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ABSTRACT. A model of icicle growth has been developed based on an analytical 
solution of the differential forms of the conservation of energy and mass . The problem 
has been formul a ted using dimensionless variables defined as the ra tios of the various 
heat fluxes which determine the icicle's growth . The evolution of the dimensionless 
icicle shape has been expressed as a function of the varia tion of the convective hea t 
transfer with icicle radius. The time interval needed for the icicle to reach its 
maximum length and the varia tion of the icicle mass and drip rate a re expressed in 
dimensionless form . 

NOMENCLATURE 

a slope of the icicle's la teral surface, Eq ua tion (17 ) 
A la teral surface a rea (m2

) 

B dimension less number, Equation (7) 
C dimensionless number, Equation (11 ) 
h convective heat transfer coefficient (Wm- 2 K - 1

) 

k coeffi cient, Equa tion (2) 
l icicle length (m ) 
L dimensionless icicle length, Equation (7) 
LF latent heat offreezing 0 kg- I) 

mI icicle mass (kg) 
m T total delivered wa ter mass (kg) 
M dimensionless mass, Equations (14) and (15) 
mD drip rate (kgs- I) 
mo suppl y rate (kgs- I) 

MD dimensionless drip rate, Equation (11 ) 
r icicle radius (m ) 
T o radius of liquid core = radius of pendant drop 

(assumed constant) (m ) 
R dimensionless icicle radius, Equa tion (4) 
T dimensionless time, Eq uation (4) 
Q hea t loss from the lateral surface of the icicle (W ) 
X dimensionless horizontal distance (radius) from icicle 

axis, Equation (19) 
Y dimensionless downward distance from the icicle 

root, Equa tion (20) 
b.T the difference between the surface and ai r 

temperature (K ) 
8 thickness of dendritic cylinder a t tip (assumed 

constant) (m ) 
p icicle density (kg m- 3

) 

Subscripts 

c 
o 
o 

R 

refers to the critical moment when dripping stops 
refers to the pendant drop 
refers to the liquid core 
refers to the icicle root 

INTRODUCTION 

Icicles occur most commonly when water fl ows from an 
overhang and the heat loss from the water is la rge enough 
for freezing to occur. The existence of icicles may be 
undesirable because they represent an addi tional load on 
a structure. They can also be dangerous when they fa ll . 
The modelling of icicle fo rmation is cha llenging since the 
wa ter fl ow is three-dimensional, and the heat transfer 
determines not only the amount of freezing but also the 
shape of the forming icicles. 

N umerical models of fresh wa ter icicles (M akkonen, 
1988) and brine icicles (Chung and Lozowski , 1990) have 
been developed . These models a re compara tively com
plex, the governing equations were solved numericall y, 
and consequentl y the results lack genera lity. R ecently, 

Szilder and Lozowski (1993) developed a stochastic 
computer model of icicle form ation, based on a con
ceptual model in which the water drops supplied to the 
icicle root move ra ndomly downwards a long the icicle's 
surface. During the downward motion of the drops, some 
freeze a long the way and others drip from the icicle's tip . 
This model predicts the details of the icicle's shape 
including the ra ndom occurrence of ribs on the icicle's 
surface . 

In this paper, an analytical approach to modelling 
icicle fo rmation is taken which provides additional insight 
into the growth process. Simple differenti al forms of the 
hea t and mass balance equations are solved analyticall y, 
and the res ults are presented in a general , time
dependent, dimensionless form . 

MODEL DESCRIPTION AND RESULTS 

In the model there a re two stages of icicle growth if the 
liquid suppl y ra te is constan t with time (M akkonen, 
1988). In the first stage, some of the supplied water freezes 
on the icicle's la teral surface and a t the tip. Any unfrozen 
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water drips from the tip. When the icicle reaches a critical 
length, all the suppli ed water freezes on the icicle's lateral 
surface, and there is no water avai lable at the tip ei ther to 
freeze or to drip. After this criti cal point, in the second 
stage, the icicle's length remains constant and the icicle 
grows only radially. 

Based on observations (e.g. Maeno and Takahashi, 
1984) it is assumed that the icicle elongates as a hollow 
conical tube of ice with unfrozen water trapped in a 
cylindrical core. The radius of th e liq uid core corresponds 
to the radius of the pendant drop and is 2.5 mm . It is 
observed that the water eventually freezes in the liquid 
core, possibly through hea t conduction towards the 
icicle 's root (Makkonen , 1988 ). This aspect of the 
freezing process is not considered in the present paper. 

In the model the total heat loss from the icicle's surface 
to the cold air is ex pressed as the prod uct of the heat 
transfer coefficient (which includ es heat loss by convec
tion and evaporation ) and the temperatu re difference 
between the icicle's surface and the air. The heat lost from 
the lateral surface of a horizontal sli ce of thickness dl and 
radius T is proportional to the amount of ice which forms . 
Thus: 

2rrTdlhtlTdt = pLFdld(rrT2) . (1) 

The relationship between the Nusselt number and the 
R eynolds number gives the variation of the convective 
hea t-transfer coefficient with icicle radius: 

Nu = cRek _ (To) l - k h- ha -
T 

(2) 

The coefficien t k increases wi th increasing R eynolds 
number from 0.33 (0.4 < R e < 4) to 0.80 (4 x 104 < R e 
< 4 x 105

) (Incropera and DeWitt, 1985) . If k is unity, 
the convective heat transfer coefficient is independen t of 
radius. Integration of Equation (I), using Equation (2), 
leads to an expression for the dimensionless icicle radius as 
a function of the dimensionless time: 

wh ere: 

1 
R = [(2 - k)T + 1]2- k 

T 
R=-· , 

To 

(3) 

(4) 

The icicle's radial growth rate decreases with time for any 
realistic value of the coefficient k (0 < k < I). Equation 
(3) may be applied for any horizontal section of the icicle, 
provided th e time is measured from the moment when the 
icicle tip reaches that section. 

The length growth of the icicle is calculated assuming 
th at heat is lost from a hemispherical pendant drop of 
radius To. The details of the dripping process are thus 
ignored in favour of a time-independent average 
geometry. This heat transfer leads to the downward 
growth of a hollow dendritic cylind er of thickness (j and 
radius To: 

(5) 

For simplicity, the influence of water supercooling on the 
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freezing process has been neglected. There is also some 
question as to the magnitude of the supercooling and how 
it arises. The dimensionless icicle length as a fun ction of 
dimensionless time is obtained by integrating Equation 
(5): 

where: 
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Fig. 1. Dimensionless profiles given by Equations (3) and 
(6) , oJ two icicles Jor a coefficient k of 0.33 and 1.0. 
Shapes are shown at three dimensionless time intervals 
T = 1,2,3. The dimensionless number B is 33. 

(6) 

(7) 

Using Equations (3) and (6), the changing profiles of an 
icicle are shown in Figure I for two values of the 
coefficient k. For simplicity, we have assumed in drawing 
the figures that the heat flux from the icicle tip is equal to 

the lateral heat flux from the icicle at radius To (i.e. 
hDtlTD = hotlT). In addition, th e thickness of the 
dendrite wall has been taken to be 751-lm (Makkonen, 
1988). With these values and a liq uid core radius of 
2.5 mm, the value of B is 33. As a result of the decreasing 
hea t loss from the growing icicle when k < I , the radial 
rate of growth decreases with time. However, the icicle 
shape, even for low values of the coefficient k (e.g. 
k = 0.33 ), does not deviate substantially from simple 
conical geometry. Nevertheless, the ratio of icicle length 
to icicle radius at the root increases with time if the 
convective heat transfer coeffici ent is a function of radius. 

The rate of change of the icicle 's mass is the difference 
between the supply rate and the drip rate. It is also the 
ratio of the heat loss from the entire icicle surface to the 
latent heat of freezing: 

dmr . . Q 
Tt = m o - mD = LF . (8) 

We assume here that the icicle loses heat only from its 
lateral surface. In tegration over this area, Equations (3) 
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and (6), leads to the following expression for the heat loss: 

2 

Q=7rho6.Tro2B(((2-k)T+1) 2- k- 1) . (9) 

Using Equations (8) and (9), the dimensionless drip rate 
may be obtained as a fun ction of dimensionless time: 

where: 

MD = 1 - BC( ((2 - k)T + 1)2':k - 1) (10) 

. mD 
MD =-.

mo 
C = 7rhoD.Tro2 

moLF 
(11) 

The drip rate decreases with time because more of the 
constant water supply freezes on the increasing la tera l 
surface of the icicle. For small values of the coeffi cient k, 
the rate of freezing decreases rapidly with radius, and 
consequently the drip rate decreases slowly with time 

(Fig. 2). If the magnitude of the heat flux increases or the 
supply rate decreases, the dimensionless product of B and 
C increases and the dimensionless drip rate decreases 
faster with time. Since the heat flux expression is also 
included in the definition of the dimensionless time, 
Equation (4), even for a constant dimensionless time, an 
increase of the heat flux leads to a d ecrease in the actua l 
time to achieve a cer tain drip ra te. 
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Fig. 2. Dimensionless drip rate as a function of 
dimensionless time, Equation ( 10), for two values of the 
product BC, 0.005 and 0.010, and two values of the 
coefficient k, 0.33 and 1.0. 

When the drip rate reaches zero, the icicle ceases to 
grow in length because there is no more water available a t 
the icicle tip to freeze. The critical dimensionless time at 

which dripping just stops may be calculated from 
Equation (10), by setting MD = 0: 

2- k 
-1 + (1 + ...L)-2 To - BC 

c - 2-k (12) 

If the supply rate increases or the heat flux decreases, the 
time required to reach the critical state increases (Fig. 3) . 
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Fig. 3. Dimensionless critical time as a function of the 
product BC, Equation (12) , Jor three values of the 
coefficient k. 

If the heat transfer decreases slowly with increasing 
radius, the critical time is shorter. However , if BC is 
large, the critical time is independent of k, a nd is simply 
0.5 /BC. At this critical moment, the icicle radius at the 
root has a certain critical valu e and the icicle length 
reaches a maximum: 

2- k 
- 1 + (1 + ...L)- 2 

L =B BC 
c 2-k 

(13) 

Interestingly, the critical radius of the icicle roo t is 
independent of k, that is, it is independent of the way the 
heat flu x changes with rad ius. 

The icicle mass as a function of time may a lso be 
calculated. Integrating Equation (8) and using Equation 
(9), the temporal variation of the dimensionless icicle 
mass during the first stage when dripping occurs is given 
by: 

~ B 4 -~ 3 
MJ =-- (((2 - k)T + 1) 2- k - 1) - -BT 

4-k 4 
where: 

(14) 

It can readily be seen that the dimensionless icicle 
mass is simply the number of drops of radius ro forming 
the icicle. The rate of icicle mass growth increases with 
time and is greater for la rger values of the coeffi cient k 
(Fig. 4) . The mass growth rate reaches a maximum when 
dripping stops and it is equal to the suppl y rate. 

The cumulative mass of water delivered to the icicle 
root is a linear fun ction of time since the supply rate is 

assumed to be constant. H ence: 

3 
MT=-T 

4C 
where (15) 

Since the d efinition of dimensionless time involves the 
externa l heat flux , the dimensionless number C must also 
appear in Eq uation (15) in order to eliminate any 
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Fig . 4. Dimensionless icicle mass as a Junction of 
dimensionless time. T he icicle mass IvIr, Equation (14), 
is depicted by the solid lines Jar two values oJ k, 0.33 and 
1.0. T he critical state at which drijJjJing stops is 
represented b)1 the do ts. T he cumulative delivered water 
mass IvIr, Equation (15), is represented by dashed line. 
The dimensionless number B is 33 and C is 0.001 . 

influence of the heat nu x on the delivered water mass . 
The variati on of the dim ension less tota l deli ve red mass, 
which may be interpreted as th e number of drops 
deli vered to th e icicle roo t, is shown for C equal to 
0.001 in Figure 4. 

The ratio of th e icicle mass to th e tota l delivered wa ter 
mass a t the critical tim e is: 

2-k BC 
4 - k' 2-k 

- l +(l +ic) 2 

4- k 

. [( 1 + ;C) - 2 - 1] - BC (16) 

Thus the icicle mass represents 33.3 to 50% of the tota l 
deli vered wa ter mass when dripping stops (Fig. 5) . A 

0 0.50 

~ 
< 0.33 P::: 
C/J 0.45 
C/J 
<t 
~ 
--1 
<t 0 .40 08 u 
b 
22 
u 1.0 0.35 

O. 30 L-~.....L~~'---~.....L~~'--~....L-~.......J 

10 - 5 10- 4 10 - 3 10 - 2 10- 1 lOO 10 1 

DIMENSIONLESS PRODUCT BC 

Fig. 5. The ratio of icicle mass to cumulative delivered 
liquid mass at the critical time, Equation (16), as a 
Junction oJ the dimensionless product BC, Jar three values 
o.f the coifficient k. 
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more effi cient hea t loss from the icicle surface or a smaller 
suppl y ra te leads to an increase of this rela ti ve criti ca l 
icicle mass . In addition, if the convec tive heat nux 
dec reases rapidl y with radius, the rela ti ve icicle mass also 
increases. This occ urs because smaller values of the 
coefficient k mean more time is needed to reach th e 
criti cal roo t radius, which is ind epend ent of k. During this 
grea ter time, the icicle leng th a nd icicle mass increase. We 
can see therefore th a t icicles a re q uite efTi cient in 
converting liquid wa ter to ice, provid ed th a t they grow 

until they stop dripping. 
The evolution of the icicle's sha pe after dripping 

stops a nd a ll the incoming wa ter freezes on the icicle 
surface has a lso been inves tigated. T o simplify the 
ensuing calcul-a ti ons, it is assumed tha t the vertica l 
cross-sec ti on of th e growing porti on of the la tera l icicle 
surface can be a pproxima ted by a stra ight line, fo r any 
value of the coeffi cient k . Figure I shows tha t this 
ass umption is reasona ble even fo r a k of 0. 33. It is fur ther 
ass umed tha t th e hea t nux is cons tant, a nd hence th a t 
the ex tent of the a rea on which the water fi"eezes is 
ind ependent of time. Thus th e wa ter freezes in uniform 

layers, a nd the la teral surface of th e g rowing icicle 
remains pa rallel to the surface a t the cri ti cal tim e. In th e 
o ther wo rds, the slope of a n icicle surface close to the roo t 
rema ins consta n t. 

At the criti cal time, wa ter freezes on th e entire la tera l 
icicle surface . This a rea can be approxima ted as the 
difference between the la teral surface of a cone of rad ius 
TIle and heigh t ar RC (a is the slope of the icicle's la tera l 
surface ) a nd th e a rea of a cone of radius ro and leng th 
aro : 

This consta n t a rea Ac is exp ressed as a function of the 
radius of the icicle's roo t TR a nd th e dista nce x from the 
icicle's ax is to the freez ing front, ass uming a constant 
slope of the icicle's surface . The freezing front is the 
location a long the icicle wall beyond which there is no 
flow of liquid wa ter. Thus Ac is give n by: 

Comparing Eq ua ti ons (17) a nd (18) , the d imensionless 
distance from th e icicle axis to its retrea ting (ascending) 
freezing front is give n by: 

where (19) 

It may easil y be shown tha t the dimensionless verti cal 
coordinate of the freezing front is given by: 

where Y = JL 
To 

(20) 

Eq ua tions (19) and (20) yie ld th e vari a ti on of the 
dimensionless loca ti on of the freezing front with d imen
sionless icicle root radius, which in turn is a fun ction of 
time, Equa ti on (3) . 
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Elimina ti on of th e icicle roo t radius leads to a time
indepe ndent fun c ti on d esc ribing th e fin a l sha pe of th e 
ic icle: 

x = _ R RC - 1 Y Le( R RC + 1) 
2Lc + 2Y 
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Fig. 6. The dimension less Jmifiles oJ Iwo icicles afleT 
dripping slojJs. The icicle shapes are shown al .five time 

intervals Tc, ... , 5Tc, Equations ( 19) and (20 ) , and the 

Jinal contollrs are also displayed, Equation (21). The 
dimensionless number B is 33, C is 0.002, and k is 0.33 
and 1.0. 

Fig ure 6 shows th e icicle sha pe when dripping stops a nd 

th ereafte r for two values of th e coe ffi cient k a nd consta nt 

\'alues of B = 33 a nd C = 0 .002. Since th e criti cal 
dim ension less roo t radius d oes no t d epend on th e value o f 
k, Eq ua ti o n ( 13), b u t a longe r tim e interva l is need ed to 
reac h thi s c riti ca l size for sma ll er k , th e c riti ca l icicle 
leng th is la rger for k = 0. 33 . The criti cal time is 5.5 l 3 

a nd 3 .01 2 fo r k of 0.33 a nd I , res pective! y. The shapes for 

Tc, . . . ,5Tc a re plotted fo r th e two cases . N ote th a t th e 
sca le is no t th e same for X a nd Y. 

Some q ua lita ti ve compa risons of th e prese nt mod el 
results with experiments a nd o th er mod els have been 
acco mpli shed . Experim ents show (M aeno a nd T a ka

has hi , 1984) th a t with a consta nt suppl y ra te, th e ic icle

leng th growth rate is a lmos t cons ta n t a nd th a t th e rad ia l 
g rowth ra te has a tendency to d ec rease with time. J n 
additi on , th e num eri cal mod el ofM a kko nen ( 1988) sh ows 
th a t th e ra te of icicle m ass g rowth increases gradua ll y 
with time a nd reaches a max imum when dripping stops. 

A simila r time-depend ent behavio ur is predic ted by th e 

present a nalyti cal mod el. The ex periments a lso show 

Szilder and Loz:.owsk1: : An analytical model of icicle growth 

(l\f aeno a nd T a ka hashi , 1984) th a t cha nges of the supp ly 
ra te may inOuence th e ic icle leng th , bu t th a t th e di a meter 
is independ ent of th e suppl y ra te. The p resent mod el 
predi cts insensiti vity of th e icicle di a meter to th e suppl y 
ra te; however, as a res ult of neglec ting supercoo li ng, th e 

leng th growth ra te in th e mod el is a lso insensitive to the 
suppl y ra te. Both ex perim enta l results and our model 
show th a t a n increase in th e hea t tra nsfer from the icicle 
leads to a n increase of both th e icic le di a meter and leng th. 

CONCLUSIONS 

A simple a na lytical mod el has been pro posed w hi ch 
successfull y emula tes som e of th e ma in fea tures of th e 
ic icle g rowth process. The mod el predic ts th e tim e
d epend ent evolution of th e dim ension less icicle shape, 

size, drip ra te and mass . It provid es some general insight 

whi ch wo uld be ha rd to obta in from experiments or 
num eri cal mod els. The a na lyti ca l so lution shows, for 
example, th a t a t th e moment when dripping stops, 33 to 

50% of th e \\'a ter d eli\'e red to th e icicle ac tu a ll y forms th e 

icicle, the res t of th e wa ter ha ving dripped from th e tip. In 
spi te of its si m plici ty, th e mod el predi c ts realistic ic icle 
sha pes, a nd th e va ri a ti on of some ic icle pa ram eters agrees 
qu a lita ti ve ly with experimellla l res ults a nd with other 
ic icle mod els. 
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