~ Mogf. 

PROOF OF A2. Since 0 (?) does not depend on { ^ } , let us suppose that ^ is Gaussian 
with mean 0 and variance 1. Then a simple calculation yields £(#2(0) = \E(x4(t)) = 
8(Ci(r) + C2(0 + C3(0), where St = { 0 < 51 < • • • < s4 < t} and 

C\(t) = E /P Lr,*(Is2-si(x2-Xi)qs3-s2(x3+k-X2)qS4-s3(x4-X3)dxds 
jç Jst J{T2y 

Ciif) = E L L ^ fe-*i(*2 + k - xi)^3_52(x3 - & - ^ ^ - ^ ( ^ + k - x3) dxds 
k Jst J(T2r 

^3(0 = E L L ^ fe-^ife + * - *i)^3-52(*3 - ^2)^4-53(^4 - & - x3) dxds 
iç Jst J(T2r 

Since h(t,0) < h(t,x) < h(t,xo) t > 0,JC G T2,x0 = (5, 5) , we get J5f /ife — 

s\, 0)/z(s4 — 53,0) ds < C\ (t) < Y ( JQ /I(S, JCO) ds ) , and we can easily check that C\ (t) ~ 

3 ^ (log t)2 and Jg h(s, x0) ds ~ ± \og u 

Using Cauchy-Schwarz inequality, we get 

C2(t) < J^(]T^^-52fe ~k-x2)dx2dx^j . 

.V2 
( E j{Ti)2 iX-si(*2 + k-xi)dxx dx2j 

( f \1/2 

( E 7 ( r 2 ) 2 ^4-53(*4 + * - *3)dx3 dx4)) ds. 

V f q*t(y + k-x)dxdy= [ qi
t(y)dy=— - r , j > 1. 

Y w w y i^HtKy) y j(27Tty-1 J~ 

k 

Now 
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By elementary calculations we obtain C2O) < ^C2 for some constant C2 and similarly 
/ x l / 2 

C3W < C3t
2d3(t), where d3(t) = Jg( J(r2)

2 q2
s(y - *)<&d)M ds ^ ^ l o 8 ' - Hence we 

can conclude that E(Q2{t)\ ~ ^(flogf)2 and £(02(O) < ^ « ( 0 for some increasing a 

such that a(r) ~ ^ (log 0 which proves A2. • 

REMARK. 1° Since (2.3) and (2.4) depend only on A\ and A2, and not on the proper
ties of Wiener process, and also A\ and A2 depend only on the behaviour of qt(-), we see 
that we can replace { Cfclfcez2* Uand Bt by {(jc}kez> Uf = uniform on [0,1) andjc(f): sym
metric Cauchy process, and we can easily prove that X'(t) = JQ Ç[X(U)+U'] du has the same 
limiting distribution as X(t) i.e. Xf(nt)/ <Jn\ogn converges to some Wiener process. 

2°: Borodin (1980) has proved a more general result than our Theorem when Bt is 
replaced by a symmetric random walk on Z2. 
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