CERTAIN GENERALIZATIONS OF PRESTARLIKE FUNCTIONS

H. S. AL-AMIRI

(Received 16 April 1978; revised 31 July 1979)
Communicated by E. Strzelecki

Abstract

The classes of prestarlike functions $R_{\alpha}, \alpha \geqslant-1$, were studied recently by St. Ruscheweyh. The author generalizes and extends these classes. In particular the author obtains the radius of $R_{\alpha+1}$ for the class $R_{\alpha}, \alpha \geqslant-1$.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 C 45

Keywords and phrases: Univalent functions, prestarlike function, Hadamard product.

1. Introduction

Let A denote the set of analytic functions $f(z)$ in the unit disc $E:\{|z|<1\}$ normalized by $f(0)=0, f^{\prime}(0)=1$. Let

$$
\begin{equation*}
D^{\alpha} f(z)=f(z) * \frac{z}{(1-z)^{\alpha+1}}, \quad \alpha \geqslant-1, \tag{1.1}
\end{equation*}
$$

where $*$ denotes the Hadamard product (convolution) of two analytic functions in E. A function $f \in A$ is called prestarlike of order $\alpha, \alpha \geqslant-1$, if and only if

$$
\begin{equation*}
\operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}>\frac{1}{2}, \quad z \in E . \tag{1.2}
\end{equation*}
$$

We let R_{α} stand for the collection of prestarlike functions of order α.
Note that R_{0} and R_{1} are known classes of univalent functions that are starlike of order $\frac{1}{2}$ and convex respectively.

The author acknowledges partial summer support from the Faculty Research Committee at Bowling Green State University.

Prestarlike functions, in a different parametrization, have already been studied by Ruscheweyh (1977) and also by Suffridge (1976). The subclasses of R_{α} where α is a non-negative integer were considered earlier by Ruscheweyh (1975).

Ruscheweyh (1977) obtained the basic relation

$$
\begin{equation*}
R_{\alpha} \subset R_{\beta}, \quad \alpha \geqslant \beta \geqslant-1 . \tag{1.3}
\end{equation*}
$$

Consequently all prestarlike functions of order α are univalent at least when $\alpha \geqslant 0$.
In this note we introduce the classes H_{α} where $f \in H_{\alpha}$ in $f \in A$ and if

$$
\begin{equation*}
\operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha+1} g(z)}>\frac{1}{2}, \quad z \in E, \quad \alpha \geqslant-1, \tag{1.4}
\end{equation*}
$$

for some $g \in R_{\alpha+1}$. Note that when $\alpha=0$, (1.4) shows that $\operatorname{Re}\left[f^{\prime}(z) / g^{\prime}(z)\right]>\frac{1}{2}$ for some convex function $g(z)$. Thus $f(z)$ is a univalent close-to-convex function (Kaplan (1952)).

In Section 2 we shall show that $H_{\alpha+1} \subset H_{\alpha}, \alpha \geqslant-1$. This particular result implies univalency of these classes at least when $\alpha=0,1,2, \ldots$. In Section 3 we study special elements of R_{α} and H_{α} which have certain integral representation. In Sections 4 and 5 we consider the converse problems of the results of Sections 2 and 3. In particular the radius of $R_{\alpha+1}$ in $R_{\alpha}, \alpha \geqslant-1$, is determined. Section 6 is devoted to further extensions and generalizations of the classes R_{α} and H_{α} along the concept of alpha-convex functions as introduced by Mocanu (1969).

2. The classes H_{α}

We shall prove the following
Theorem 1. $H_{\alpha+1} \subset H_{\alpha}, \alpha \geqslant-1$.
Proof. Let $f \in H_{\alpha+1}$ and $g \in R_{\alpha+2}$ be its associate function, see (1.4). Define $w(z)$ by

$$
\begin{equation*}
\frac{D^{\alpha+1} f(z)}{D^{\alpha+1} g(z)}=\frac{1}{1+w(z)} \tag{2.1}
\end{equation*}
$$

Here $w(z)$ is a regular function in E with $w(0)=0$ and $w(z) \neq-1$ for $z \in E$. Since by (1.1) $g \in R_{\alpha+2}$ then $g \in R_{\alpha+1}$ it suffices to show that $|w(z)|<\mid, z \in E$.

Taking the logarithmic derivative of both sides of (2.1) and utilizing the identity

$$
\begin{equation*}
\frac{z}{(1-z)^{\alpha+2}}=\frac{z}{(1-z)^{\alpha+1}} *\left[\frac{\alpha}{\alpha+1} \frac{z}{1-z}+\frac{1}{\alpha+1} \frac{z}{(1-z)^{2}}\right], \quad \alpha>-1, \tag{2.2}
\end{equation*}
$$

one gets

$$
\begin{equation*}
\frac{D^{\alpha+2} f(z)}{D^{\alpha+2} g(z)}=\frac{1}{1+w(z)}-\frac{z w^{\prime}(z)}{(\alpha+2)(1+w(z))^{2}} \frac{D^{\alpha+1} g(z)}{D^{\alpha+2} g(z)} \tag{2.3}
\end{equation*}
$$

Equations (2.3) should yield $|w(z)|<1$ for all $z \in E$, for otherwise by a lemma of Jack (1971) there exists $z_{0} \in E$ such that $z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right),\left|w\left(z_{0}\right)\right|=1$ and $m \geqslant 1$. Applying this result to (2.3) we get

$$
\frac{D^{\alpha+2} f\left(z_{0}\right)}{D^{\alpha+2} g\left(z_{0}\right)}=\frac{1}{1+w\left(z_{0}\right)}-\frac{m w^{\prime}\left(z_{0}\right)}{(\alpha+2)\left(1+w\left(z_{0}\right)\right)^{2}} \frac{D^{\alpha+1} g\left(z_{0}\right)}{D^{\alpha+2} g\left(z_{0}\right)} .
$$

Since

$$
\operatorname{Re} \frac{1}{1+w\left(z_{0}\right)}=\frac{1}{2}, \quad \operatorname{Re} \frac{D^{\alpha+2} g\left(z_{0}\right)}{D^{\alpha+1} g\left(z_{0}\right)}>\frac{1}{2}
$$

and $w\left(z_{0}\right) /\left(1+w\left(z_{0}\right)\right)^{2}$ is real and positive, we conclude that

$$
\operatorname{Re} \frac{D^{\alpha+2} f\left(z_{0}\right)}{D^{\alpha+2} g\left(z_{0}\right)}<\frac{1}{2} .
$$

This is a contradiction to the assumption that $f \in R_{\alpha+1}$. Hence $f \in H_{\alpha}$ when $\alpha>-1$.
The case $\alpha=-1$ is simple. Since

$$
f \in H_{0} \Rightarrow \operatorname{Re} \frac{f^{\prime}(z)}{g^{\prime}(z)}>\frac{1}{2}
$$

for some

$$
g \in R_{1} \text { (convex) } \Rightarrow \operatorname{Re} \frac{f(z)}{g(z)}>\frac{1}{2}
$$

by a generalization of a lemma due to Libera (1965). Thus $f \in H_{-1}$. This complete the proof of Theorem 1.

Remark 1. Theorem 1 provides a partial answer to a much deeper problem of whether $H_{\alpha} \subset H_{\beta}$ for all $\alpha \geqslant \beta \geqslant-1$.

Remark 2. Another interesting problem is that of determining $\alpha_{0}=\inf \alpha$ where every $f \in R_{\alpha}$ is univalent in E. It is clear that $-1 \leqslant \alpha_{0} \leqslant 0$.

3. Special elements of R_{α} and H_{α}

Let

$$
\begin{equation*}
h_{\gamma}(z)=\sum_{j=1}^{\infty} \frac{\gamma+1}{\gamma+j} z^{j}, \quad \operatorname{Re} \gamma \geqslant \frac{1}{2} \alpha, \quad \operatorname{Re} \gamma>-1 . \tag{3.1}
\end{equation*}
$$

The following is a straightforward extension of Ruscheweyh (1975), Theorem 5.
Theorem 2. Let $\operatorname{Re} \gamma \geqslant \frac{1}{2}(\alpha-1), \gamma \neq-1$. Then $F \in R_{\alpha}$ where

$$
F(z)=f(z) * h_{\gamma}(z)=\frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t
$$

and $f \in R_{\alpha}$. In particular $h_{\gamma}(z)$ (as given by (3.1)) are elements of R_{α}.
We state without proof the following extension of Theorem 2, since its proof uses basically the same method that we employed in the proof of Theorem 1.

Theorem 3. Let $\operatorname{Re} \gamma \geqslant \frac{1}{2} \alpha$ and let $f \in H_{\alpha}$. Then $F \in H_{\alpha}$ where

$$
F(z)=f(z) * h_{\gamma}(z)=\frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t
$$

Remark 3. Theorems 2 and 3 extend and generalize some pioneering results of Libera (1965).

4. The radius of $R_{\alpha+1}$

In this section we raise the natural question of finding the largest disc $E_{r}:\{|z|<r\}, 0<r \leqslant 1$, so that if $f \in R_{\alpha}$ then

$$
\operatorname{Re} \frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}>\frac{1}{2}, \quad \beta>\alpha, \quad z \in E_{r}
$$

Theorem 4 provides a partial answer to this rather interesting problem.
Theorem 4. Let $f \in R_{\alpha}, \alpha \geqslant-1$. Then

$$
\operatorname{Re} \frac{D^{\alpha+2} f(z)}{D^{\alpha+1} f(z)}>\frac{1}{2}
$$

holds for $|z|<r_{\alpha}$ where

$$
\begin{equation*}
r_{\alpha}=\left(\alpha+2(\alpha+3)^{\frac{1}{1}}\right)^{\frac{1}{2}}\left(\alpha+4+2(\alpha+3)^{\frac{1}{2}}\right)^{-\frac{1}{2}} \tag{4.1}
\end{equation*}
$$

This result is sharp.
Proof. For $f \in R_{\alpha}$, let $p(z)$ be the regular function defined in E by

$$
\begin{equation*}
\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}=\frac{1}{2}(p(z)+1), \quad z \in E, \quad \alpha \geqslant-1 \tag{4.2}
\end{equation*}
$$

Here $p(0)=1$ and $\operatorname{Re} p(z)>0$ in E.

Logarithmic differentiation of (4.2) and the identity (2.2) should yield

$$
\begin{equation*}
\frac{D^{\alpha+2} f(z)}{D^{\alpha+1} f(z)}-\frac{1}{2}=\frac{1}{2(\alpha+2)}\left[1+(1+\alpha) p(z)+2 \frac{z p^{\prime}(z)}{p(z)+1}\right] \tag{4.3}
\end{equation*}
$$

In order to find r_{α} we need to determine the absolute minimum of the right-hand side of (4.3) as $p(z)$ varies in the disc $|p(z)-a|<\rho$ where

$$
a=\frac{1+r^{2}}{1-r^{2}}, \quad \rho=\frac{2 r}{1-r^{2}}, \quad|z|=r
$$

However, the right-hand side of (4.3), denoted by $\psi\left(w_{1}, w_{2}\right), w_{1}=p(z), w_{2}=z p^{\prime}(z)$, is analytic in the w_{2}-plane and in the half-plane $\operatorname{Re} w_{1}>0$. Consequently by Robertson (1963) the $\min \operatorname{Re} \psi\left(p, z p^{\prime}\right)$ should occur for functions in the form

$$
\begin{equation*}
p(z)=\lambda_{1} \frac{1+e^{i \theta} z}{1-e^{i \theta} z}+\lambda_{2} \frac{1+e^{-i \theta} z}{1-e^{-i \theta} z}, \quad \lambda_{1}+\lambda_{2}=1, \quad \lambda_{1} \geqslant 0, \quad \lambda_{2} \geqslant 0 . \tag{4.4}
\end{equation*}
$$

We may now use the technique of Zmorovič (1969) to conclude that

$$
\begin{equation*}
\min \operatorname{Re} \psi\left(p, z p^{\prime}\right) \equiv \psi_{\rho}(p)=\frac{1}{2}\left[\operatorname{Re} p(z)-\frac{1}{(\alpha+2)} \frac{\rho^{2}-\rho_{0}^{2}}{|p(z)+1|}\right], \tag{4.5}
\end{equation*}
$$

where $\rho_{0}=|p(z)-a|<p$. Let $p(z)=a+\xi+i \eta, p(z)+1=R e^{i \varphi}, R^{2}=(a+\xi+1)^{2}+\eta^{2}$. Then we can readily show that $\min \psi_{\rho}(p)$ in the disc $|p-a|<\rho$ is achieved on the diameter of the circle $|p-a|=\rho$, that is when $\eta=0$. Thus our problem is reduced to minimizing $l(R)$ on the segment $a-\rho+1 \leqslant R \leqslant a+\rho+1$, where

$$
\begin{equation*}
l(R) \equiv \psi_{\rho}(\xi)=\frac{1}{2(\alpha+2)}\left[(\alpha+3) R-(\alpha+4+2 a)+2(1+a) R^{-1}\right] \tag{4.6}
\end{equation*}
$$

Clearly this minimum must occur for $R=\bar{R}$, where

$$
\begin{equation*}
\bar{R}=(2+2 a)^{\frac{1}{2}}(\alpha+3)^{-\frac{1}{2}} . \tag{4.7}
\end{equation*}
$$

While $\bar{R}<a+\rho+1$ is always true, $\bar{R}>a-\rho+1$ is valid only when

$$
\begin{equation*}
r>\frac{a+2}{\alpha+4} \tag{4.8}
\end{equation*}
$$

Consequently (4.6) and (4.7) show that $l(\bar{R})=0$ if

$$
4 a^{2}-4(\alpha+2) a+\alpha^{2}-8=0
$$

which upon replacing a by $\left(1+r^{2}\right) /\left(1-r^{2}\right)$ we get r_{α}, as given by (4.1), as the smallest positive root. r_{α} in this case is the desired radius provided it satisfies (4.8). However, this is obviously true.

On the other hand, if $\bar{R} \leqslant a-\rho+1$ then the absolute minimum of $l(R)$ on the closed diameter occurs at $a-\rho+1$. In this case $l(a-\rho+1)=0$ shows that $r_{\alpha}=1$.

Because of what we have mentioned above $r_{\alpha}=1$ would be the desired radius if $1=r_{\alpha} \leqslant(\alpha+2) /(\alpha+4)$ which is impossible. Hence r_{α} as given by (4.1) is the radius of $R_{\alpha+1}$ for the class $R_{\alpha}, \alpha \geqslant-1$.

To determine the extremal function $f_{\theta}(z)$ we note that (4.4) can be written in the form

$$
p(z)=\lambda_{1}\left(a+\rho e^{i \psi_{1}}\right)+\lambda_{2}\left(a+\rho e^{i \psi_{2}}\right)
$$

where $\psi_{1}+\psi_{2} \equiv 0(\bmod 2 \pi)$. Hence

$$
p(z)=a+\rho \cos \psi_{1}+i \rho\left(\lambda_{1}-\lambda_{2}\right) \sin \psi_{1}
$$

Since the minimum of $l(R)$ was realized at a point on the diameter which is not an endpoint, it then follows from the above that $\sin \psi_{1} \neq 0$ while $\lambda_{1}-\lambda_{2}=0$ or $\lambda_{1}=\lambda_{2}$. Consequently the corresponding form of $p(z)$ for $f_{0}(z)$ is

$$
p(z)=\frac{1}{2} \frac{1+z e^{i \theta}}{1-z e^{i \theta}}+\frac{1}{2} \frac{1+z e^{-i \theta}}{1-z e^{-i \theta}} .
$$

Thus the extremal functions are rotations of $f_{0}(z)$ which is determined by

$$
\frac{D^{\alpha+1} f_{0}(z)}{D^{\alpha} f_{0}(z)}=\frac{p(z)+1}{2}=\frac{1-z \cos \theta}{1-2 z \cos \theta+z^{2}}
$$

where $\cos \theta$ is the solution of

$$
\bar{R}=\operatorname{Re}(p(z)+1)=1+\left(1-r_{\alpha}^{2}\right)\left(1-2 r_{\alpha} \cos \theta+r_{\alpha}^{2}\right)^{-1}
$$

r_{α}, \bar{R} are given by (4.1) and (4.7), respectively. This completes the proof of this theorem.

Remark 4. Interesting special cases correspond to $\alpha=0,-1$. For $\alpha=0$, $r_{0}=\left(2.3^{\frac{1}{2}}-3\right)^{\frac{1}{2}}$ is the radius of convexity for the class of starlike functions of order $\frac{1}{2}$. This is a well-known result due to MacGregor (1963).

5. Some converse theorems

In this section we consider the converse of Theorems 2 and 3.

Theorem 5. Let $F \in R_{\alpha}, \alpha \geqslant 0$ and $\Gamma=\operatorname{Re} \gamma>\frac{1}{2}(\alpha-1)$. Let $f(z)$ be the unique solution of $F(z)=h_{\gamma}(z) * f(z)$ where $h_{\gamma}(z)$ is given by (3.1). Then

$$
\operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}>\frac{1}{2}
$$

is valid in $|z|<r_{\alpha, \gamma}$, when $r_{\alpha, \gamma}$ is the smallest positive root of

$$
\begin{equation*}
(\Gamma-\alpha) r^{2}+(\alpha+3) r-\Gamma-1=0 \tag{5.1}
\end{equation*}
$$

This result is sharp.

Proof. Let $q(z)$ be the regular function in E defined by

$$
\begin{equation*}
\frac{D^{\alpha+1} F(z)}{D^{\alpha} F(z)}=q(z) \tag{5.2}
\end{equation*}
$$

Here $q(0)=1$ and $\operatorname{Re} q(z)>\frac{1}{2}$ for $z \in E$. A simple generalization of a result in the proof of Ruscheweyh (1975), Theorem 5, shows that

$$
\begin{equation*}
\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}-\frac{1}{2}=q(z)-\frac{1}{2}+z \frac{q^{\prime}(z)}{\gamma-\alpha(\alpha+1) q(z)} \tag{5.3}
\end{equation*}
$$

However, it is well known that for $|z|=r<1$

$$
\begin{equation*}
\left|z q^{\prime}(z)\right| \leqslant \frac{2 r}{1-r^{2}}\left(\operatorname{Re} q(z)-\frac{1}{2}\right) \tag{5.4}
\end{equation*}
$$

Thus (5.3) and (5.4) give for $|z|=r$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}-\frac{1}{2}\right) \geqslant \operatorname{Re}\left(q(z)-\frac{1}{2}\right)\left(1-\frac{2 r}{(1-r)(1+\Gamma+(\Gamma-\alpha) r)}\right) \tag{5.5}
\end{equation*}
$$

Now the right-hand side of (5.5) is positive provided that $r<r_{\alpha, \gamma}$ where $r_{\alpha, \gamma}$ is the smallest positive root of (5.1).

For sharpness we consider $F(z)=z /(1-z)$. In this case

$$
f(z)=\frac{z(1+\gamma-\gamma z)}{(1+\gamma)(1-z)^{2}}
$$

It is a simple matter to verify that

$$
\left(z^{\gamma} D^{\alpha+1} F(z)\right)^{\prime}=(1+\gamma) z^{\gamma-1} D^{\alpha+1} f(z)
$$

and

$$
\left(z^{\gamma} D^{\alpha} F(z)\right)^{\prime}=(1+\gamma) z^{\gamma-1} D^{\alpha} f(z)
$$

Using these for our special functions $f(z)$ and $F(z)$, we obtain

$$
\begin{aligned}
\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)} & =\left(z^{\gamma} \frac{z}{(1-z)^{\alpha+2}}\right)^{\prime} /\left(z^{\gamma} \frac{z}{(1-z)^{\alpha+1}}\right)^{\prime} \\
& =\frac{1}{1-z}+\frac{z}{(1-z)(1+\gamma+(\alpha-\gamma) z)}
\end{aligned}
$$

and consequently

$$
\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}=\frac{1}{2} \quad \text { for } z=-r_{\alpha, \gamma}
$$

This completes the proof of this theorem.

Next theorem is a converse of Theorem 3 in the sense of Theorem 5. This theorem follows from (2.3) and Theorem 5 and we omit the proof.

Theorem 6. Let $F \in H_{\alpha}$ and $G \in R_{\alpha+1}$ be its associate function. Let f and g be the unique solution of $F(z)=h_{\gamma}(z) * f(z)$ and $G(z)=h_{\gamma}(z) * g(z)$ with $\Gamma=\operatorname{Re} \gamma \geqslant \frac{1}{2} \alpha$, respectively. Then

$$
\operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha+1} g(z)} \frac{1}{2}
$$

for $|z|<R_{\alpha, \gamma}$, where $R_{\alpha, \gamma}$ is the smallest positive root of

$$
(\Gamma-\alpha-1) r^{2}+(\alpha+4) r-\Gamma-1=0 .
$$

This result is also sharp.

Remark 5. Theorems 5 and 6 generalize and extend similar results of Livingston (1966).

6. Extensions of the classes R_{α} and H_{α}

In this section we extend the notion of prestarlikeness and of its generalization along the concept of alpha-convex functions as introduced by Mocanu (1969).

We say $f \in R_{\alpha}(\beta), \alpha \geqslant-1$ if $f \in A$ and

$$
(1-\beta) \operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}+\beta \operatorname{Re} \frac{D^{\alpha+2} f(z)}{D^{\alpha+1} f(z)}>\frac{1}{2}, \quad z \in E
$$

and for some $\beta \geqslant 0$.
We also say that $f \in H_{\alpha}(\beta), \alpha \geqslant-1$, if $f \in A$ and if exists $g \in R_{\alpha+2}$ such that

$$
(1-\beta) \operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha+1} g(z)}+\beta \operatorname{Re} \frac{D^{\alpha+2} f(z)}{D^{\alpha+2} g(z)}>\frac{1}{2}, \quad z \in E,
$$

and for some $\beta \geqslant 0$.

A proof similar to that used in Theorem 1 should yield these results:

Theorem 7. (a) $R_{\alpha}(\beta) \subset R_{\alpha}, \alpha \geqslant-1, \beta \geqslant 0$, (b) $H_{\alpha}(\beta) \subset H_{\alpha}, \alpha \geqslant-1, \beta \geqslant 0$.

When $\alpha=0,1,2, \ldots$ part (a) was shown by Al-Amiri (1978). Part (b) reduces to Theorem 1 when $\beta=1$.

Also using the technique of Theorem 4 one can easily prove:

Theorem 8. Let $f \in R_{\alpha}, \alpha \geqslant-1$. Then

$$
(1-\beta) \operatorname{Re} \frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}+\beta \operatorname{Re} \frac{D^{\alpha+2} f(z)}{D^{\alpha+1} f(z)}>\frac{1}{2}
$$

holds for $|z|<r_{\alpha}(\beta)$ where $r_{\alpha}(\beta)$ is given by

$$
r_{\alpha}(\beta)=(\alpha+2-2 \beta+2 \Delta)^{\frac{1}{2}}(\alpha+2+2 \beta+2 \Delta)^{-\frac{1}{2}}, \quad \Delta=(\beta(\alpha+2+\beta))^{\frac{1}{2}}
$$

The result is sharp.

The case $\alpha=0,1,2, \ldots$ was treated by Al-Amiri (1978). We also note here that Theorem 8 reduces to Theorem 4 when $\beta=1$.

References

H. S. Al-Amiri (1978), 'Certain analogy of the α-convex functions', Rev, Roumaine Math. Pures Appl. 23, 1449-1454.
I. S. Jack (1971), 'Functions starlike and convex of order α ', J. London Math. Soc. (2) 3, 469-474. W. Kaplan (1952), 'Close-to-convex schlicht functions', Michigan Math. J. 1, 169-185.
R. J. Libera (1965), 'Some classes of regular univalent functions', Proc. Amer. Math. Soc. 16. 755-758.
A. E. Livingston (1966), 'On the radius of univalence of certain analytic functions', Proc. Amer. Math. Soc. 17, 352-357.
T. MacGregor (1963), 'The radius of convexity for starlike functions of order $\frac{1}{2}$ ', Proc. Amer. Math. Soc. 14, 71-76.
P. Mocanu (1969), 'Une propriété de convexité généralisée dans la représentation conforme', Mathematica (Cluj) 11, 127-133.
M. S. Robertson (1963), 'Extremal problems for analytic functions with positive real part and applications', Trans. Amer. Math. Soc. 106, 236-253.
S. Ruscheweyh (1975), 'New criteria for univalent functions', Proc. Amer. Math. Soc. 49, 109-115.
S. Ruscheweyh (1977), 'Linear operators between classes of prestarlike functions', Comm. Math. Helv. 52, 497-509.
T. J. Suffridge (1976), 'Starlike functions as limits of polynomials', Advances in complex function theory, pp. 164-202 (Lecture Notes in Mathematics 505, Springer-Verlag, Berlin). V. A. Zmorovič (1969), 'On bounds of convexity for starlike functions of order α in the circle $|z|<1$ and the circular region $0<|z|<1$ ', Amer. Math. Soc. Transl. (2) 80, 203-213.

Bowling Green State University
Bowling Green, Ohio 43403
U.S.A.

