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Abstract
A critical task in product design is mapping information from the consumer space to
the design space. This process is largely dependent on the designer to identify and relate
psychological and consumer level factors to engineered product attributes. In this way,
current methodologies lack provision to test a designer’s cognitive reasoning and may
introduce bias through themapping process. Prior work onCyber-EmpathicDesign (CED)
supports thismapping by relating user–product interaction data from embedded sensors to
psychological constructs. To understand consumer perceptions, a network of psychological
constructs is developed using Structural Equation Modeling for parameter estimation and
hypothesis testing, making the framework falsifiable in nature. The focus of this technical
brief is toward automating CED through unsupervised deep learning to extract features
from rawdata. Additionally, Partial Least Square Structural EquationModeling is usedwith
extracted sensor features as inputs. To demonstrate the effectiveness of the approach a case
study involving sensor-integrated shoes compares three models – a survey-only model (no
sensor data), the existing CED approach with manually extracted sensor features, and the
proposed deep learning based CED approach. The deep learning based approach results in
improved model fit.
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1. Introduction
One of the primary tasks in consumer product design is to translate consumer
information to engineering requirements. Specifically, the designer identifies
and maps how consumer factors relate to technical product attributes that
ultimately influence consumer purchase behavior. Traditionally, the consumer
information ismapped onto a single latent construct – utility. In addition to utility,
there are other latent constructs, also referred to as psychological constructs,
which influence consumer preferences. An alternative approach in understanding
these preferences comes from behavioral research in consumer psychology
where psychological constructs measuring specific thoughts, perceptions and
attitudes are mapped onto a network of interconnected judgements that predict
downstream consumer preference. This network of interconnected judgements
can be viewed as a causal path structure, which can be traced to understand the
reason behind a perception or downstream use intention.

Another factor that affects consumer perception is user–product interaction.
User–product interaction and associated data refers to the physical interaction
of the user with the product. Traditional methods like Discrete Choice Analysis
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and Conjoint Analysis do not incorporate user–product interaction data in a
quantitative manner. Survey data is not able to capture this type of granular,
low-level data pertaining to product usage. For example, survey data is unable
to capture the orientation of a shoe while walking, individual characteristics
and patterns while running, changes in usage patterns, etc. However, such
user–product interaction data may be instrumental in mapping of consumer
perceptions to the product attributes affecting consumer choice.

Cyber-Empathic Design (CED) is a data-driven product design framework
that captures user–product interaction to better understand consumers’
perception about a product (Ghosh et al. 2017a). Current application, as
envisioned in this work, is restricted to product re-design cases. In CED, the
user–product interaction data is captured using product embedded sensors, which
are mapped onto a network of psychological constructs using Covariance-Based
Structural Equation Modeling (CB-SEM). The effectiveness of the model hinges
on the quality of features extracted from the raw sensor data. In this work features
are the high-level representations of raw time series sensor data (e.g., statistical
measures such as the mean and max values of raw pressure from sensors).

Further, CB-SEM has a requirement for the input data to be normally
distributed (Anderson & Gerbing 1988), which can be restrictive in practice.
Designing and extracting features from raw sensor data, along with the restriction
of normally distributed data results in CED being a manual and highly iterative
process. Considering these challenges, there ismotivation to automate the process.

The objectives of this technical brief are to investigate automating the process
of feature extraction by using an unsupervised deep learning technique in the form
of Autoencoders (Hinton & Zemel 1994; Vincent et al. 2008) and also to alleviate
the requirement ofmulti-variate normal distribution on input data by usingPartial
Least Squares Structural Equation Modeling (PLS-SEM) (Hair, Ringle & Sarstedt
2011; Becker, Klein & Wetzels 2012; Ringle, Sarstedt & Straub 2012; Wong 2013)
as the modeling technique.

A brief overview of Autoencoders and PLS-SEM is presented in Section 2.
Then the proposed approach and architecture are presented in Section 3, followed
by a case study with results and discussion in Section 4. Finally, in Section 5,
conclusions are presented.

2. Related work
This section presents a brief review of the unsupervised deep learning method
integrating Autoencoders and PLS-SEM. An in-depth review of the existing work
in design analytics, motivations and the mechanics of CED are presented in
(Ghosh et al. 2017a). A limitation of the CED framework is that information
representing user–product interaction is extracted manually from raw sensor
data (i.e., features from raw sensor data as in Figure 1). This reliance on pre-
designed sensor features is limited by the extent of the domain knowledge of
the designers and typically requires significant knowledge to identify relevant
features for different contexts (Ghosh, Olewnik & Lewis 2017b). The investigation
undertaken in this work is focused on an approach to automate extraction of
measurement features from raw sensor data to be mapped on the model of latent
constructs representative of user perceptions (Figure 1). In addition, the original
CED framework relies on CB-SEM and therefore assumes multi-variate normal
distributions of input data, which is limiting since sensor-based data is likely to
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Figure 1. Cyber-Empathic Design Concept – features and factors from users are
mapped to a model of latent constructs representing user perceptions illustrated by
the L1-L3 network.

have a variety of distribution types. Unsupervised deep learning techniques can
be effective in automating feature extraction, while PLS-SEM can be effective by
relaxing the input data distribution assumptions.

2.1. Unsupervised deep learning – Autoencoders
In general, an Autoencoder network consists of two parts – an encoder and
decoder (Krizhevsky & Hinton 2011). The encoder network maps the input raw
data to a low dimensional hidden space that forms the extracted features. During
the model-training phase, the decoder network uses the features extracted to
recreate the original input data. An optimization algorithm is used to minimize
the error between original input data and the output of the decoder layer, i.e.,
the recreated input data. Once converged, only the encoder layer is used. The
output of the encoder network (code layer) forms the features of the input data.
Autoencoder networks have been effective in extracting features in the visual
domain, natural language processing, and sentiment analysis. Based on prior
successes, its intuitiveness, capability, and stability, this work explores the use of
an Autoencoder in CED. Note that the automatic extraction of features is not
restricted to deep learning methods, as other dimensional reduction techniques
like Principal Component Analysis (PCA) are also applicable and should be
explored and compared.

In this work, a type of Autoencoders called Denoising Autoencoders with a
convolutional setting is used. In the Denoising Autoencoders, the input sensor
signal is corrupted with random noise. The objective of the decoder network,
in addition to sensor signal reconstruction, is also to de-noise the data. In this
way, the Autoencoder learns robust sensor features. The rationale behind using
Denoising Autoencoders is that due to their stochastic nature, they have the
potential to generate more robust features as presented in (Vincent et al. 2008).
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Figure 2. PLS-SEM Structure.

2.2. Partial least square structural equation modeling
Traditionally SEM (i.e., CB-SEM) relies on the principles of maximum likelihood
for parameter estimation. Thus, CB-SEM has the requirement of multi-variate
normal data distributions and large sample sizes (Anderson & Gerbing 1988;
Peng & Lai 2012). On the other hand PLS-SEM is a soft-modeling approach for
structural equations with relaxed assumptions regarding the nature of the input
data (Hair et al. 2011; Becker et al. 2012; Ringle et al. 2012;Wong 2013). The steps
involved in applying PLS-SEM for the parameter estimation shown in Figure 1 are
(Tenenhaus et al. 2005):

Step 1: Initialize arbitrary weights of the outer (i.e., measurement) model to map
distinct latent factors to their formative and/or reflective measures.

Step 2: Compute the outer approximation of the latent variables.
Step 3: Obtain weights of the inner (i.e., structural) model (relationship of latent

variables with each other).
Step 4: Compute the inner approximations of the latent variables.
Step 5: Compute the new weights of the outer model.

Repeat Steps 2–5 until convergence.
Step 6: Estimate path coefficients (weights) of the inner structural model.
Step 7: Estimate loadings (weights) for the outer measurement model.

Based on these concepts, the next section presents the modified CED
framework where Denoising Autoencoders and PLS-SEM are integrated.

3. Unsupervised deep learning based CED –
architecture and approach

This section presents the modified, flexible and scalable CED framework
to provide automated feature extraction from heterogeneous product use
information through an unsupervised learning approach.

The existing CED framework procedure is shown in Figure 3, where raw
sensor data and survey measures are collected as the first step. Subsequently,
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Figure 3. Existing CED Framework Modeling Procedure.

sensor data is analyzed and features are manually designed and extracted.
The extracted sensor features act as formative measures for certain psychological
constructs and the surveymeasures act as reflectivemeasures for the psychological
constructs. In a formative model, the causal action flows from the measurements
(e.g., survey measures) to a psychological construct or a latent variable in general.
The measurements are referred to as formative measures. On the other hand,
in a reflective model the causal action flows from the psychological construct
or a latent variable to a measurement variable, thereby the measures are called
reflective measures (Tenenhaus et al. 2005).

The novel contribution of this work is presented in Figure 4, which includes
integration of an unsupervised machine learning method. Raw sensors are
processed using Denoising Autoencoders to extract salient sensor features
automatically. The automatically extracted sensor features and survey measures
act as an input to the PLS-SEM for parameter estimation. This automation is the
key difference between the existing CED framework in Figure 3 and the approach
presented here in Figure 4. It should be noted that unsupervisedmachine learning
for CED is not restricted to Denoising Autoencoders and other methods are
also applicable. Testing the applicability of other unsupervised machine learning
methods is not in the scope of this work.

The model obtained is evaluated based on various metrics and fit indices.
The criteria used to evaluate the model follow from Peng & Lai (2012) and
Sanchez & Trinchera (2012). For the measurement model (reflective indicators),
unidimensionality is assessed using Cronbach’s alpha (>0.7), Dillon–Goldstein
ratio (>0.7), 1st eigenvalue (>1), and 2nd eigenvalue (<1). In addition, the
cross-loadings are also evaluated. For the structural model, acceptance is assessed
using R2 (Low <0.3, Moderate 0.3–0.7, High >0.7), Communality (>0.5) and
pseudo Goodness of Fit (GoF) where >0.7 is considered a very good model.
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Figure 4. Proposed CED Framework Modeling Procedure.

For the formative measures, the above metrics do not apply since in essence,
those measures are the independent variables (Tenenhaus et al. 2005). However, a
multi-collinearity check is conducted prior to the consideration of the formative
measures as model inputs and the measures with high multi-collinearity are
eliminated. Themodel obtained by the PLS-SEM is optimized and validated based
on the above metrics.

To demonstrate that the Autoencoder-based CED model is better than the
survey-basedmodel andCEDmodelwithmanually designed and extracted sensor
features, the assessment is conducted based on GoF (which is an overall model fit
indicator). As the initial step for assessment, first an optimized and converged
model is obtained for all three cases (with GoF close to 0.7). The premise of this
work is that the GoF of the Autoencoder-based CEDmodel will be better than the
GoF of the previous CED model. To confirm the results of (Ghosh et al. 2017a),
model comparison is conducted for the previous CE- and survey-based models as
well. Therefore, the hypothesis of this work is that the relationship among the GoF
values for the three models is:

GOFAutoencoder-based CED model >GOFExisting CED model

>GOFSurvey-based model. (1)

To test this hypothesis and demonstrate the Autoencoder-based CEDmodel a
case study of a sensor-integrated shoe is used and presented in the next section.

4. Case study
To test the proposed framework, this work leverages the case study presented
in Ghosh et al. (2017a). The experimental protocol, psychological constructs,
their assumed structural relationship and sensor data pre-processing remain the
same as reported previously. Data is collected from 151 participants who were
asked to perform activities like walking, walking upstairs, etc. on a designated
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Table 1. Autoencoder Network Architecture

No. of Force Sensitive Resistors (FSRs) 8
No. of Convolutional Layers 2
No. of Convolutional Filters (Layer 1) 64
Convolutional Filter Size (Layer 1) 5
Pooling Size (Layer 1) 5
No. of Convolutional Filters (Layer 2) 64
Convolutional Filter Size (Layer 2) 5
Pooling Size (Layer 2) 5
Code Layer Size (No. of Features) 16
Optimization Algorithm ADAGRAD
Learning Rate 0.001

path wearing a sensor-integrated shoe. The shoe inserts were retrofitted with
eight force sensitive resistors (FSRs), one accelerometer, one flex sensor and
one temperature sensor. Survey data and the sensor data collected during
the experiment represent the measurements for the psychological constructs.
Data from 142 of the 151 participants was suitable for analysis. For nine
participants, incomplete information was recovered from the surveys or the
hardware malfunctioned.

For PLS-SEM, the sample size should be at least 10 times the number of
reflective variables corresponding to the latent construct with the maximum
number of reflective variables (Hair Jr et al. 2016). For this case, the latent
construct Perceived Comfort (Reflective) has the maximum number of reflective
variables – five. Hence, the minimum sample size required for this work is
50. Of the sensor measurements, only FSR data is used for analysis because of
malfunctioning or poor data quality from other sensors. For example, during the
experimentation for many participants, the sensor leads of the flex sensor were
damaged. While the analysis here is still instructive, CED is generally envisioned
as an approach that would use multiple types of sensors.

4.1. Denoising Autoencoder architecture development
The input signal for the Denoising Autoencoder is corrupted with random noise
sampled from a normal distribution – N (0, 1). The Autoencoder is trained to
reconstruct the original clean input signal, thereby extracting salient features.
The training procedure used to develop the Denoising Autoencoder is shown in
Figure 5. The Autoencoder network model is finalized after performing a k-fold
cross-validation procedure with k = 3, where different network topologies are
studied and the best performing model is selected. The model with the least
reconstruction error is selected to obtain sensor features. In order to minimize
the reconstruction error, ADAGRAD is used as the optimization algorithm (Dean
et al. 2012; Hadgu, Nigam & Diaz-Aviles 2015). The architecture finalized using
the cross-validation procedure is presented in Table 1.
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Figure 5. Deep Learning Model Training Procedure.

Figure 6. CED Analysis Procedure.

4.2. CED analysis procedure
The analysis procedure to estimate the parameters of theCED framework is shown
in Figure 6. The manually designed and extracted features from (Ghosh et al.
2017a) are reused in this work. As a novel contribution, this work replaces the
manual feature extraction byAutoencoder extracted features as shown in Figure 6.

8/17

https://doi.org/10.1017/dsj.2018.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2018.11


Figure 7. Distribution Plot (Manually Extracted Features).

For some sensors, certain features obtained using Autoencoders were equal
to zero for all samples. Such feature sets were eliminated. The distribution plots
(histograms) for manually extracted features and Autoencoder extracted features
are shown in Figures 7 and 8, respectively. The x-axis represents the normalized
measure (mean FSR andAutoencoder extracted value) while the y-axis represents
the frequency of appearance. The number of occurrences of a feature value is larger
in the case of Autoencoders (Figure 8) because of the 1-minute sampling that was
used for all participants. In the case of manually designed features (Figure 7),
there is only one data point representing a feature for each participant. We can
observe that the features extracted are not normally distributed, thus justifying
the use of PLS-SEM. This approach is preferred to using transformations to
convert the extracted features into a normal distribution in order to use CB-SEM
because such transformations have the potential to lose key information during
the transformations. Using the sensor features and surveymeasures, the case study
results and related discussion are presented in the next section.

4.3. Results
For all three models, there are both formative and reflective measures. A multi-
collinearity test is conducted for the formative measures as an initial step and
measures with high multi-collinearity are eliminated. Then the formative and
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Figure 8. Distribution Plot (Autoencoder Extracted Features).

Figure 9. Case Study (Perceived Comfort – Formative and Reflective Relationship).

reflective measures are used as input to the PLS-SEM framework, where the
psychological construct model shown in Figure 9 is exercised. For PLS-SEM, the
PLSPM package in R is used (Sanchez & Trinchera 2012). The model refinement
is conducted based on the metrics presented in Section 3 and finally the GoF
metric is used to test whether the Autoencoder-based CEDmodel performs better
than the manually designed and extracted feature based CED model and the
survey-based model.
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4.3.1. Measurement model assessment
The first step in Covariance-Based SEM or PLS-SEM is to conduct the
measurement model assessment (Anderson & Gerbing 1988; Hair Jr et al.
2016). The measurement model is a relationship between the measurements
(surveys and sensors) with the psychological construct. Each construct has its
own measurement model. For all three models tested in this work, the Perceived
Comfort psychological factor has both formative and reflective measurements
resulting in a Multiple Indicator Multiple Causes (MIMIC) model. Formative
measurements (e.g., features from sensor readings) attempt to directly measure
attributes that influence a psychological construct, while reflective measurements
(e.g., factors from surveys) are used to make inferences about the construct.
Development of a full SEM path model can aid in developing system level
inferences about the role of individual attributes, their influence on user
sentiment, and downstream constructs (e.g., intention to use, intention to
purchase). In PLS-SEM, the standard procedure to deal with such a model is
to split the MIMIC latent factor into two factors – one purely formative where the
factor causes the construct and one purely reflective where the construct causes
the factor.

In a reflective model, a latent variable is posited as the common cause of the
measurements/indicator variables (Tenenhaus et al. 2005). That is, the reflective
measurements are used to make inferences regarding the latent variable since
the causal action flows from the latent variable to the measurement variables.
A formative model posits a composite variable that summarizes the common
variation in a collection of measurement/indicators (Tenenhaus et al. 2005). That
is, the formativemeasurements influence the latent variable since the causal action
flows from themeasurement/indicator variables to the composite latent variables.

In the case of Perceived Comfort, the formative part is indicated as Perceived
Comfort (Formative) and the reflective part as Perceived Comfort (Reflective).
The Perceived Comfort (Formative) psychological construct affects the Perceived
Comfort (Reflective) psychological construct as shown in Figure 9. The other
psychological constructs are all reflective in nature. The measurement model
assessment results are shown in Table 2.

From the table, it can be observed that for all three models Cronbach’s alpha
(C Alpha), and the Dillon–Goldstein ratio (DG Rho) are satisfactory (i.e., >0.7).
Similarly, the first eigenvalue (Eig. 1st) is greater than 1 and the second eigenvalue
(Eig. 2nd) is less than 1 for all three models. Thus, the measurement models of all
three cases in this work satisfy the unidimensionality criteria. In the next section,
the structural model assessment is presented.

4.3.2. Structural model assessment
To validate the structural model, the R2 and communality values are used as
assessment criteria. In structural models there are two types of latent variables –
endogenous latent variables and exogenous variables (Anderson&Gerbing 1988).
The exogenous latent variables affect other latent variables while the endogenous
latent variables are effected by other latent variables (exogenous or other
endogenous variables). For this case studyDesignAppeal, Perceived Effectiveness,
Perceived Usability, and Perceived Comfort (Formative) are exogenous variables
and Perceived Comfort (Reflective), User Evaluation, and Usage Intention are
endogenous variables. Following the recommendations in Peng & Lai (2012)
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Table 2. Measurement Model Assessment (Unidimensionality)

Table 3. Structural Model Assessment

and Sanchez & Trinchera (2012), the R2 metric is obtained only for endogenous
variables. Also, in the case of PLS-SEM the assessment of communality for latent
variables with only formative measures is not defined (Peng & Lai 2012; Sanchez
& Trinchera 2012). Hence, for this work communality assessment is excluded for
the only formative latent factor (psychological construct) – Perceived Comfort
(Formative).

The structural model assessment values are shown in Table 3. From Table 3 it
can be observed that in all cases, the R2 values for the endogenous psychological
constructs range from moderate to very good condition (R2 for exogenous latent
variables is not calculated in PLS-SEM), while the communality values criteria
are clearly satisfied by all cases. An important observation can be made for the
R2 value for the Perceived Comfort (Formative) psychological construct, which
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is 0.5269 for the survey-based model, 0.6607 for the manually extracted features
based Cyber-Empathic model, and 0.7278 for the Autoencoder-based Cyber-
Empathic model.

First, this validates the results from (Ghosh et al. 2017a) that the
Cyber-Empathic model performs better than the pure survey-based model in
understanding consumer perceptions. Second, since the R2 value for the Perceived
Comfort Formative construct for the Autoencoder-driven model is larger than
the value for manually extracted features, it demonstrates the superiority of using
Autoencoders for this case study. In fact, for the Autoencoder-driven model, the
R2 value is greater than 0.7, which is characterized as ‘very good’ in the PLS-SEM
literature while for the manually extracted features the value is only considered
‘moderate’ (Peng & Lai 2012; Sanchez & Trinchera 2012; Hair Jr et al. 2016).
Based on the structural model assessment it can be concluded that for all three
cases satisfactory models are obtained, which establishes the foundation for the
inter-model comparison based on the pseudo GoF indicator.

For the case study a GoF value of 0.6821 for the survey-based model, 0.7094
for the manually extracted feature based Cyber-Empathic model and 0.7372
for the Autoencoder-based Cyber-Empathic model are obtained. Clearly, the
Autoencoder-based model outperforms the other two models. GoF is calculated
as the geometric mean of the average R2 and average communality and hence,
GoF of the Autoencoder-basedmodel being the largest is statistically valid as well.
The path coefficients of the structural model for all three cases are presented in
Figures 10–12 in Appendix A.

Although the difference between the GoF values is small, in the case of PLS-
SEM it is important to consider the relative range of the GoF values (as stated in
Section 3). The results demonstrate that the integration of the unsupervised deep
learning method with the CED framework does not degrade the performance
of the model and can be satisfactorily used to model user perceptions. This is a
significant result considering a design process in general.

Extracting useful information from user–product interaction data can be
a resource intensive task and demands extensive domain knowledge. Using
unsupervised deep learning helps alleviate this challenge and can provide a
foundation to model user perception about the product under consideration.
However, CED should not be considered a preference model nor a predictive
model that would provide designers an analytical basis for determining how
much to change a product feature to optimize the design. This work instead is to
demonstrate the usefulness of incorporating user–product interaction data in the
form of sensor readings to model user perceptions. Specifically, the comparison is
to see if/how much model fit improves through introduction of sensor data and
then to see if the model improves further when identification of relevant features
from the sensor data is automated.

5. Conclusions
This work advances the existing CED framework in two important ways by
incorporating an unsupervised deep learning method and PLS-SEM. User–
product interaction data is captured using product embedded sensors, while
users’ psychological constructs are measured using surveys. The unsupervised
deep learning method extracts salient features from raw sensor data, while
PLS-SEMestablishes the relationship between user–product interaction and users’
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psychological constructs. The unsupervised deep learning algorithm uniquely
addresses the challenge of extracting hand-engineered features from sensor
data, while PLS-SEM adds further capability by addressing the challenge of
handling non-normal input data. This results in a scalable, improved and more
generalizable CED framework that has been demonstrated by model comparison
experiments in this work.

While the insights and results are encouraging, this work opens new avenues to
advance the framework even further. For example, work thus far has not addressed
how design inferences can be made using the CED framework in general. The
features extracted by Autoencoders are mathematical abstracts and hence it is
difficult to associate a physical meaning with them. Further, interpretation of the
features would require further controlled experiments but could eventually reveal
valuable insights regarding product attributes for designers.

Autoencoders and PLS-SEM are highly scalable methods and hence can be
used to incorporate a variety of information. However, to validate this claim,
a study using a more complex product needs to be conducted. Also, one of
the key elements missing from the CED framework is the ability to identify
and incorporate usage context while the users are interacting with the product.
Further, this and previous work dealt only with user perceptions for a single
product; however for design activities it would be very beneficial to capture user
preferences based on interactions with variants of the same product or multiple
products simultaneously (e.g., shoes and cell phones). Taking advantage of the
type of automation explored in this work in conjunction with additional data
sources for products in the field provides a foundation for understanding product
perceptions on an individual consumer basis across the lifetime of the product.

For demonstration, this work integrated Denoising Autoencoders as the
unsupervised feature learning methods. However, there are other unsupervised
learning methods or dimensionality reduction methods such as Generative
Adversarial Networks (Goodfellow et al. 2014), Restricted Boltzmann Machines
(Lee et al. 2009a,b, 2011; Norouzi, Ranjbar &Mori 2009) and PCA that should be
investigated to validate the generalizability of unsupervised learning based CED.

The dataset used in this work has been made available for other research
groups to use to explore alternative methods. The dataset can be found in the
Institutional Repository maintained by the University at Buffalo Libraries at:
https://ubir.buffalo.edu/xmlui/handle/10477/76789. Unsupervised deep learning
methods can be complicated to implement, thus a comparison between
unsupervised deep learning methods and traditional methods like PCA is an
area for future work.

As CED incorporates different psychological constructs along with user–
product interaction data, there is a potential to extend the framework and design
products that target specific psychological cues of every individual customer.
That is, there is a potential to extend CED to address mass customization design
challenges.

Finally, user–product interaction data presents an avenue to provide real-time
feedback to users and guide them to use products more effectively. Considering
the CED framework is composed of a network of psychological constructs, using
real-time feedback presents an avenue to influence users’ product perception in a
more focused and targeted manner, representing an area for further exploration.
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Appendix A

Figure 10. Structural Model Path Coefficients – Survey-Based Model.

Figure 11. Structural Model Path Coefficients – Cyber-Empathic Model (Designed
Features).

Figure 12. Structural Model Path Coefficients – Cyber-Empathic Model
(Autoencoder Features).
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