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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLOCAL
AND NONVARIATIONAL ELLIPTIC SYSTEMS

YUJUAN CHEN AND HONGJUN GAO

In the paper we prove a result on the existence of positive solutions for a class
of nonvariational elliptic system with nonlocal source by Galerkin methods and a
fixed point theorem in finite dimensions. We establish another existence result by
the super and subsolution method and a monotone iteration.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the positive solutions for a class of elliptic system with
nonlocal source:

(1.1)
u > 0, v > 0,

u = 0, v = 0,

x € Q,

xedQ.

where ft is a bounded domain in RN, N ^ 1, with smooth boundary dQ,pi > 0,
1 ^ O{ < oo and fi, i = 1,2, satisfy some assumptions to be stated below.

This system can be used to describe the steady-state solutions of parabolic systems
with a nonlocal source:

(1.2)

ut - Au = fi(x,u)\\v\\Z\, x 6 Q, t > 0,

vt - Av = f2(x,v)\\u\\ll, i£f i , t > 0,

u(x, t) = 0, v(x, i) = 0, xedQ, t> 0,

. u(x,0) = uo(x), V(X,0) = vQ(x), x£fl.

When fi,h are positive constants, system (1.2) has been discussed by Deng, Li
and Xie (see [4]). It was proved that if piP2 < 1 every nonnegative solution is global;
whereas if P1P2 > 1, and the initial data is sufficiently large, the nonnegative solution of
(1.2) blows up in finite time, and if the initial data is sufficiently small, the nonnegative
solution of (1.2) is global.
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Over the last few decades, many physical phenomena were formulated into nonlocal
mathematical models (see [2, 3, 4, 5, 6, 7] or references therein). The corresponding
steady-state solutions have been attached great importance. Compared to the existence
of positive solutions for elliptic problems, different techniques (variational methods,
degree theory, fixed point theory, sub and supersolutions, Galerkin methods, moving
hyperplane methods, et cetera) have been used (see for instance [2, 3 , 4 , 5 , 6 , 7]).
However, to the author's best knowledge, there is no literture on system (1.1). Since
the system (1.1) has no variational structure, it is worthwhile to recall some of related
nonvariational methods.

In [1], Alves and de Figureiredo used Galerkin methods and fixed point theorems
in finite dimension and proved the existence of solutions of the local semilinear elliptic
systems

- Au = aua + f(x, u, v),

- Av = W3 + g{x, u, v),

in a bounded domain with homogeneous boundary conditions.
In [3] Correa studied the problem

- a l l \u\

with homogeneous boundary condition. To prove the existence of positive solutions,
the Krasnoselskii fixed point theorem has been used in the unidimensional case and the
Schaefer fixed point theorem in the multidimensional case.

In [2] Correa, Silbano Menezes and Ferreira used fixed point theorems and index
theory to establish a positive solution for the problem

-ail \u\\bu = f{x,u).

Furthermore, they proved another existence result by using sub and supersolutions
without monotone iteration, and relying heavily on a comparison principle and the
Schaefer fixed point theorem.

The purpose of this paper is to study the existence of solutions of (1.1) in two cases
via

(a) Galerkin methods
(b) super and subsolution techniques,

respectively. Our work is motivated by [1, 2, 3, 6]. From the viewpoint of physics, we
are considering the positive weak solutions. We shall use the following definition of the
weak solution for (1.1).
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D E F I N I T I O N 1.1: We say a function (u, v) 6 HQ(Q) X HQ(Q.) is a weak solution of

(1.1) provided

/ VuVwdx = \\v\\^\ / fi(x,u)wdx,
Jn Jn

/ VvVwdx = \\u\\?l / f2{x,v)wdx,
Jn Jn

for all w
This paper is organised as follows. In the next section, we use Galerkin methods to

establish an existence theorem for the solution for system (1.1) when N ^ 3, 0 < pi < 1,
1 < at < (2N)/(N -1) or N = 1,2, 0 < pi < I, 1 < a* < oo, i = 1,2. In Section 3,
we established another existence result for (1.1) by making use of super and subsolution
techniques and where the monotone iteration is used. When fc (i — 1,2) is bounded
and P1P2 < 1, we get a pair of super and subsolution of (1.1). Finally we consider the
special case <Xi = pi = 1, i = 1,2 and show the only probable solution is the trivial
one under some assumptions on / i , / 2 .

Our main results read as follows.

THEOREM 1 . 2 . If either the following (HI) or (H2) is satisfied, system (1.1) has
a positive solution.

(HI) / O 3 , 0<Pi < 1, Kai < (2N)/(N-2),

0 ^ £>! (x) ^ / i (x, u) < At (x) |u|ri + Bx (x),

0 < D2(x) < /2(s,t») ^ A2(x)\v\r* + B2(x),

Bi{x) € rtai)Kai-1), Ai{x) e i ( ° j ) / K - r ' - 1 ) I

Ti < min{l -pi, ctj — 1}, Di(x) £ 0(i = 1, 2), where ij — 2 and ij are
positive integers.

(H2) N =1,2, for i = 1,2, 0< pi <1, 1 ̂  at < oo.

THEOREM 1 . 3 . Suppose that fi(-,u) € C ( n x / 2 ) , /2(-,z;) £ C(H x i?) are
nondecreasing and Lipschitz continuous in u and v respectively. Assume there exists a
weak supersolution (u(x), v(x)) and a weak subsolution (u(x),v(x)) of system (1.1),
satisfying

(u(x), v(x)) ^ 0, (u(x), v(x)) ^ 0 on dQ in the trace sense,

(u{x),v(x)) ^ (u(x),v(x)) almost everywhere in Q.

Then there exists a solution (u,v) of (1.1), such that

(1.4) (u(x),v(x)) ^ (w(i), v(x)) ^ (u(x),v(x)) almost everhwehre in Q.
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Furthermore, if (u(x), v(x)) > 0 in fi, the solution of system (1.1) is positive.

THEOREM 1 .4 . In addition to the assumptions on f\,h of Theorem 1.3, we

assume further that 0 < mi ^ fi(x,u) ^ Mi, 0 < ro2 ^ f2{x,v) ^ M? in Q x R,

P1P2 < 1J then there exists a positive solution of system (1.1).

2. GALERKIN METHODS

In this section we show the existence of solutions for the system (1.1) via Galerkin

methods. The following Fixed Point Theorem is used (see [1] or [6, Chapter 9]).

PROPOSITION 2 . 1 . Let F : RK -4 RK(K e N) be a continuous function such

that (F(O,Z) > 0 on |£| = r. Then, there exists z0 € 5r(0) such that F(zQ) = 0.
Here {•,•) dentoes inner product of two vectors.

PROOF OF THEOREM 1.2: First, we shall study the existence for the solution of

the following systems

- Au = fi(x,U)\\V\\P,\ +\<j>, i € ft,

(2.1) -Aw = / a ( i , t ; ) | H | » + A 0 , x € SI,

u> 0, v>o, xefi

u = 0, v = 0, x € dQ.

where <f> € CQ°(Q.) is a fixed positive function and A is a positive parameter.

Let 2Z = {eii • • • , en, . . . } be an orthogonal basis of the Hilbert space HQ (Q) and

be smooth. For each m £ N define the subspace Vm = span{ei, . . . , e m } . It is well

known that (Vm, \\ • ||) and (Rm, \ • |) are isometrically isomorphic by the natural linear

map T : Vm -> Rm given by

(y) = f = (6, fa,

So |H| = |T(w)| = |£|, where | • | and || • || denote the usual norms in RN and Vm(Q),

respectively.

Consider the following function F : R2m —• R2m given by

F(£,v) = {Fi(Z,v),-.-, Fm(S,r,), Gi(Z,V), . . . , G m ( £ , 77)),

where

^ d x - | | « | | « f fi{x,u)eidx - x f fadx,
Jn Jn
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and

<?«(£,»?) = / VuVeidz - ||u||P2 I f2(x,v)eidx - X f fadx, i = 1, 2, . . . , m.
Jn Jn Jn

In the above definitions we are using the identifications

m
• u = ^ Sid and 77 H-> u =

i=l 1=1

Note that

, V), (t, 7?)) = ||«f - |M|S\ / h(x,u)udx

-X f 4>udx + \\v\\2 - | |u | |P | f f2(x,v)vdx - X f <t>vdx,
Jn Jn. Jn

and when AT ^ 3, we have H%{9) C Lq{ti), where 1 < q < {2N)/{N - 2). By (HI)
and the Holder inequality, we have

\W\l\ I fi(x,u)udx + \\u\\Pal f f2(x,v)vdx
Jn Jn

< \MZ\ I {M{x)\u\r^ + B1(x))udx + \\u\\p
a\ f (A2(x)\vp + B2(x))vdx

Jn Jn

Here and elsewhere, we may use the same letter C to indicate (possibly different)
positive constants. With ||(u,u)|| = ||u||2 + |M|2, we obtain

As of 0 < Pi + rj < 1 and 0 < Pi < 1, there exists a sufficient large p such that

(F(£,T]), (£,77)) > 0 on ||(u,u)|| = p (p is independent of m).

It follows from Proposition 2.1 that, for each m e N there exists (um, vm) e Vm x Vm

satisfying

(2.2) F(um,vm) = (0,0), \\(um,vm)\\^p.
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Then (2.2) implies

/ VumVwdx = \\vm\\^ [ h{x,um)wdx + A / (frndx, Vw G Vm,

f VvmVwdx = | |um||S| / f2(x,vm)wdx + A f (fnudx, Vw G Vm,

with ||wm||i ||vm|| ^ p, Vm 6 N. Let u,v G ^o(^) De ^ e weak limit of {um} and
{vm} respectively, choosing subsequences if necessary. So

(um,vm) ^ (u,v) weakly in H£(Q),

2N
(u-m, vm) -> (u, v) in Lq(Q) for 1 < q < ——-, (since HQ is compact in Lq(£l))

("i ") almost everywhere in Q.

Considering w G V ,̂ $ 6 V* and m ^ k we have

/ VumVwdx = HwmllS1, / /i(x,um)wdx + A / ^u/dz, Vw G

' r f f
/ V V * d l l H J ? / / ( ) * d A / 4 * V * G

Then taking the limits as m —> co, we obtain

/ VuVwdx = HvllS1 / fi{x,u)wdx + A / 0«;dx, Viu G Vfcl
( 2 4 ) Jn Jti Jn

f VvV^dx = IMIS2, f /2(x, u)^dx + A f <A*dx, V* G Vk,
Ju Ja Jn

The equality (2.4) holds for all functions in HQ , as functions of the form w and * are
dense in this space. Hence (u, v) is a weak solution of the system (2.1).

Recalling that A > 0, <j> > 0, it follows from the maximum principle that u, v > 0
in fi. Then according to (Hi), we have

-A(«/||«||S») ^ D3(x).

Let (zi, Z2) be the only positive solution of

-Azi = .Di(z), in Q,

-Az2 = D2(x), in fi,

z\ = Z2 = 0, on c?£2.
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According to the maximum principle, we have u/IMlS1! ^ zi> v/\\u\\at
2 ^ Z2 m ^

implies

HQ2 ^ (\\z1\\a2\\z2K\)mi-piP2) > 0,

So ||u|U2i IMUi n a s a positive lower bound. Moveover, take A = 1/n, n = 1,2,... and
denote the corresponding solution of (2.1) as (un,vn), that is (un,vn) satisfies (2.4)
with any w and * in JT^(fl). Set w — un, * = vn in (2.4), we get

(un,vn)\\
2

for all neN.

Since 0 < pi + r< < 1, and 0 < pi < 1, {(un, wn)} is a bounded sequence. As n->oo,
thanks to the Sobolev embedding and the Lebesgue convergence theorem, a positive
solution of (1.1) is obtained.

The Case (H2) can be proved similarly, since for N — 1,

/tf(fi) cCa(O), 0 < a ^ 1/2,

and for N = 2,

), 1 < 9 < co.

So its proof is omitted. D

3. SUPER AND SUBSOLUTION METHOD

Over the past two decades, supersolution and subsolution methods have been
widely used in the proof of the existence of the solutions of parabolic or elliptic prob-
lems. In this section, we shall use this technique to prove the existence of the solution
of system (1.1).

First, we shall give the definition of the super and subsolution of system (1.1)

DEFINITION 3.1: A function (u, v) e HQ (fi) x HQ (Q) is called a weak supersolution
of (1.1) if

/ VuVwdx ^ WvW^1 / fi(x,u)wdx, for each w G Hg, w > 0 almost everywhere,
Jn Jn

/ ViJV^dx ^ Uull̂ 2- / f2(x,v)tydx, for each # e H%, $ > 0 almost everywhere.
Jn Jn
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Similarly, (u(x),v(x)) G HQ(Q) *s called a weak subsolution if it satisfies (3.1) with
reversed inequalities.

PROOF OF THEOREM 1.3: The method is standard, but for the reader's conve-
nience, we complete it. Now write (UQ,VO) = {u,v), we can construct a sequence
{(ufc,t/fc)} € HQ(Q) x ^ o P from the following iterative process

(3-2) J° J°
/ VtfcVtfdx = ||ujk_i||2» / f2(x,vk-l)Vdx.

Jo. Ja

We claim

(3.3) ( « , v ) ^ ( t n . w i ) ^ • • • ^ ( u n , v n ) ^ • • • < ( u , v ) .

To confirm this, first note from (3.2) for k = 1 that

\ / fi(x,uo)wdx,

(3-4) Ja Jn

/ = \\uo\\plal

for each w, * € ifo(n)- Subtract (3.4) from (3.1), recall (uo,vo) = (u, v) and set

w = (uo - ui)+, * = (v0 - vi)+, to get

(3.5)
/ V(u0 - ui) • V(u0 - ux)

+dx < 0,
Jn

f V(v0 - vi) • V(w0 - vi)+dx ^ 0.

But
, f V(uo — tii), almost everywhere on {UQ

V(u0 - ui) = <
I 0 almost everywhere on

— vi), almost everywhere on {vo ^ vi},

0 almost everywhere on {vo ^ vi},

(see [6, Chapter 5]). Consequently,

f
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so that (UO,VQ) ^ (ui,wi) almost everywhere in Cl. Now assume inductively

(3.7) (ufc-i, Ufc-i) ^ (uk,Vk) almost everywhere in Q

Prom (3.2) we find similarly

- uk+i)+dx

L
J (fi(x,Uk-i)\\vk-i\\

p
a\-h(x,Uk)\\vk\\p

a\)(uk-uk+l)
+dx^O,

- vk+i) • V(ufc - vk+i)+dx

f - vk+1)
+dx < 0.

The last inequality holds in view of (3.7) and /i(-,u), /2(-,w) is nondecreasing in u and
v respectively. Therefore (uk,vk) < (v.k+i,Vk+i) ahnost everywhere in Q.

I _|V(ufc+1-tI)|2dx

f
-h{x,u)\\v\\l\){uk+i-u)+dx ^ 0,

(f2(x,vk)\\uk\\p
a\

-f2(x,v)\\u\\p
Q\)(vk+i -v)+dx ^ 0.

Next we show that {uk,vk) ^ (u, v) almost everywhere in Q. It is valid for k — 0
by hypothesis (1.3). Assume now for induction (uk,vk) ^ (u, v) almost everywhere in
f2. Then we have

Thus (uk+i,vk+\) ^ (u,v) almost everywhere in f2.

Therefore (u(x), v(x)) := lim (un(x), vn(x)) exists for almost all x. Further-

more, by the assumptions on fi(i = 1,2), there is a subsequence {(un., vn.)}°°_ which

converges weakly in HQ(£1) X HQ(Q) to (u, v). So, (u, u) is a weak solution of (1.1).

The theorem follows. D

Theorem 1.4 is an example in which the above result applies.

PROOF OF THEOREM 1.4: Let (101,102) be the only solution of

= mi, in fi,

= m2, in fi,

(3.8) ioi = 102 = 0, on d£
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Set

U =

then (u,v) is a positive subsolution of system (1.1). Similarly, if we denote by (Wi, W2)
the only positive solution of (3.8) with m1)m2 be replaced by MUM2 respectively, we
can get the supersolution (u,v) of system (1.1), where

v =

As m-i ̂  Mi, we have u/j < Wi, i = 1, 2. In addition, 0 < p\p2 < 1, so (u, w) ̂  (u, v).
Theorem 1.3 completes the proof. D

Now, for the the special case c*j = pi - 1, becomes the system

(3.9 a) - Au = fi(x,u) / |v|dx, i f ! ) ,

(3.9b) — An = f2(x, v) I |u|dx, x G Cl,

(3.9 c) u = u = 0 X € ^ ^

Denote by ipoix) the unique positive solution of the linear elliptic problem

-Aipo(x) = 1, i £ f l ; V>o{x) — 0, x G 90.

Set P— I <po(x)dx. Thus, we have the following result. D
Jn

PROPOSITION 3 . 2 . In addition to the assumptions on fi,f2 of Theorem 1.3,
assume further 0 < fi < Mi(i = 1,2) in £1 x R. Then nonegative solutions of (3.9)
exist if p2 ^ l /(MiM2).

PROOF: Applying p2 ^ l/(MiM2), we see that there exist large positive constants
Ki and K2 such that

Mip ^ K\/K2 < l/(M2p).

Let W(x) = Ki(po(x), S(x) = K2<p0(x), then (W, S) is a pair of supersolution of (3.9).
Furthermore, (0,0) is its subsolution, so we can get a nonnegative solution via Theorem
1.3. D

Indeed, we have the following result.

PROPOSITION 3 . 3 . Assume 0 < nn < fi ^ Mi(i = 1, 2) in fixfl, and p
satisfies

(31°) P <2 1 1
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Then the system (3.9) only possesses the trivial solution.

PROOF: Suppose (u, v) is a non trivial solution of (3.9). Multiplying (3.9a), (3.9b)

through by ipo and integrating on fi respectively, we find

/ udx=||u| |x / /i(2;,u)<podz

/ vdx = \\u\\i / f2(x,v)<p0dx.
Jn Jn

Since 0 < mi ^ fa < Mi(i = 1, 2), and tpo is a positive function, we have

Ii ^ N i l < MlP\\v\\u

m2p\\u\\l ^ \\v\\!

So
m1m2p2||u||1||i;||1 ^ \\u\U\\v\\j.

The conclusion follows since (3.10) holds. D
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