ORDER PRESERVING MAPS ON HERMITIAN MATRICES

PETER ŠEMRL ${ }^{\boxtimes}$ and AHMED RAMZI SOUROUR

(Received 7 September 2010; accepted 15 February 2013; first published online 7 June 2013)

Communicated by M. Cowling

Abstract

We prove that a continuous map ϕ defined on the set of all $n \times n$ Hermitian matrices preserving order in both directions is up to a translation a congruence transformation or a congruence transformation composed with the transposition.

2010 Mathematics subject classification: primary 15B48; secondary 15B57.
Keywords and phrases: order preserving map, Hermitian matrix.

1. Introduction and statement of the main result

Let H_{n} denote the space of all $n \times n$ Hermitian matrices. This set is a poset with the usual partial order defined by $A \leq B$ if $\langle A x, x\rangle \leq\langle B x, x\rangle$ for every $x \in \mathbb{C}^{n}$. In other words, $A \leq B$ if and only if $B-A$ is a positive semidefinite matrix.

One can find in the literature hundreds of papers dealing with linear maps preserving order, most of them treating the infinite-dimensional case. Recently, a first result on order preserving maps in the absence of the linearity assumption has been obtained. We say that a map $\phi: H_{n} \rightarrow H_{n}$ preserves order in both directions if for every pair $A, B \in H_{n}$ we have

$$
\begin{equation*}
A \leq B \Longleftrightarrow \phi(A) \leq \phi(B) . \tag{1.1}
\end{equation*}
$$

When studying such maps there is no loss of generality in assuming that $\phi(0)=0$. Indeed, if ϕ preservers order in both directions, then the same is true for the map $A \mapsto$ $\phi(A)-\phi(0), A \in H_{n}$. Quite surprisingly, every bijective map $\phi: H_{n} \rightarrow H_{n}$ preserving order in both directions and satisfying $\phi(0)=0$ must be a congruence transformation, possibly composed with the transposition. More precisely, the following result was proved by Molnár [3].

Theorem 1.1. Let $\phi: H_{n} \rightarrow H_{n}, n \geq 2$, be a bijective map satisfying (1.1) and $\phi(0)=0$. Then there exists an invertible $n \times n$ complex matrix T such that either

$$
\phi(A)=T A T^{*}
$$

[^0]for every $A \in H_{n}$, or
$$
\phi(A)=T A^{t} T^{*}
$$
for every $A \in H_{n}$.
It is a remarkable fact that after a harmless normalization $\phi(0)=0$ the real-linear character of ϕ is not an assumption but a conclusion. This result was motivated by some problems in mathematical physics. It was proved in [3] in a more general infinite-dimensional setting. An interested reader can find more information on the background of this problem in [4]. The original proof by Molnár [3] depends heavily on some deep results from functional analysis. An elementary self-contained proof can be found in [5].

It is the aim of this note to prove that in the presence of the continuity assumption we can get the above result without the bijectivity assumption.

Theorem 1.2. Let $\phi: H_{n} \rightarrow H_{n}, n \geq 2$, be a continuous map satisfying (1.1) and $\phi(0)=$ 0 . Then there exists an invertible $n \times n$ complex matrix T such that either

$$
\phi(A)=T A T^{*}
$$

for every $A \in H_{n}$, or

$$
\phi(A)=T A^{t} T^{*}
$$

for every $A \in H_{n}$.
There is an essential difference between the above theorems. Namely, Theorem 1.2 cannot be extended to the infinite-dimensional case. Indeed, if H is an infinitedimensional Hilbert space, then H is isometrically isomorphic to $H \oplus H$ and hence $S(H)$, the set of all self-adjoint bounded linear operators on H, may be identified with $S(H \oplus H)$. Elements of $S(H \oplus H)$ can be resprented as 2×2 operator matrices

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right],
$$

where $A, C: H \rightarrow H$ are bounded self-adjoint linear operators and $B: H \rightarrow H$ is a bounded linear operator. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any continuous increasing function satisfying $f(0)=0, x \in H, R \in S(H)$ a positive operator, and define $\phi: S(H) \rightarrow S(H) \equiv$ $S(H \oplus H)$ by

$$
\phi(A)=\left[\begin{array}{cc}
A & 0 \\
0 & f(\langle A x, x\rangle) R
\end{array}\right], \quad A \in S(H) .
$$

It is easy to see that ϕ is continuous and preserves order in both directions. Moreover, $\phi(0)=0$. However, ϕ is not linear in general.

In Theorem 1.2 the assumption that ϕ preserves order in both directions cannot be weakened to the assumption that ϕ preserves order in one direction only. Namely, even the structure of real-linear maps $\phi: H_{n} \rightarrow H_{n}$ satisfying $A \leq B \Rightarrow \phi(A) \leq \phi(B)$ is not well understood (of course, linear maps are automatically continuous and satisfy $\phi(0)=0)$. However, we do not know whether the same conclusion as in Theorem 1.2 holds without the continuity assumption.

2. Proof

Two matrices $A, B \in H_{n}$ are said to be adjacent if $\operatorname{rank}(A-B)=1$. The main tool in the proof of our main result is the following characterization of adjacency preserving maps on H_{n} [2].

Theorem 2.1. Let $\phi: H_{n} \rightarrow H_{n}, n \geq 2$, be a map such that $\phi(A)$ and $\phi(B)$ are adjacent whenever A and B are adjacent, $A, B \in H_{n}$. Suppose that $\phi(0)=0$. Then one of the following holds.

- \quad There exists a rank-one matrix $R \in H_{n}$ and a function $\rho: H_{n} \rightarrow \mathbb{R}$ such that

$$
\phi(A)=\rho(A) R, \quad A \in H_{n}
$$

- There exist $c \in\{-1,1\}$ and an invertible $n \times n$ complex matrix T such that either

$$
\phi(A)=c T A T^{*}
$$

for every $A \in H_{n}$, or

$$
\phi(A)=c T A^{t} T^{*}
$$

for every $A \in H_{n}$.
Proof of Theorem 1.2. In the proof we will identify $n \times n$ matrices with linear operators acting on \mathbb{C}^{n}.

It is easy to check that ϕ is injective. Indeed, if $\phi(A)=\phi(B)$ then $A \leq B$ and $B \leq A$, and therefore, $A=B$.

Our next goal is to prove that for each $A \geq 0$ we have $\operatorname{rank} \phi(A)=\operatorname{rank} A$. We will first prove that $\operatorname{rank} \phi(A) \geq \operatorname{rank} A$. Let $\operatorname{rank} A=p$ and $\operatorname{rank} \phi(A)=q$. Then there exist invertible $n \times n$ complex matrices T and S such that

$$
T A T^{*}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad S \phi(A) S^{*}=\left[\begin{array}{cc}
I_{q} & 0 \\
0 & 0
\end{array}\right]
$$

where I_{p} and I_{q} are the $p \times p$ identity matrix and the $q \times q$ identity matrix, respectively.
Denote by U the set of all positive invertible Hermitian $p \times p$ matrices B such that $I_{p}-B$ is positive and invertible. This is an open subset of H_{p}. The map ψ defined by

$$
\psi(B)=S \phi\left(T^{-1}\left[\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right]\left(T^{-1}\right)^{*}\right) S^{*}
$$

is obviously an injective continuous order preserving map from U into H_{n}. Our next aim is to show that the image of ψ is included in the set of Hermitian matrices of the form $\left[\begin{array}{cc}* & 0 \\ 0 & 0\end{array}\right]$, where $*$ stands for any $q \times q$ Hermitian matrix. Toward this end, we observe that $\psi(0)=0$ and by the choice of S and T, we have $\psi\left(I_{p}\right)=J_{q}$, where $J_{q}=\left[\begin{array}{cc}I_{q} & 0 \\ 0 & 0\end{array}\right]$. If $B \in U$, then $0 \leq B \leq I_{p}$ and hence $0 \leq \psi(B) \leq J_{q}$. If we write $C:=\psi(B)$ as $\left[\begin{array}{cc}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]$, where C_{11} is a $q \times q$ matrix, then the inequalities $0 \leq C \leq J_{q}$ easily imply first that $C_{22}=0$ and then that also $C_{12}=0$ and $C_{21}=0$. This proves that ψ maps the set U into $H_{q} \oplus 0$. Now, by the invariance of domain theorem [1, p. 344], we have $q \geq p$, as desired.

Thus, we know that $\operatorname{rank} \phi(A) \geq \operatorname{rank} A$ for each $A \geq 0$. In particular, $\operatorname{rank} \phi(A)=$ $\operatorname{rank} A$ whenever $\operatorname{rank} A=n$. We continue inductively. Assume that $\operatorname{rank} \phi(B)=$ rank B whenever $B \geq 0$ and $\operatorname{rank} B=n, n-1, \ldots, k+1$. Let $A \geq 0$ and $\operatorname{rank} A=k$, $1 \leq k<n$. We want to prove that $\operatorname{rank} \phi(A)=k$. Assume that this is not true. Then rank $\phi(A)=q>k$. We can find $B \in H_{n}$ of rank q such that $A \leq B$. It follows that $0 \leq$ $\phi(A) \leq \phi(B)$. Both $\phi(A)$ and $\phi(B)$ are of rank q and, consequently, $\operatorname{Im} \phi(A)=\operatorname{Im} \phi(B)$. Moreover, as $0 \leq \phi(t B) \leq \phi(B)$ for every real $t, 0<t<1$, and since $\operatorname{rank} \phi(t B)=q$, $0<t<1$, we have also $\operatorname{Im} \phi(A)=\operatorname{Im} \phi(t B), 0<t<1$. By continuity, $\phi(t B)$ tends to zero as $t \rightarrow 0$, and thus, we can find a positive real number t such that $\phi(t B) \leq \phi(A)$ implying that $0 \leq t B \leq A$, which is impossible as $\operatorname{rank} t B>\operatorname{rank} A$.

Thus, we know now that $\operatorname{rank} \phi(A)=\operatorname{rank} A$ for every $A \geq 0$. In the same way we see that $\operatorname{rank} \phi(A)=\operatorname{rank} A$ for every $A \leq 0$.

Let A be any Hermitian matrix of rank one. Then $A=s P$ for some nonzero real number s and some projection of rank one. It follows that either $A \geq 0$ or $A \leq 0$. Consequently, $\operatorname{rank} \phi(A)=1$ for every $A \in H_{n}$ of rank one.

Let $A, B \in H_{n}$ be adjacent. The map $\psi: H_{n} \rightarrow H_{n}$ defined by

$$
\psi(C)=\phi(C+A)-\phi(A), \quad C \in H_{n},
$$

is a continuous map preserving order in both directions and satisfying $\psi(0)=0$. By the previous step it maps rank-one matrices into rank-one matrices. In particular, $\psi(B-A)$ is of rank one and this yields that $\phi(A)$ and $\phi(B)$ are adjacent.

As ϕ preserves adjacency we can apply Theorem 2.1. By the invariance domain theorem we see that the first possibility cannot occur. So, we have one of the remaining two possibilities. Since ϕ preserves order we necessarily have $c=1$. This completes the proof.

References

[1] W. Fulton, Algebraic Topology: A First Course, Graduate Texts in Mathematics, 153 (Springer, New York, NY, 1995).
[2] W.-l. Huang and P. Šemrl, 'Adjacency preserving maps on Hermitian matrices', Canad. J. Math. 60 (2008), 1050-1066.
[3] L. Molnár, 'Order-automorphisms of the set of bounded observables', J. Math. Phys. 42 (2001), 5904-5909.
[4] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, 1895 (Springer, Berlin, 2007).
[5] P. Šemrl, ‘Comparability preserving maps on bounded observables’, Integral Equations Operator Theory 62 (2008), 441-454.

PETER ŠEMRL, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Slovenia
e-mail: peter.semrl@fmf.uni-lj.si
AHMED RAMZI SOUROUR, Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8P 5C2
e-mail: sourour@uvic.ca

[^0]: (C) 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

