ORDER PRESERVING MAPS ON HERMITIAN MATRICES

PETER ŠEMRL[™] and AHMED RAMZI SOUROUR

(Received 7 September 2010; accepted 15 February 2013; first published online 7 June 2013)

Communicated by M. Cowling

Abstract

We prove that a continuous map ϕ defined on the set of all $n \times n$ Hermitian matrices preserving order in both directions is up to a translation a congruence transformation or a congruence transformation composed with the transposition.

2010 *Mathematics subject classification*: primary 15B48; secondary 15B57. *Keywords and phrases*: order preserving map, Hermitian matrix.

1. Introduction and statement of the main result

Let H_n denote the space of all $n \times n$ Hermitian matrices. This set is a poset with the usual partial order defined by $A \leq B$ if $\langle Ax, x \rangle \leq \langle Bx, x \rangle$ for every $x \in \mathbb{C}^n$. In other words, $A \leq B$ if and only if B - A is a positive semidefinite matrix.

One can find in the literature hundreds of papers dealing with linear maps preserving order, most of them treating the infinite-dimensional case. Recently, a first result on order preserving maps in the absence of the linearity assumption has been obtained. We say that a map $\phi : H_n \to H_n$ preserves order in both directions if for every pair $A, B \in H_n$ we have

$$A \le B \iff \phi(A) \le \phi(B). \tag{1.1}$$

When studying such maps there is no loss of generality in assuming that $\phi(0) = 0$. Indeed, if ϕ preservers order in both directions, then the same is true for the map $A \mapsto \phi(A) - \phi(0)$, $A \in H_n$. Quite surprisingly, every bijective map $\phi : H_n \to H_n$ preserving order in both directions and satisfying $\phi(0) = 0$ must be a congruence transformation, possibly composed with the transposition. More precisely, the following result was proved by Molnár [3].

THEOREM 1.1. Let $\phi : H_n \to H_n$, $n \ge 2$, be a bijective map satisfying (1.1) and $\phi(0) = 0$. Then there exists an invertible $n \times n$ complex matrix T such that either

$$\phi(A) = TAT^*$$

^{© 2013} Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

for every $A \in H_n$, or

$$\phi(A) = TA^{t}T$$

for every $A \in H_n$.

It is a remarkable fact that after a harmless normalization $\phi(0) = 0$ the real-linear character of ϕ is not an assumption but a conclusion. This result was motivated by some problems in mathematical physics. It was proved in [3] in a more general infinite-dimensional setting. An interested reader can find more information on the background of this problem in [4]. The original proof by Molnár [3] depends heavily on some deep results from functional analysis. An elementary self-contained proof can be found in [5].

It is the aim of this note to prove that in the presence of the continuity assumption we can get the above result without the bijectivity assumption.

THEOREM 1.2. Let ϕ : $H_n \to H_n$, $n \ge 2$, be a continuous map satisfying (1.1) and $\phi(0) = 0$. Then there exists an invertible $n \times n$ complex matrix T such that either

$$\phi(A) = TAT^*$$

for every $A \in H_n$, or

$$\phi(A) = TA^t T^*$$

for every $A \in H_n$.

There is an essential difference between the above theorems. Namely, Theorem 1.2 cannot be extended to the infinite-dimensional case. Indeed, if *H* is an infinite-dimensional Hilbert space, then *H* is isometrically isomorphic to $H \oplus H$ and hence S(H), the set of all self-adjoint bounded linear operators on *H*, may be identified with $S(H \oplus H)$. Elements of $S(H \oplus H)$ can be resprented as 2×2 operator matrices

$$\begin{bmatrix} A & B \\ B^* & C \end{bmatrix},$$

where $A, C : H \to H$ are bounded self-adjoint linear operators and $B : H \to H$ is a bounded linear operator. Let $f : \mathbb{R} \to \mathbb{R}$ be any continuous increasing function satisfying $f(0) = 0, x \in H, R \in S(H)$ a positive operator, and define $\phi : S(H) \to S(H) \equiv$ $S(H \oplus H)$ by

$$\phi(A) = \begin{bmatrix} A & 0\\ 0 & f(\langle Ax, x \rangle) R \end{bmatrix}, \quad A \in S(H).$$

It is easy to see that ϕ is continuous and preserves order in both directions. Moreover, $\phi(0) = 0$. However, ϕ is not linear in general.

In Theorem 1.2 the assumption that ϕ preserves order in both directions cannot be weakened to the assumption that ϕ preserves order in one direction only. Namely, even the structure of real-linear maps $\phi : H_n \to H_n$ satisfying $A \leq B \Rightarrow \phi(A) \leq \phi(B)$ is not well understood (of course, linear maps are automatically continuous and satisfy $\phi(0) = 0$). However, we do not know whether the same conclusion as in Theorem 1.2 holds without the continuity assumption.

130

2. Proof

Two matrices $A, B \in H_n$ are said to be adjacent if rank (A - B) = 1. The main tool in the proof of our main result is the following characterization of adjacency preserving maps on H_n [2].

THEOREM 2.1. Let ϕ : $H_n \to H_n$, $n \ge 2$, be a map such that $\phi(A)$ and $\phi(B)$ are adjacent whenever A and B are adjacent, A, $B \in H_n$. Suppose that $\phi(0) = 0$. Then one of the following holds.

• There exists a rank-one matrix $R \in H_n$ and a function $\rho : H_n \to \mathbb{R}$ such that

$$\phi(A) = \rho(A)R, \quad A \in H_n.$$

• There exist $c \in \{-1, 1\}$ and an invertible $n \times n$ complex matrix T such that either

$$\phi(A) = cTAT^*$$

for every $A \in H_n$, or

$$\phi(A) = cTA^{t}T^{*}$$

for every $A \in H_n$.

PROOF OF THEOREM 1.2. In the proof we will identify $n \times n$ matrices with linear operators acting on \mathbb{C}^n .

It is easy to check that ϕ is injective. Indeed, if $\phi(A) = \phi(B)$ then $A \le B$ and $B \le A$, and therefore, A = B.

Our next goal is to prove that for each $A \ge 0$ we have rank $\phi(A) = \operatorname{rank} A$. We will first prove that rank $\phi(A) \ge \operatorname{rank} A$. Let rank A = p and rank $\phi(A) = q$. Then there exist invertible $n \times n$ complex matrices T and S such that

$$TAT^* = \begin{bmatrix} I_p & 0\\ 0 & 0 \end{bmatrix}$$
 and $S\phi(A)S^* = \begin{bmatrix} I_q & 0\\ 0 & 0 \end{bmatrix}$,

where I_p and I_q are the $p \times p$ identity matrix and the $q \times q$ identity matrix, respectively.

Denote by U the set of all positive invertible Hermitian $p \times p$ matrices B such that $I_p - B$ is positive and invertible. This is an open subset of H_p . The map ψ defined by

$$\psi(B) = S\phi\left(T^{-1}\begin{bmatrix}B&0\\0&0\end{bmatrix}(T^{-1})^*\right)S^*$$

is obviously an injective continuous order preserving map from U into H_n . Our next aim is to show that the image of ψ is included in the set of Hermitian matrices of the form $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, where * stands for any $q \times q$ Hermitian matrix. Toward this end, we observe that $\psi(0) = 0$ and by the choice of S and T, we have $\psi(I_p) = J_q$, where $J_q = \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix}$. If $B \in U$, then $0 \le B \le I_p$ and hence $0 \le \psi(B) \le J_q$. If we write $C := \psi(B)$ as $\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$, where C_{11} is a $q \times q$ matrix, then the inequalities $0 \le C \le J_q$ easily imply first that $C_{22} = 0$ and then that also $C_{12} = 0$ and $C_{21} = 0$. This proves that ψ maps the set Uinto $H_q \oplus 0$. Now, by the invariance of domain theorem [1, p. 344], we have $q \ge p$, as desired. Thus, we know that rank $\phi(A) \ge \operatorname{rank} A$ for each $A \ge 0$. In particular, rank $\phi(A) = \operatorname{rank} A$ whenever rank A = n. We continue inductively. Assume that rank $\phi(B) = \operatorname{rank} B$ whenever $B \ge 0$ and rank $B = n, n - 1, \ldots, k + 1$. Let $A \ge 0$ and rank A = k, $1 \le k < n$. We want to prove that rank $\phi(A) = k$. Assume that this is not true. Then rank $\phi(A) = q > k$. We can find $B \in H_n$ of rank q such that $A \le B$. It follows that $0 \le \phi(A) \le \phi(B)$. Both $\phi(A)$ and $\phi(B)$ are of rank q and, consequently, $\operatorname{Im} \phi(A) = \operatorname{Im} \phi(B)$. Moreover, as $0 \le \phi(tB) \le \phi(B)$ for every real t, 0 < t < 1, and since rank $\phi(tB) = q$, 0 < t < 1, we have also $\operatorname{Im} \phi(A) = \operatorname{Im} \phi(tB)$, 0 < t < 1. By continuity, $\phi(tB)$ tends to zero as $t \to 0$, and thus, we can find a positive real number t such that $\phi(tB) \le \phi(A)$ implying that $0 \le tB \le A$, which is impossible as rank $tB > \operatorname{rank} A$.

Thus, we know now that rank $\phi(A) = \operatorname{rank} A$ for every $A \ge 0$. In the same way we see that rank $\phi(A) = \operatorname{rank} A$ for every $A \le 0$.

Let *A* be any Hermitian matrix of rank one. Then A = sP for some nonzero real number *s* and some projection of rank one. It follows that either $A \ge 0$ or $A \le 0$. Consequently, rank $\phi(A) = 1$ for every $A \in H_n$ of rank one.

Let $A, B \in H_n$ be adjacent. The map $\psi : H_n \to H_n$ defined by

$$\psi(C) = \phi(C+A) - \phi(A), \quad C \in H_n,$$

is a continuous map preserving order in both directions and satisfying $\psi(0) = 0$. By the previous step it maps rank-one matrices into rank-one matrices. In particular, $\psi(B - A)$ is of rank one and this yields that $\phi(A)$ and $\phi(B)$ are adjacent.

As ϕ preserves adjacency we can apply Theorem 2.1. By the invariance domain theorem we see that the first possibility cannot occur. So, we have one of the remaining two possibilities. Since ϕ preserves order we necessarily have c = 1. This completes the proof.

References

- W. Fulton, *Algebraic Topology: A First Course*, Graduate Texts in Mathematics, 153 (Springer, New York, NY, 1995).
- W.-I. Huang and P. Šemrl, 'Adjacency preserving maps on Hermitian matrices', *Canad. J. Math.* 60 (2008), 1050–1066.
- [3] L. Molnár, 'Order-automorphisms of the set of bounded observables', J. Math. Phys. 42 (2001), 5904–5909.
- [4] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, 1895 (Springer, Berlin, 2007).
- P. Šemrl, 'Comparability preserving maps on bounded observables', *Integral Equations Operator Theory* 62 (2008), 441–454.

PETER ŠEMRL, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Slovenia e-mail: peter.semrl@fmf.uni-lj.si

AHMED RAMZI SOUROUR, Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8P 5C2 e-mail: sourour@uvic.ca