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Abstract

The classes of prestarlike functions /?„, oc^ — 1, were studied recently by St. Ruscheweyh.
The author generalizes and extends these classes. In particular the author obtains the radius of
Ra+1 for the class Ra, <x> -1.
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1. Introduction

Let A denote the set of analytic functions/(z) in the unit disc E: {|z|< 1} normalized
by/(0) = 0,/'(0) = l.Let

(1.1) = / ( 2 ) * _ _ £ _ , a>_h

where * denotes the Hadamard product (convolution) of two analytic functions
in E. A function feA is called prestarlike of order a, <x^ — 1, if and only if

We let Ra stand for the collection of prestarlike functions of order a.
Note that RQ and Rx are known classes of univalent functions that are starlike

of order \ and convex respectively.

The author acknowledges partial summer support from the Faculty Research Committee at
Bowling Green State University.
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Prestarlike functions, in a different parametrization, have already been studied
by Ruscheweyh (1977) and also by Suffridge (1976). The subclasses of Ra where a
is a non-negative integer were considered earlier by Ruscheweyh (1975).

Ruscheweyh (1977) obtained the basic relation

(1.3) K^Xfl, oc^Pz-l.

Consequently all prestarlike functions of order a are univalent at least when a ̂  0.
In this note we introduce the classes Ha where feHa infeA and if

Da+1f(z) 1
(14) ^ f
for some geRa+1. Note that when a = 0, (1.4) shows that Re [f'(z)lg'(z)] > i for
some convex function g(z). Thus f(z) is a univalent close-to-convex function
(Kaplan (1952)).

In Section 2 we shall show that Ha+1c/?a, a^ — 1. This particular result implies
univalency of these classes at least when a = 0,1,2,.... In Section 3 we study
special elements of Ra and Ha which have certain integral representation. In
Sections 4 and 5 we consider the converse problems of the results of Sections 2
and 3. In particular the radius of Ra+1 in Ra, a^ — 1, is determined. Section 6 is
devoted to further extensions and generalizations of the classes Ra and Ha along
the concept of alpha-convex functions as introduced by Mocanu (1969).

2. The classes Ha

We shall prove the following

THEOREM 1. Ha+1<=Ha, a> - 1 .

PROOF. Let feHa+1 and geRa+2 be its associate function, see (1.4). Define
w(z) by

(2.1)
"l + w(z)'

Here w(z) is a regular function in E with w(0) = 0 and w(z)^ - 1 for zeE. Since
by (1-1) g£Ra+i then geRa+1 it suffices to show that |»v(z)|<|, zeE.

Taking the logarithmic derivative of both sides of (2.1) and utihzing the identity

m\ z _ z ^ [ a z | l z ]
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one gets

£ / ( z ) _ 1 z w ' j z )

Equations (2.3) should yield |w(z)|<l for all zeE, for otherwise by a lemma of
Jack (1971) there exists zoeE such that zow'(zo) = mw(z0), |H>(ZO)| = 1 and
Applying this result to (2.3) we get

Da+2f(z0) = _ J mw'(z0) D<*+Ig(zo)
D«+2g(z0) l + w(z0) (oc

Since

R ,
- 2 ' KeD«+ig(z0)

 >2
and w(zo)/(l + w(z0))

2 is real and positive, we conclude that

This is a contradiction to the assumption that/Gi?a + 1 . Hence/eH a when a > — 1.
The case a = — 1 is simple. Since

for some

g G Rx (convex) => R e ^ > -

by a generalization of a lemma due to Libera (1965). Thus feH_v This complete
the proof of Theorem 1.

REMARK 1. Theorem 1 provides a partial answer to a much deeper problem of
whether Ha<=Hfi for all oc^fi^ - 1.

REMARK 2. Another interesting problem is that of determining a,, = inf a where
every fe Ra is univalent in E. It is clear that — K a.o < 0.

3. Special elements of Ra and Ha

Let

(3.1) A ( z ) = 2 ^ i l z * , Rey^Jct, Rey>-1 .
j y + j
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The following is a straightforward extension of Ruscheweyh (1975), Theorem 5.

THEOREM 2. Let R e y ^ i ( a - l ) , y^-l. Then FeRa where

F(z) =f(z)*hY(z) = l-±l ['tr-if(t)dt
z' Jo

andfeRa. In particular hy{z) (as given by (3.1)) are elements of Ra.

We state without proof the following extension of Theorem 2, since its proof
uses basically the same method that we employed in the proof of Theorem 1.

THEOREM 3. Let R e y ^ \<x and let fe Ha. Then FeH^ where

F(z)=/(z)*Ar(z) = i±2

REMARK 3. Theorems 2 and 3 extend and generalize some pioneering results of
Libera (1965).

4. The radius of R
a+1

In this section we raise the natural question of finding the largest disc
Er: {\z\<r},0<r^l, so that if fe Ra then

Theorem 4 provides a partial answer to this rather interesting problem.

THEOREM 4. LetfeRa, «> — 1. Then

DAz) I
zy+Vt) 2

holds for | z | < ra where

(4.1) ra =

This result is sharp.

PROOF. Forfe Ra, let p(z) be the regular function defined in E by

Da+1f(z)
( 4 2 )

Here/>(0) = 1 and Re/>(z)>0 in E.
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Logarithmic differentiation of (4.2) and the identity (2.2) should yield

In order to find ra we need to determine the absolute minimum of the right-hand
side of (4.3) as p(z) varies in the disc \p(z)—a \ < p where

1+r2 2r , .

However, the right-hand side of (4.3), denoted by ipiw^ w^, wx = p(z), w2 = zp'(z),
is analytic in the wa-plane and in the half-plane Rew1>0. Consequently by
Robertson (1963) the min Re ift(p, zp') should occur for functions in the form

(4.4)

We may now use the technique of ZmoroviS (1969) to conclude that

(4.5) min Re fa, zp') s ^(p) = \ [R*P{Z) - _ i - ^

wherePo = \p(z)-a\<p. Letp(z) = a+g + iii,p(z) + l = Re\R2 = (a+ £+ \f+tf.
Then we can readily show that minif)p(p) in the disc \p—a\<p is achieved on the
diameter of the circle \p — a\ = p, that is when rj = 0. Thus our problem is reduced
to minimizing l(R) on the segment a— p + l^R^a+p + l, where

(4.6) l(R) S ^ , (0 = ^ ~ [(a + 3) R - (a + 4 + 2a) + 2(1 + a) R'1].

Clearly this minimum must occur for R = R, where

(4.7) £ = (2 + 2a)*(<*+3)-±.

While R<a + p+l is always true, R>a — p+1 is valid only when

(4-8) r>a-±±.
' a + 4

Consequently (4.6) and (4.7) show that l(R) = 0 if

which upon replacing a by (1 +r2)/(l —r2) we get ra, as given by (4.1), as the smallest
positive root. ra in this case is the desired radius provided it satisfies (4.8). However,
this is obviously true.

On the other hand, if R^a—p+1 then the absolute minimum of l(R) on the
closed diameter occurs at a—p +1. In this case l(a—p+1) = 0 shows that ra= 1.
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Because of what we have mentioned above ra = 1 would be the desired radius if
1 = r a < ( a + 2)/(a + 4) which is impossible. Hence ra as given by (4.1) is the radius
of Ra+1 for the class Ra, a ^ - 1 .

To determine the extremal function fg(z) we note that (4.4) can be written in the
form

p(z) = Ax(

where tfi1 + ip% = 0 (mod 2TT). Hence

p(z) = a+pcosif/1+ip{ Ax — Aa) sin i

Since the minimum of l(R) was realized at a point on the diameter which is not an
endpoint, it then follows from the above that sin ̂ ^ 0 while Ax— Ag = 0 or X1 = Ag.
Consequently the corresponding form of p(z) for/0(z) is

Thus the extremal functions are rotations of fo(z) which is determined by

£a + 1/o00 P(z) +1 1-zcosg
2

where cos 6 is the solution of

R = Re(p(z) +1) = 1 +(1 -

ra, R are given by (4.1) and (4.7), respectively. This completes the proof of this
theorem.

REMARK 4. Interesting special cases correspond to a = 0, — 1. For a = 0,
r0 = (2.3* —3)* is the radius of convexity for the class of starlike functions of
order \. This is a well-known result due to MacGregor (1963).

5. Some converse theorems

In this section we consider the converse of Theorems 2 and 3.

THEOREM 5. Let FeRa, <x^0 and F = Rey>K<*-l)- Let f(z) be the unique
solution of F{z) = hy{z) */(z) where hy{z) is given by (3.1). Then

D«+V(z) I
R e >
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is valid in \ z\ < ra7, when ray is the smallest positive root of

(5.1) (r-a)r
2 + (a + 3)r-r-l=0.

This result is sharp.

PROOF. Let q(z) be the regular function in E defined by

(5.2)

Here q(0) = 1 and Re q(z) > £ for z e E. A simple generalization of a result in the
proof of Ruscheweyh (1975), Theorem 5, shows that

2 ^ ' 2 ^

However, it is well known that for \z\ = r< 1

(5.4) | ^ ' ( z ) | < i ^

Thus (5.3) and (5.4) give for \z\ = r

Now the right-hand side of (5.5) is positive provided that r<ra7 where ra y is the
smallest positive root of (5.1).

For sharpness we consider F{z) = z/(l — z). In this case

It is a simple matter to verify that

(zr JD«+1 F(z))' = (1 + y) zr-i D<*+If(z)

and

)' = (1 +y)zr-1 Daf(z).

Using these for our special functions/(z) and F(z), we obtain

z) \ ( l - z ) a + 2 / / \ ( 1 -

- + ;
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and consequently

This completes the proof of this theorem.

Next theorem is a converse of Theorem 3 in the sense of Theorem 5. This
theorem follows from (2.3) and Theorem 5 and we omit the proof.

THEOREM 6. Let FeHa and GeRa+1 be its associate function. Let f and g be the
unique solution of F(z) = hy(z) *f(z) and G(z) = hy(z) *g(z) with F = Rey ̂  i<x,
respectively. Then

2

for \z\< Raty, where Ra>y is the smallest positive root of

(r-a-l)r2 + (a + 4)r-r-l =0.

This result is also sharp.

REMARK 5. Theorems 5 and 6 generalize and extend similar results of Livingston
(1966).

6. Extensions of the classes Ra and H
a

In this section we extend the notion of prestarlikeness and of its generalization
along the concept of alpha-convex functions as introduced by Mocanu (1969).

We say/e/?a(j3), «> - 1 iffeA and

and for some j8 > 0.
We also say that feHa(p), a > — 1, if'feA and if exists g e Ra+Z such that

and for some |3 ̂  0.
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A proof similar to that used in Theorem 1 should yield these results:

THEOREM 7. (a) i?a(y3)c/?a, «> - 1 , jteO, (b) Ha(p)^Ha, <x> - 1 , j8>0.

When a = 0,1,2,... part (a) was shown by Al-Amiri (1978). Part (b) reduces to

Theorem 1 when /J = 1.

Also using the technique of Theorem 4 one can easily prove:

THEOREM 8. LetfeRa, a > — 1. Then

holds for \z\< ra(fi) where ra(/3) is given by

ra(/3) = (a+2-2£+2A)*(« + 2 + 2i8+2A)-i) A = (]8(a+2+j8))*.

The result is sharp.

The case a. = 0,1,2,.. . was treated by Al-Amiri (1978). We also note here that

Theorem 8 reduces to Theorem 4 when /? = 1.
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