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REDUCIBLE RATIONAL FRACTIONS 
OF THE TYPE OF GAUSSIAN POLYNOMIALS 
WITH ONLY NON-NEGATIVE COEFFICIENTS 

BY 
EMIL GROSSWALD 

1. Introduction. The following problem arose in connection with the study 
of Poincaré polynomials for homogeneous spaces. Let 

i=i x l l 

gi9 ht positive integers and set d = (hx, h2,..., hk), the greatest common 
divisors of the exponents in the denominator. Let ht = dr( and assume that the 
r£'s are comprime in pairs, i.e. that (rt, ry) = l for i^j. In this context, the 
following two problems arise: 

Problem 1: Under what conditions on the exponents does /(f) reduce to a 
polynomial? 

Problem 2: Under what additional conditions does the polynomial /(f) have 
only non-negative coefficients? 

The classical example of such rational fractions that reduce to polynomials 

with non-negative integers is that of the Gaussian polynomials = 

m 1 _ jçn-j+1 

j | — _— ^ e fact that these reduce to polynomials can easily be 
j=i 1 — x 

are generalized to the present situation. The fact that the coefficients of 

non-negative can be proved by showing (see F. Franklin's proof presented in 
[7]) that they can be interpreted as the number of partitions of n into m parts, 
so that no part is larger than n — m. 

This idea cannot be completely adapted in any obvious way to the present, 
general case, although also the present results are shown to depend on 
precisely such partition numbers. 

In what follows, Problem 1 is answered completely by Theorem 1. 
In principle also Problem 2 is answered, by Theorem 2, which states a 

necessary and sufficient condition for f(t) to have only non-negative coeffi
cients. This condition is, however, of a rather difficult application. 

Next, the polynomial /(f) is factored into polynomials gm(f) of a specific, 
simple structure, which we shall call elementary polynomials, so that /(f) = 

roui 6»(o. 
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22 E. GROSSWALD [March 

A practical necessary and sufficient condition for the non-negativity of 
coefficients is stated in Theorem 3, but it is applicable only to certain elemen
tary polynomials g(t), so that it leads only to a sufficient condition for f(t), even 
if f(t) is factorable into those special elementary polynomials. Finally, Theorem 
4 gives a simple necessary condition for the general elementary polynomial and 
Theorem 5 a rather trivial sufficient condition for the general case. 

It would be desirable to find a simpler necessary and sufficient condition that 
insures the non-negativity of the coefficients of any polynomial f(t) of the type 
here considered. 

I take this opportunity to acknowledge with gratitude the fact that this 
problem, originating with Professor Stephen Halperin, was brought to my 
attention by my colleague, Professor James Stasheff. I also thank Professor G. 
Andrews for suggestions and bibliographic information. Finally, an expression 
of gratitude to a referee who not only made excellent suggestions but also 
discovered some serious oversights in an earlier version of this paper. 

2. Main Results. 

THEOREM 1. (A). Let f(t) = U^i {(1 " t*)l(l ~ * "0} wiffe d = (hl9 ft2,..., hk), 
ht = drt (i = 1, 2 , . . . , k) and (ri? ry) = 1 for i^j. Then f(t) reduces to a polyno
mial if and only if the following two conditions hold: 

(i) For every j (j = 1, 2 , . . . , fc), d | g,- so that gy = ds,; and 
(ii) for every /, there exists some k, such that r] \ sk. 
(B). If (perhaps after a renumbering of the sh's) also r] \ s] holds, then all 

coefficients of the polynomial f{i) are non-negative. 

REMARKS. 1. In (A) the same sh may serve as multiple for several ry's. 

2. The (rather trivial) sufficient condition in (B) is far from being necessary 

for the non-negativity of the coefficients of f(t). 
If conditions (i) and (ii) of Theorem 1 (A) are satisfied, then we may set 

u = td, so that f(t)=h(td) = h(u), say, and f(t) is a polynomial in t if and only if 

(1) h(u) = t[^v 
is a polynomial in u. 

For an arbitrary sequence of integers T = {tu t 2 , . . . , tp . . . } , finite or infinite, 
pT(n) denotes the unrestricted number of partitions of the positive integer n, 
into parts f, from T. The number of partitions of n into distinct parts from T is 
denoted by qT(n) and one distinguishes such partitions without repetition, 
according to the parity of the number of summands. Specifically, q^in) stands 
for the number of partitions of n into an even number of distinct parts £, from 
T and q(T}(n) stands for the number of such partitions with an odd number of 
summands; clearly, q(r) = qT)(n)^(iT)M' It is convenient to set also pT(0) = 
q(

T
O)(0) = l , <#>(()) = 0. 
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REMARK. The elements tu t2,... of T are not necessarily different; hence, it 
is possible that in a partition of n into distinct elements of T, some of them 
have the same numerical value. 

Let R = {rl9 r 2 , . . . , rk} and S = {sl9 s 2 , . . . , sk} be the sets of exponents of the 
denominator, and of the numerator of h(u), respectively. Also, set M = 
YA=I ^9N = YA=I St and D = N-M. With these notations we can now state 

THEOREM 2. Let f(t) satisfy conditions (i) and (ii) of Theorem 1; then if 
u = td, f(t) = h(u) reduces to a polynomial of degree D in u, with only non-
negative coefficients, if and only if 

n n 

X pR(n-m)qf)(m)^ £ pR(n-m)q(i)(m) 
m=0 m=0 

holds for 0 < r c < D . 

In view of Theorem 1 it is possible to simplify the problem, by factoring h(u) 
as follows: 

Associate all factors ( l - w r 0 in the denominator, for which r] divides a 
specific sh, with the corresponding factor 1 - I A in the numerator. By renum
bering if necessary the ry's, we obtain a fraction of the form 

l-us» 
(2) 

U - M r 0 - " ( l - u S ' 

Here sh = crtr2' • • rm, as follows from (rh ry) = 1 for i^j. The remaining factors 
1 — us« of the numerator of h(u) may now be distributed among the fractions 
(2), so that in each one the number of factors in the numerators equals the 
number of factors in the denominators. This is always possible, because the 
total number of factors in the numerator of (1) equals the total number in the 
denominator. The individual fractions now are of the form 

... , , ( l - K " - - S ( l - » a 0 - - • ( ! - " " " - ) 
(3) giu)- (w.)( i-^)---( i-«s 
and 

h(u) = g1(u)g2(u)- • • gq(u). 

By Theorem 1, (3) reduces to a polynomial. These fractions, with at least one 
exponent in the numerator divisible by all exponents of the denominator and 
with an equal number of factors 1 - us in both, numerator and denominator, 
will be called elementary polynomials. 

REMARK. It is clear that the factorization of h(u) into elementary polyno
mials is not unique. It also follows from Theorem 2 that not all possible 
factorizations of h(u) are equally desirable, but that the distribution of the 
factors 1 — ua among the different gj(w)'s should be done keeping in mind the 
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applicability of Theorem 2. If all elementary polynomials gy(w) have non-
negative coefficients, then so does h(u) (and, hence, also f(t)), but not con
versely. 

For convenience we set crxr2 • • • rm = am and denote by A = {al9 a2,..., ati} 
the set of exponents in the numerator of g(u). 

A positive integer n is said to be representatable by a set T of positive 
integers, if n = c^H-c2 th+ • * * +cpfJp with the f,'s from T and the c/s arbitrary 
positive integers. The integer n is representable by T, if and only if p T (n )>0 ; 
otherwise, n is not representable by T. If dT = (f l 5 t 2 , . . . ) = 1? then every 
sufficiently large integer is representable by T. In case T = {tt, t2) = 1, Sylvester 
[8] has shown that the largest non-representable integer is equal to t0 = 
hh~h~h a n d that there are exactly | ( t 0 + l) non-representable integers. It 
easily follows that if t1<t2<t3 • • • and the t/s are coprime in pairs, then the 
largest nonrepresentable integers is always at most equal to t0; however, this 
problem of representability, which goes back to Frobenius [3], is still far from 
being solved satisfactorily in the general case (see [1], [2], [4], [5] and [6], and 
the literature quoted there for some recent contributions). 

THEOREM 3. (a) In order that the special elementary polynomial 

IA\ / Ï (l-ucr^)(l-ua) , x - ^ + 
( 4 j g(u)= ( i - ^ ) d - ^ ) ? ( r i ? r 2 ) = 1 ? c e Z 

should have only non-negative coefficients, it is necessary and sufficient that the 
exponent a should be representable by R ={r1, r2}. 

(b) / / a is representable, g(u) is a reciprocal polynomial of degree D — 
crxr2 + a — rt—r2, with non-negative coefficients. None of the coefficients exceeds c 
and the sum of the coefficients equals ca. 

Exactly (rx — l)(r2— 1) of the coefficients vanish, namely when either r or D — r 
is one of the è(ri~~l)(r2~"l) non-representable integers. 

COROLLARY 1. / / c = l , and a is representable then g(u) has exactly a 
coefficients equal to one, while the other D + l — a = (r1 — l)(r2 - 1 ) coefficients are 
zero ; specifically, the vanishing coefficients are those of powers of r with either r 
or D — r not representable. In fact, if a is representable then c = l is the necessary 
and sufficient condition for rational fractions of type (4) to have all a non-
vanishing coefficients equal to one. 

COROLLARY 2. A sufficient condition for the non-negativity of the coefficients 
of h(u) is that it should be factorable into the special elementary polynomials of 
type (4), with exponents a representable by their respective sets R. 

REMARK. Theorem 3 has been proved already by S. Halperin by an entirely 
different method (private communication of unpublished results). 
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THEOREM 4. In the general elementary polynomial g(u) of (3), let a1<a2^ 
• • • < a^ < (ax + a2) where fx = max{p | ap < ax + a2}; clearly, fx > 2. A necessary 
condition for the non-negativity of the coefficients of g(u) is that ap should be 
representable by R for p = 1, 2 , . . . , JJL. 

THEOREM 5. A sufficient condition for f(t) = ]\™=1 {(1-^)1(1-thi)} to reduce 
to a polynomial with non-negative coefficients is that there exist integers n and 
d, such that ht~di and (perhaps after a renumbering of the g£'s), gt = 
d(n-i + l). 

3. Proof of Theorem 1. (A). Necessity of (i). f(t) reduces to a polynomial if 
and only if every zero of the denominator is cancelled by a zero of at least 
equal multiplicity in the numerator. Each factor of the denominator furnishes 
hj = drj zeros of the form e

2™ldr> (i/ = 0 , 1 , 2 , . . . , d i j - l ) . In particular, for 
v = rJ5 each factor has the zero e27ri/d, which is, hence, a fc-fold zero. The zeros 
of the numerator are e2™s/g, (j = 0 , 1 , . . . , fc; s = s0) = 0 , 1 , . . . , g}F - 1 ) . For some 
values of / and s0) one must have 2mld = 27ris(i)/gp so that gy = sa)d. However, 
each factor in the numerator has e27ri,d only as a single, simple zero (namely for 
the unique value of s0) = gjld). Hence, all exponents of the numerators have to 
satisfy g, = s(Dd for some integer s0), so that d | gi? and this proves the necessity 
of (i). 

We now set hj = dr;, gy = dsJ5 with (ri? r7) = 1 for i^j so that f(t) becomes a 
function of u = td only, say f(t) = h(u) = f[Ki {(1 ~ ws0/(l - wr0}-

Necessity and sufficient of (»'). In h(u), the numerator and the denominator 
have both the zero at u = 1 as a fc-fold zero; hence, in the denominator the 
factor is cancelled and it is sufficient to consider only the zeros u - e2mvi/r* with 
vi; = 1, 2 , . . . , /jf — 1. If none of the st is divisible by ry, then the zero u = e27ri/rt of 
the denominator is not cancelled, so that the condition is necessary. To prove 
its sufficiency, let us assume that rl5 r 2 , . . . , rm are divisors of the same 
exponent s in the numerator. Then, because of (ri? ry) = 1, s - crx • • • rm, with 
ceZ+ as seen. All the zeros e2™^ (i>7 = 1 ,2 , . . . , ry - 1 ) of the denominator 
occur as distinct zeros among the zeros e2Trikls = e

(2iri/r/)(Xr/s) (A = 1 ,2 , . . . , s -1) 
of the numerator. Indeed, we only have to take Ar7 = v^s, or À = 
vfr\rï ' ' ' rj-iri+i ' * ' rm> As ry | s and as A =(vjlri)s<s, this coefficient A actu
ally does occur and the zero e27riv'/r> is cancelled. It remains to verify that each 
such zero of the denominator is simple, or, equivalently, that the zeros of the 
denominator are distinct for different subscripts /. If not, there exist integers vp 

vh9 with l < i A < r y - l , l < i > h < r h - l and e2™^ = e2™»\ or vjr^vjr^ i.e., 
rblrj = v\ivy However, (rh, ry) = 1, so that the rational number rj^ is in reduced 
form and cannot be represented by a ratio of smaller integers. Hence, rj^ = 
VJVJ is impossible and all zeros of the denominator are distinct, simple and are 
cancelled by the zeros e27riA/s of the numerator. This finishes the proof of part 
(A). 
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(B). If h(u) = l\f=1 {(1 - ws0/(l - wr')} and r;- | sy, one can set sy = rayry, my G Z + . 
Let wr< = jt; then 

= - = l + x + • • • +jcmr1 = l + wri+ • • • +w(mi~1)ri 

and h(u) has only non-negative coefficients as product of polynomials with 
such coefficients; also, with td for w, the same holds for f(t). 

4. Proof of Theorem 2. Let us consider (1), where h(u) comes from an f(t) 
that satisfies the conditions (i) and (ii) of Theorem 1 and, hence, reduces to a 
polynomial. By definition of the q(s\n) (/ = 0,1) and of N, 

f[(i-us)= t {q$Km)-q$\m)}um; 
] = 1 m = 0 

similarly, 

It follows that 

V = 0 / m = 0 

= X «" I PR(»'M40)("»)-^1)(m)}= £ Cnu", 
n = 0 m+v = n n = 0 

with 

(5) C n = X pR(n-m){qg\m)-q$Km)}, K = mm(n,N)-
m = 0 

By Theorem 1, h(u) is a polynomial of degree £> =X s es s _XreR r = 

i V - £ r e R r < i V ; hence, Cn=0 for n>D. For n<D<N, however, n<N so 
that K=n. The required condition Cn > 0 now reads 

n n 

m = 0 m = 0 

and this finishes the proof of Theorem 2. 

5. Proof of Theorem 3 and of its corollaries, (i) Proof of necessity. Here 
S ={crtr2, a}. If a is not representable, then clearly a < crxr2. Also, q^iO) = 1, 
q£\0) = 0, qg\m) = q$\m) = 0 for 0 < m < a , ^ o ) (a ) = 0, ^ ( ^ = 1, so that, 
by (5), the coefficient of ua is 

I pRM{qf\m)-q^(m)} = pR(0){qf)(a)-q^(a)} 
m+v = a 

+ PR(a){q(
s
O)(0)-q^(0)}=-l + pR(a). 
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If the exponent a is not representable, then the coefficient of ua in g(u) equals 
- 1 and g(w) does not have only non-negative coefficients. 

(ii) Proof of sufficiency. The polynomial g(u) is a reciprocal polynomial of 
degree D = cr1r2^ra-r1 — r2. Indeed, 

(1-u 0 (1-w 2) ( w r i - l ) ( i i 2 - l ) 

It follows, in particular, that the powers ur and uD~\ have the same coeffi
cients, and if g(u) = £f=o aru\ it is sufficient to prove that ar > 0 for 0 < r < D/2. 
By expanding the denominator we obtain 

(6) g(u) = (1- ucr^)(l - ua) £ P R W U \ 
r=0 

The case a = crxr2 is trivial and is covered by Theorem 1 (B). The alternatives 
a > crxr2 and a < crxr2 have to be considered separately. In the first case, a is 
always representable (see [8]). The treatment of the two cases is essentially the 
same. In the slightly more difficult second case, one has 

(7) g(u)=LpR(r)ur+ I (pR(r)-pR(r-a))ur 

r=0 r=a 

cr1r2+a — l 

+ X (PR^-PR^-^-PR^-cr^))^ 
r = cr1r2 

+ X (PR^-pAr-^-pRir-cr^) 
r=crir2+a 

+ pR(r-a-cr1r2))u
r. 

Here the last sum is empty, because cr1r2 + a>D, the degree of g(u). Next, 
from a < crxr2 it follows that the exponents of the third sum are larger than D/2 
It is, therefore, sufficient to consider only the coefficients of the first two sums. 
In the first sum, pR(r) is positive if r is representable, pR(r) = 0 otherwise. In 
the second sum, we claim that 

(8) pR(r)^pR(r-a) 

with equality if r is not representable. This is trivial, if r- a is not representa
ble. Otherwise, let a = k1r1 + k2r2; then to each different representation r — a = 
m1r1 + m2r2 corresponds a different representation of r = (kl + m1)rl + 
(fc2 + m2)r2 and (8) is proved. In particular, if r is one of the \{r1-l) 
(r2—1) non-representable integers then pR(r) = 0, and also pR(r — a) = 0. It 
is clear that all these values occur in the first two sums, as c> 1. Also in case 
a > crxr2 it is sufficient to consider only the first two sums, which now read 

(70 
c r ^ - ! a - l 

g(w)= X PR(U)W+ X (PR^-PR^-cr^))^^ 
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Indeed a -1 > \{a - 1 + crxr2) > D/2 and all coefficients ar with r < D/2 occur in 
the displayed sums. Exactly as before we verify that all coefficients are 
non-negative, and vanish if r is one of the \{rl-l)(r2-\) non representable 
integers. In fact, these occur now only in the first sum. We have shown that in 
all cases, the coefficients ar of ur are non-negative and that they vanish if r is 
non-representable, which is possible only for r < D / 2 . As g(u) is a reciprocal 
polynomial, the coefficients ar vanish also when D - r is non-representable. 

(iii) Proof of the complementary statements. The sum of the coefficients is 
obtained by letting u —> 1. If we divide each factor of g(u) by 1 - u and then let 
u —» 1 (or by L'HospitaPs rule) we obtain 

2, a r = h m g(u) = = ca. 

Next, one may verify that the Diophantine equation k1rl + k2r2 = r has 

+ 8 solutions in non-negative integers kl9 k2 where 8 = 1 or 0 accordingly 
r1r2J 

as the least positive residue of r (mod rxr2) is, or is not representable. Hence, in 
the first sums of (7) or (7'), 

crtr2-r 
PR(r)-

In the second sum of (7), 

PR(r)-pR(r-a)^pR(r) 

r^ro 
+ l = c. 

TiTo 
+ 1 < cr,r7-

while in the second sum of (7'), observing that 

r==r-crir2 (mod r ^ ) , pR(r)-pR(r-cr1r2) = 
7 i T 9 

c. 

This proves that max ar < c. In particular, for c = 1, the coefficients are either 0 
r 

or 1. With D1 = r1r2 + a — r1-r2 there are all together Dx + \ coefficients. Of 
these at least (r1 — l)(r2—\) = r1r2—r1 — r2+\ vanish, so that at most a coeffi
cients are different from zero. As the non-vanishing ones have the value one 
and the sum equal to a, it follows that none of the remaining coefficients 
vanishes, i.e., exactly a are equal to one and exactly (r1-l)(r2— 1) vanish. 
When c > 1, we may write 

g(u) = gc(u) = g1(u) X M , V 2 = I a(rCV, 
j = l ' = 0 
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where 

. (l-n^)(l-u«) S* (1) 
SiW = 7i 7U\ 77= L ay}u\ Dx = rxr2 + a-rx-r2. 

A comparison of the coefficients shows that a(f) = YJT' a$\ with the summation 
extended over all r' with 0<r'= r-jr1r2<D1, / = 0 , 1 , . . . , c - 1 . From a^) = 0 
or 1 it follows, in particular, that a[c) = 0 only if all a^} in the sum vanish. For 
this a necessary (not always sufficient) condition is that either r' or D1 — r' 
should be non-representable. In particular, it is necessary to have either r' or 
Dx - r' non-representable. The first condition (with / = 0) leads to the necessary 
condition: a(

r
c) = 0 for r<Dt only if r is non-representable. The second one 

(with / = c -1) requires for the vanishing of a(
r
c\ that Dx + (c - l ) r 1 r 2 - r = D - r 

should be non-representable. On the other hand, we already know that these 
coefficients in fact do vanish, and we have proved that a necessary and 
sufficient condition for ar(=a(

r
c)) to vanish is that either r or D-r be non-

representable. It is worthwhile to observe that the number of vanishing 
coefficients is always ( r 1 - l ) ( r 2 - l ) and is independent of c. 

Next, we observe that if we ignore the trivial cases (covered by Theorem 1 
(B)) when either rl>r2 is a factor of a, then, if a is representable, one has 
a>rx-\-r2 and r^^D^ It follows, in particular, that a(

r
c
i
)
r2 = a(o) + a(

r]
)
r2 = 2, so 

that the ( c - l ) r 1 r 2 + a non-vanishing coefficients are all equal to one precisely 
when c = l. This finishes the proof of Theorem 3 and of its first corollary. 
Corollary 2 follows trivially from Theorem 3. 

7. Proof of Theorem 4. By (5) 

C^ 1 PR(ap-m)W°\m)-q%(m)}. 
m=0 

For any l < p < ^ and l < m < a p , q(£)(m) = 0, while q(x)(m) = 0 if méA, 
q{l\m) = l if m = aqeA (q = 1, 2 , . . . ,p) ; also pR(0) = q2>(0) = l . Hence, 
Op = Pii(a

P)~Zq=i PR(a
P-~aq)- H, for any p < JLL, ap is not representable, then 

PR(ap) = 0 and Q = - ^ = 1 p R ( a p - a q ) < - p R ( 0 ) = - l and h(u) does not have 
only non-negative coefficients. 

8. Proof of Theorem 5. If we set td = u, then /(f) = h(u) = , the classical 

Gaussian polynomial, for which the non-negativity of the coefficients is well 
known (see e.g., [7]). 
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