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Abstract. In 2014, the first two authors proved an extension to modules of a
theorem of Camillo and Yu that an exchange ring has stable range 1 if and only if every
regular element is unit-regular. Here, we give a Morita context version of a stronger
theorem. The definition of regular elements in a module goes back to Zelmanowitz
in 1972, but the notion of a unit-regular element in a module is new. In this paper,
we study unit-regular elements and give several characterizations of them in terms of
“stable” elements and “lifting” elements. Along the way, we give natural extensions to
the module case of many results about unit-regular rings. The paper concludes with a
discussion of when the endomorphism ring of a unit-regular module is a unit-regular
ring.

2000 Mathematics Subject Classification. 16E50.

A theorem of Camillo and Yu asserts that an exchange ring R has stable range
1 if and only if every regular element of R is unit-regular [4, Theorem 3]. In [5], we
defined the notion of a stable module RM in such a way that RR is stable if and only
if R has stable range 1. We also defined the unit-regular elements in any module M,

and called M regular-stable if every regular element is unit-regular. We then proved [5,
Theorem 26] that a module with the finite exchange property is stable if and only if it
is regular-stable, extending the Camillo–Yu theorem (see Theorem 19).

In the present paper, we investigate the unit-regular modules where every element
is unit-regular. We show that unit-regular elements in a module are characterized by
several natural module analogues of unit-regular elements of a ring. Moreover, we
define the stable elements in a module, we identify a lifting property for these elements,
and we show that a regular element is unit-regular if and only if it is stable or has
the lifting property. These results lead to several new characterizations of unit-regular
modules.
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Throughout this paper, rings are associative with non-zero unity, modules are left
modules unless otherwise specified, and morphisms will be written on the right of their
arguments. We write end(M) for the ring of all endomorphisms of a module M. If K
and M are modules, the notation K ⊆⊕ M means that K is a direct summand of M.
We always use Mn(R) to stand for the ring of all n × n matrices over a ring R, we write
U = U(R) for the group of units of R, and J = J(R) denotes the Jacobson radical of
R. The ring of integers is denoted �, and the localization of � at a prime p is written
�(p). The term “regular ring” means “von Neumann regular ring” . The left and right
annihilators of a set X will be written as l(X) and r(X), respectively.

1. Background. If R and S are rings, and RVS and SWR are bimodules, we say that
the 4-tuple (R, V, W, S) is a Morita context (context for short) if there exist products

V × W → R, written (v,w) �→ vw and W × V → S, written (w, v) �→ wv

which induce bimodule morphisms V ⊗S W → R and W ⊗R V → S and satisfy

v(wv1) = (vw)v1 and w(vw1) = (wv)w1 for all v, v1 ∈ V and w,w1 ∈ W.

These requirements are equivalent to asking that
[

R V
W S

]
is an associative ring using

“ matrix” operations, called the context ring.1 The images VW and WV are ideals
of R and S, respectively, called the trace ideals of the context. Morita contexts were
introduced by Bass in his Oregon lectures on the Morita theorems.

Our interest here is in a module RM. Write E = end(RM), so that RME is a
bimodule. The dual of M is denoted M∗ = hom(RM, R). Then M∗ is a left E-module
via composition of maps, and M∗ becomes a right R-module as follows: Given λ ∈ M∗

and r ∈ R define λr ∈ M∗ by x(λr) = (xλ)r for all x ∈ M. Thus, we have two bimodules:

RME and E(M∗)R.

Moreover, if m ∈ M and λ ∈ M∗, we have a product mλ ∈ R; dually, λm ∈ E via
x(λm) = (xλ)m for all x ∈ M. Hence, we have products

mλ ∈ R and λm ∈ E,

and it is routine to verify that (R, M, M∗, E) is a Morita context, called the standard
context of the module RM. While this context is our primary interest, we will use
the language of general Morita contexts to simplify and clarify the discussion. In
particular, we often formulate and prove propositions in the general context, and use
them in the standard context.

While many of our results hold for any Morita context, some require that the
context has a property valid in any standard context. An important example involves

the following observation. If
[

R V
W S

]
is any Morita context and w ∈ W, the right

multiplication ·w : RV → RR is R-linear.2 In particular, {·w | w ∈ W} ⊆ RV∗. We say

that a Morita context
[

R V
W S

]
is W -full if {·w | w ∈ W} = RV∗, that is if every R-

linear map λ : RV → R has the form λ = ·w for some w ∈ W. Of course, any standard
context is W -full. Here is another example.

EXAMPLE 1. If a Morita context
[

R V
W S

]
satisfies WV = S, then

[
R V
W S

]
is W -full.

The converse is false even if RV is projective.

1We frequently abuse the notation and refer to the context
[

R V
W S

]
.

2In fact, w �→ ·w is an R-linear map WR → V∗
R with kernel lV (w).
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Proof. Suppose 1S = �wivi in WV. Given λ ∈ RV∗ write viλ = ai ∈ R for each i,
and then define w = �wiai ∈ W. Then λ = ·w because, for each v ∈ V,

vλ = (v1S)λ = [
�(vwi)vi

]
λ = �(vwi)(viλ) = �(vwi)ai = �v(wiai) = v(�wiai) = vw.

To see that the converse is false, let S = �2 × �2 and let e = (1, 0) ∈ S. Then consider

the context
[

R V
W S

]
:=

[
eSe eS
Se S

]
. Clearly, RV =RR is torsionless and projective, and

WV = SeS = eS 
= S. To see that the context is W -full, let λ ∈RV∗. Then either λ = 0
or λ = 1. If λ = 0, we have λ = ·0 where 0 ∈ W ; if λ = 1, then λ = ·e and e ∈ W. So
the context is W -full. �

A theorem of Azumaya [2] asserts that an element α ∈ end(RM) is regular if and
only if both Mα and ker(α) are direct summands of M. The following Proposition is

the context version of Azumaya’s result. Given a Morita context
[

R V
W S

]
, an element

v ∈ V is called regular if vwv = v for some w ∈ W.

PROPOSITION 2. If
[

R V
W S

]
is a W-full Morita context, the following are equivalent

for v ∈ V :

(1) v is regular.
(2) Rv ⊆⊕

RV and lR(v) ⊆⊕
RR.

Proof. (1)⇒(2). Let vwv = v and assume (by passing w �→ wvw) that
wvw = w too. Then lV (w) = V (1S − wv) and V (wv) = Rv.

Hence, V = V (wv) ⊕ V (1S − wv) = Rv ⊕ lV (w). Turning to lR(v), we have
lR(v) = R(1R − vw) so R = Rvw ⊕ R(1R − vw) = Rvw ⊕ lR(v).

(2)⇒(1). Suppose that RV = Rv ⊕ P and RR = lR(v) ⊕ Q. Then Rv = 0 + Qv

so V = Qv ⊕ P. With this, define λ : RV → R by (qv + p)λ = q. This is well-defined
because qv + p = 0 implies qv = 0, whence q ∈ Q ∩ lR(v) = 0. Hence, λ is R-linear,
and we have (vλ)v = (1R)v = v. By hypothesis, λ = ·w for some w ∈ W and we obtain
vwv = (vw)v = (vλ)v = v. This proves (1). �
If R is a ring, Vaserstein’s lemma [11] shows that the following are equivalent for a and
b in R :

(1) ab + s = 1, s ∈ R, ⇒ b + xs is a unit for some x ∈ R.

(2) ab + s = 1, s ∈ R, ⇒ a + sy is a unit for some y ∈ R.

When these conditions hold, R is said to have stable range 1. In [5], we defined stable
Morita contexts as a generalization of rings with stable range 1. The key result was the
following generalization of Vaserstein’s lemma [5, Lemma 1].

LEMMA 3. Let
[

R V
W S

]
be a Morita context. The following are equivalent for w ∈ W

and v ∈ V :
SC1. If wv + s = 1S, s ∈ S, there exists v1 ∈ V such that (v + v1s)W = R.

SC2. If wv + s = 1S, s ∈ S, there exists w1 ∈ W such that V (w + sw1) = R.

As in [5], we call
[

R V
W S

]
a stable context if SC1 and SC2 hold for all w ∈ W and

v ∈ V, and we called a module RM stable if the standard context of M is stable. The
terminology comes from Bass [1] because the module RR is stable if and only if R has
stable range 1 [5, Corollary 12].

A module RM is called a regular module [13] if each m ∈ M is regular, that is
(mλ)m = m for some λ ∈ M∗. In [5], M was called regular-stable if, in the standard

https://doi.org/10.1017/S0017089516000513 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000513


4 H. CHEN, W. K. NICHOLSON AND Y. ZHOU

context for M, we only required that SC1 and SC2 hold for all regular elements m ∈ M
and all λ ∈ M∗. Furthermore, we defined the unit-regular elements in M as follows: An
element m ∈ RM was called unit-regular if m = (mγ )m for some epimorphism γ ∈ M∗.
With this, we showed in [5, Theorem 25] that

THEOREM 4. A module RM is regular-stable if and only if every regular element of
M is unit-regular.

A module M is said to have internal cancellation (IC) if M = N ⊕ K = L ⊕ K ′

with K ∼= K ′ implies that N ∼= L. In 1976, Ehrlich [6] showed that RM has IC if and
only if each regular element in end(M) is unit-regular. In [8], Khurana and Lam call
a ring an IC ring if RR has IC. In [5, Theorem 19], we gave a new characterization of
these IC rings: R is an IC ring if and only if RR is a regular-stable module. If in addition
RM has the finite exchange property, then by [5, Theorem 26] we can say more: M is
stable, if and only if M is regular-stable, if and only if every regular element in M is
unit-regular. This extends an important theorem of Camillo and Yu [4, Theorem 3]
who proved it when M = RR. We shall return to this below.

2. Stable elements. Having defined stable Morita contexts, we now investigate

stable elements. Given a context
[

R V
W S

]
, an element v ∈ V is called stable if SC1 and

SC2 hold for all w ∈ W ; that is

SC1: If wv + s = 1S, s ∈ S, w ∈ W, there exists v1 ∈ V with (v + v1s)W = R.

SC2: If wv + s = 1S, s ∈ S, w ∈ W, there exists w1 ∈ W with V (w + sw1) = R.

Hence, a Morita context
[

R V
W S

]
is stable if and only if every v ∈ V is stable.

Having a stable element in a Morita context has consequences.

LEMMA 5. The following are equivalent for any Morita context
[

R V
W S

]
:

(1) 0V is stable.
(2) The context has a stable element.
(3) v0w0 = 1R for some v0 ∈ V and w0 ∈ W.

Proof. (1)⇒(2). This is clear.
(2)⇒(3). If v ∈ V is stable, 0W v + 1S = 1S implies V (0W + 1Sw1) = R, w1 ∈ W,

and (3) follows.
(3)⇒(1). If w0V + s = 1S, w ∈ W, s ∈ S, then (0V + v0s)W = v0W = R, proving

(1). �

Returning to stable elements, we have:

LEMMA 6. Let v ∈ V be stable in the context
[

R V
W S

]
. If wv = 1S where w ∈ W,

then vw = 1R.

Proof. If wv = 1S, then wv + 0S = 1S. Since v is stable, (v + v10S)W = R by
SC1, say vw1 = 1R, w1 ∈ W. Then w1 = 1Sw1 = (wv)w1 = w(vw1) = w1R = w, so
vw = vw1 = 1R, as required. �

COROLLARY 7. If
[

R V
W S

]
is a stable context, then wv = 1S implies vw = 1R.
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Lemma 6 provides a “directly finite” condition in a stable context. In particular, if a

ring R has stable range 1 then R is directly finite because the context
[

R R
R R

]
is stable

(by [5, Corollary 3]).

Before proceeding, we make several definitions for any Morita context
[

R V
W S

]
:

v ∈ V is called
{

left invertible if wv = 1S for some w ∈ W, equivalently if Wv = S.

right invertible if vw = 1R for some w ∈ W, equivalently if vW = R.

w ∈ W is called
{

left invertible if vw = 1R for some v ∈ V, equivalently if Vw = R.

right invertible if wv = 1S for some v ∈ V, equivalently if wV = S.

Note that the zero element in V or W is neither left nor right invertible because we are
assuming that R and S are non-zero rings.

The following lemma [5, Lemma 21] provides a class of stable elements in any
context. We use it repeatedly so we include a short, alternate proof for completeness.

LEMMA 8. Let
[

R V
W S

]
be any Morita context. If v ∈ V has the form v = v0f where

v0 ∈ V is right invertible and f 2 = f ∈ S, then v is stable.

Proof. Let wv + s = 1S; we show that v + v0(1S − f )s is right invertible (giving
SC1). Compute

(1S − f )wv0f + (1S − f )s = (1S − f )(wv0f + s) = (1S − f )(wv + s) = 1S − f.

Now observe that

f + (1S − f )s = f + [(1S − f ) − (1S − f )wv0f ] = 1S − (1S − f )wv0f

is a unit in S. It follows that

v + v0(1S − f )s = v0f + v0(1S − f )s = v0[f + (1S − f )s]

is right invertible because v0 is right invertible. This is what we wanted. �
Taking f = 1S in Lemma 8 immediately leads to the following corollary.

COROLLARY 9. In any Morita context
[

R V
W S

]
, every right invertible element of V is

stable.

EXAMPLE 10. A left invertible element in a context need not be stable.

Proof. Let R be a ring with an element v such that wv = 1R but vw 
= 1R (see

Example 13 below). Then v ∈ RR is left invertible in the standard context
[

R RR
R∗ end(R)

]
.

But v is not stable by Lemma 6. �
The converse of Lemma 8 is not true.

EXAMPLE 11. If R = �(p) is the localization of � at a prime p, then the standard

context
[

R RR
RR∗ end(RR)

]
is stable because R has stable range 1 (it is local). In particular,

p ∈ RR is stable, but p is not of the form p = v0f where v0 is right invertible and f 2 = f
because R is commutative and p ∈ J(R).

The stable elements in a context are “translation invariant” in the following sense.

LEMMA 12. Given a Morita context
[

R V
W S

]
, let a ∈ U(R) and b ∈ U(S). If v ∈ V is

stable, so are av and vb.
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Proof. Let w(av) + s = 1S where w ∈ W and s ∈ S. Then (wa)v + s = 1S so, as
v is stable, V (wa + sw1) = R for some w1 ∈ W. Right multiplication by a−1 gives
V

(
w + s(w1a−1)

) = Ra−1 = R, proving that av is stable.
Turning to vb, let w(vb) + s = 1S, w ∈ W, s ∈ S. If we conjugate by b, we obtain

(bw)v + bsb−1 = 1S. Since v is stable, we have
(
v + v1(bsb−1)

)
W = R for some v1 ∈ V.

But then

R = (
v + v1(bsb−1)

)
W = (

vb + v1(bs)
)
b−1W = (

vb + v1(bs)
)
W,

proving that vb is stable. �
QUESTION 1. If u and v are stable in RR, is uv also stable? [The answer is “yes” if

the ring R has stable range 1 [5, Lemma 17].]

3. Unit-regular elements. If RM is a module, an element m ∈ M is called unit-
regular [5] if (mλ)m = m for some epimorphism λ ∈ M∗. More generally:

DEFINITION. If
[

R V
W S

]
is any Morita context, an element v ∈ V is called unit-

regular if vwv = v where w is left invertible (that is Vw = R).

It is not sufficient that w is right invertible, and these notions differ in RR and the
ring R :

EXAMPLE 13. Let R = end(V ) where DV is a vector space on basis {v0, v1, v2, . . .}
over a division ring D, and let α ∈ R be the shift operator defined by viα = vi+1 for
each i.

(1) In the ring R, α = αβα where β has a left inverse, but α is not unit-regular.
(2) In the module RR, α is unit-regular but αγα 
= α for all right invertible γ ∈ RR.

Proof. Define β ∈ R by v0β = 0 and viβ = vi−1 for all i ≥ 1. Then αβ = 1V so
αβα = α and β has a left inverse in R.

(1) Clearly, α = αβα is regular in the ring R, and β has a left inverse in R. But
ker(α) = 0 and Vα = Fv1 ⊕ Fv2 ⊕ · · · , so V/Vα ∼= F � ker(α). Hence, α is
not unit-regular as an element of the ring R by a result of Ehrlich [6, Theorem
1]; see Proposition 27 below.

(2) Now view R as the left module RR, so α is unit-regular in RR because αβα = α

and β is left invertible. Suppose that αγα = α where γ δ = 1V . Right multiplying
αγα = α by β gives αγ = 1V so α = δ = γ −1. But then γα = γ δ = 1V so α is
onto, a contradiction.

�
To relate unit-regularity to stability, we need the following technical result.

LEMMA 14. Let
[

R V
W S

]
be any Morita context, and let v ∈ V be stable. Suppose that

vwv = v for some particular w ∈ W. Then there exists v1 ∈ V such that

v = v1(wv) = (vw)v1 and v1 is right invertible.

Proof. We may assume that wvw = w and vwv = v both hold. [Replace w by
w′ = wvw.]

Write s = 1S − wv ∈ S, that is wv + s = 1S. As v is stable, we have (v + v2s)W = R
for some v2 ∈ V by SC1. Define v′ = v + v2s ∈ V, so v′ is right invertible. Then

v′w = vw (because sw = 0), so wv′w = wvw = w.
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Write a = 1R − 2v′w ∈ R and b = 1S − wv − wv′ ∈ S. Then a2 = 1R because
(v′w)2 = v′w; and

b2 = 1S − 2(wv + wv′) + (wvwv + wvwv′ + wv′wv + wv′wv′) = 1S.

Finally, define v1 = av′b ∈ V. Then v1 is right invertible because we have
v1W = av′bW = av′W = aR = R. Moreover, one verifies that −w = wa = bw, so
we obtain

wv1 = (wa)v′b = (−w)v′b = −(wv′)b = −wv′ + wv′wv + wv′wv′ = wv,

and
v1w = (av′)bw = av′(−w) = −a(v′w) = −[v′w − 2(v′w)2] = v′w = vw.

These give (vw)v1 = v(wv1) = v(wv) = v and v1(wv) = (v1w)v = (vw)v = v, respect-
ively, as required. �

The following theorem characterizes the unit-regular elements in terms of stability.
The last two conditions generalize the fact that an element of a ring is unit-regular if
and only if it is the product of a unit and an idempotent (in either order).

THEOREM 15. Let
[

R V
W S

]
be any Morita context. The following are equivalent for

v ∈ V :

(1) v is unit-regular.
(2) v is regular and (wv)2 = wv ∈ S for some left invertible w ∈ W.
(3) v is regular and v = v0f for some right invertible v0 ∈ V and f 2 = f ∈ S.

(4) v is regular and stable.
(5) There exists w ∈ W with v = vwv and v = (vw)v1 = v1(wv) where v1 ∈ V is

right invertible.
(6) There exists w ∈ W with v = vwv and v = (vw)v1 where v1 ∈ V is right

invertible.

Proof. (1)⇒(2). By (1), let v = vwv for some left invertible w ∈ W. Then
(wv)2 = w(vwv) = wv.

(2)⇒(3). If w is as in (2), set f = wv ∈ S. If v0w = 1R for v0 ∈ V, then v0 is right
invertible and v0f = v0(wv) = (v0w)v = 1Rv = v, as required.

(3)⇒(4). This follows from Lemma 8.
(4)⇒(5). This follows from Lemma 14.
(5)⇒(6). This is clear.
(6)⇒(1). Choose w ∈ W and v1 ∈ V as in (6). As v1 is right invertible, let

v1w1 = 1R, w1 ∈ W. Then w1 is left invertible and vw1 = (vwv1)w1 = vw, so
vw1v = vwv = v, proving (1). �

EXAMPLE 16. Condition (6) implies that every unit-regular element v has the form
v = ev1 where e2 = e ∈ R and v1 is right invertible. However, if v1 is left invertible, then
v need not be unit-regular.

Proof. Let R, α and β be as in Example 13. In the context
[

R R
R R

]
, we have β = 1β

where 12 = 1 in R and β has a left inverse (in fact αβ = 1). But β is not unit-regular
in RR. For if βγβ = β with γ left invertible, then γβ = 1 (because αβ = 1), so γ is
invertible. It follows that β = γ −1 is invertible, a contradiction. �

We shall need the following corollary of Theorem 15.
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THEOREM 17. Every unit-regular element in a Morita context is stable. The converse
is not true.

Proof. The first statement is by Theorem 15(3). As to the converse, if R = �(p) for

a prime p then the standard context
[

R RR
RR∗ end(RR)

]
is stable (see Example 11), so p ∈ RR

is stable. But p is not unit-regular because p ∈ J(R). �

EXAMPLE 18. If �M = � ⊕ �, the standard context
[

� M
M∗ end(M)

]
is stable by [5,

Example 13], but � does not have stable range 1.

In 1995, Camillo and Yu proved that an exchange ring R has stable range 1 if and
only if every regular element in R is unit-regular [4, Theorem 3]. The next theorem is
a context version of a stronger theorem.

THEOREM 19. Let
[

R V
W S

]
be a Morita context. If S is an exchange ring, the following

are equivalent:3

(1) The context is stable (that is every element of V is stable).
(2) Every regular element of V is unit-regular.
(3) Every regular element of V is stable.
(4) If wv + f = 1S, w ∈ W, v ∈ V, f 2 = f ∈ S, then V (w + f w1) = R for some

w1 ∈ W.

(5) If wv + f = 1S, w ∈ W, v ∈ V, f 2 = f ∈ S, then (v + v1f )W = R for some
v1 ∈ V.

Proof. (1)⇒(2)⇒(3) by Theorem 15.
(3)⇒(4). Let wv + f = 1S as in (4). Then wv = 1S − f is an idempotent, so

w(vwv) + f = 1S. But vwv is regular
[
in fact (vwv)w(vwv) = vwv

]
, so vwv is stable

by (3). Thus, Lemma 3 shows that V (w + f w1) = R for some w1 ∈ W. This proves (4).
(4)⇒(5). This is by Lemma 3.
(5)⇒(1). If v ∈ V , we must show that v is stable. So, suppose that wv + s = 1S

where w ∈ W and s ∈ S; we prove that (v + v1s)W = R for some v1 ∈ V.

As S is an exchange ring, [9, Theorem 2.1] asserts that:

There exists f 2 = f ∈ S such that f ∈ Ss and 1S − f ∈ S(1S − s).

Then 1S − f ∈ S(1S − s) = Swv ⊆ Wv, say 1S − f = w1v for some w1 ∈ W. Thus,
w1v + f = 1S, so (5) implies that (v + v2f )W = R for some v2 ∈ V. But f ∈ Ss,
say f = s2s with s2 ∈ S, so v2f = v2(s2s) = (v2s2)s = v1s where v1 = v2s2 ∈ V. Thus,
(v + v1s)W = R, as required. �

If RM has the finite exchange property, then end(M) is an exchange ring by [12].

Hence, the standard context
[

R M
M∗ end(M)

]
satisfies the hypotheses of Theorem 19, and

we obtain immediately:

THEOREM 20. Given RM, write S = end(M). If RM has the finite exchange property,
the following are equivalent:

(1) M is stable.
(2) Every regular element of M is stable.

3The hypothesis that S is an exchange ring is only needed for (5)⇒(1).
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(3) Every regular element of M is unit-regular.
(4) If λm + θ = 1S, λ ∈ M∗, m ∈ M, θ2 = θ ∈ S, then M(λ + θλ1) = R for some

λ1 ∈ M∗.
(5) If λm + θ = 1S, λ ∈ M∗, m ∈ M, θ2 = θ ∈ S, then (m + m1θ )M∗ = R for some

m1 ∈ M.

REMARK. In Theorem 20, (1)⇔(2) is a module version of the original Camillo–Yu
theorem, and (1)⇔(4) extends Lemma 2 in the same paper.

The following result strengthens conditions (5) and (6) in Theorem 15, but requires
that the context satisfies a weaker condition than being W -full. A Morita context[

R V
W S

]
is called W -epi-full if every epic R-linear map λ : RV → R has the form λ =

·w for some w ∈ W. [Note λ : RV → R is R-epic if and only if φλ = 1R for some
φ : R →RV.]

QUESTION 2. Is every stable Morita context W -epi-full?

THEOREM 21. Let
[

R V
W S

]
be a W-epi-full Morita context. The following are

equivalent for v ∈ V :

(1) v is unit-regular.
(2) There exists w ∈ W such that v = (vw)v1 = v1(wv) for some right invertible

v1 ∈ V.

(3) There exists w ∈ W such that v = vwv and (vw)v1 = v1(wv) for some right
invertible v1 ∈ V.

Proof. (1)⇒(2) is Lemma 14, and (2)⇒(3) is clear.
(3)⇒(1). Given (3), write vw = e and wv = f so e2 = e ∈ R, f 2 = f ∈ S and

ev = v = vf. By (3), let ev1 = v1f where v1 is right invertible, say v1w1 = 1R for w1 ∈ W.

We have decompositions

V = Vf ⊕ V (1S − f ) and R = Re ⊕ R(1R − e)

so we can define two R-linear maps λ : V → R and φ : R → V componentwise as
follows: (

pf + q(1S − f )
)
λ(

re + t(1R − e)
)
φ

= pf w + q(1S − f )w1(1R − e) p, q ∈ V,

= rev + t(1R − e)v1(1S − f ) r, t ∈ R.

We claim that φλ = 1R. As ev = vf , we have

(re)φλ = (rev)λ = (rvf )λ = (rv)f w = re2 = re.

For the second component, observe first that

v1(1S − f )w1 = v1w1 − (v1f )w1 = 1R − (ev1)w1 = 1R − e.
Then

[t(1R − e)]φλ = [t(1R − e)v1(1S − f )]λ = [q1(1S − f )]λ,

where q1 = t(1R − e)v1. Hence,
[t(1R − e)]φλ = t(1R − e)v1[(1S − f )w1(1R − e)] = t(1R − e)3 = t(1R − e).

It follows that φλ = 1R.

In particular, the map λ : V → R is epic so, by hypothesis, λ = ·w0 for some
w0 ∈ W. Then w0 is left invertible because 1R = (1R)φλ = (1Rφ)w0, so it remains
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to show that vw0v = v, that is (vλ)v = v. But v = vf so vλ = (vf )λ = vf w by the
definition of λ. Hence, (vλ)v = vf wv = v(wv)wv = v, as required. �

4. The lifting property. Let L be a left ideal of a ring R. We say that a ∈ R is left
invertible modulo L if ba − 1 ∈ L for some b ∈ R, and that left invertible elements lift
modulo L if, whenever a ∈ R is left invertible modulo L, there exists a left invertible
u ∈ R such that a − u ∈ L. It is proved in [9, Theorem 2.1] that a ring R is an exchange
ring if and only if idempotents lift modulo every left ideal of R. Here is an analogous
description of rings with stable range 1; the equivalence (1)⇔(3) was proved by F.
Siddique [7].

THEOREM 22. The following are equivalent for a ring R :

(1) R has stable range 1.
(2) Left invertible elements lift modulo every left ideal of R.

(3) Left invertible elements lift modulo every principal left ideal of R.

(4) The left–right analogues of (2) and (3).

Proof. As (1) is left–right symmetric and (2)⇒(3) is obvious, we only prove (1)⇒(2)
and (3)⇒(1).

(1)⇒(2). If L is a left ideal of R, let ba − 1 ∈ L where b, a ∈ R, say ba − 1 = l ∈ L.

Then ba − l = 1 so, as a is stable by (1), a − xl := u is a unit for some x ∈ R. Since
a − u = xl ∈ L, (2) follows.

(3)⇒(1). Assume that ba + s = 1 in R. Then ba − 1 ∈ Rs so, by (3), a − u ∈ Rs, u
left invertible. If a − u = ys, y ∈ R, then a − ys = u; we show that u is a unit by proving
that R is directly finite.

So let pq = 1 in R; we must show that qp = 1. We have qp − 1 ∈ R(qp − 1) so, by
(3), p − u ∈ R(qp − 1) where u is left invertible. But then (p − u)q = 0, that is uq = 1.

As u is left invertible, it follows that u is a unit. Hence, q = u−1 is a unit, and finally
p = q−1 is a unit. Thus, qp = 1. �

REMARK 1. The proof of (3) ⇒ (1) in Theorem 22 shows that a ring R is directly
finite if left invertible elements lift modulo every principal left summand Re where
e2 = e ∈ R.

We are going to show that every stable element in a Morita context has a similar
“lifting” property. The following variation on Theorem 22 motivates our definition.

PROPOSITION 23. The following are equivalent for a ring R :

(1) R has stable range 1.
(2) Left invertible elements lift to right invertible elements modulo every left ideal of

R.

Proof. (1)⇒(2). The proof of (1)⇒(2) in Theorem 22 goes through.
(2)⇒(1). Assume that ba + s = 1 in R. Then ba − 1 ∈ Rs so, by (2), a − v ∈ Rs

where v is right invertible in R. Write a − v = ys, y ∈ R, so that a − ys = v is right
invertible. Again (1) follows if we can show that R is directly finite. To this end, assume
pq = 1 in R. Then pq − 1 ∈ {0} so, by (2), q − u ∈ {0} for some right invertible u ∈ R.

Hence, q = u is right invertible and it follows that q is a unit (since pq = 1). Hence,
qp = 1, as required. �
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DEFINITION. Given a Morita context
[

R V
W S

]
, we say that an element v ∈ V is

lifting if the following implication holds for all s ∈ S :

If V (wv − 1S) ⊆ Vs,w ∈ W , then v − v0 ∈ Vs for some right invertible v0 ∈ V.

And v ∈ V is called summand-lifting if this condition holds only for s ∈ S such
that Vs ⊆⊕

RV.

THEOREM 24. In a Morita context
[

R V
W S

]
, an element v ∈ V is stable if and only if

it is lifting.

Proof. Let v ∈ V be stable, and suppose V (wv − 1S) ⊆ Vs, s ∈ S, w ∈ W. Write
q = wv − 1S so wv − q = 1S. As v is stable, there exists v1 ∈ V with the property that
(v − v1q)W = R. Set v0 = v − v1q, so that v0 ∈ V is right invertible. Furthermore,
v − v0 = v1q ∈ V (wv − 1S) ⊆ Vs, as desired.

Conversely, assume that v ∈ V is lifting, and write wv + s = 1S, s ∈ S, w ∈ W.

Then wv − 1S = −s, and so V (wv − 1S) ⊆ Vs. By hypothesis, v − v0 ∈ Vs for some
right invertible v0 ∈ V, say v − v0 = v1s, v1 ∈ V. Therefore, v − v1s = v0 is right
invertible, that is (v − v1s)W = R. Consequently, v is stable. �

THEOREM 25. Let
[

R V
W S

]
be any Morita context. The following are equivalent for

v ∈ V :

(1) v is unit-regular.
(2) v is regular and lifting in RV.

(3) v is regular and summand-lifting in RV.

(4) There exists w ∈ W and a right invertible v0 ∈ V with the property that vwv = v

and v − v0 ∈ lV (w).

Proof. (1)⇒(2). By (1), v is stable in RV by Theorem 17, and so v is lifting by
Theorem 24.

(2)⇒(3). This is clear.
(3)⇒(4). Let vw0v = v where w0 ∈ W. Define w = w0vw0 ∈ W, so that vwv = v

and wvw = w.

Note that vw = (vw0)2 = vw0 and wv = (w0v)2 = w0v.

Write s = 1S − w0v ∈ S. Observe first that Vs ⊆⊕ V because w0v is an idempotent.
Moreover, V (wv − 1S) = V (w0v − 1S) ⊆ Vs, so condition (3) provides a right
invertible v0 ∈ V such that v − v0 ∈ Vs. Thus (v − v0)w ⊆ Vsw = V (w − w0vw) = 0,

as desired.
(4)⇒(1). This follows from Theorem 15(3). �

Let
[

R V
W S

]
be a Morita context. Then Theorems 17 and 24 give the following for

v ∈ RV :
v is unit-regular ⇒ v is stable ⇔ v is lifting.

These properties are all equivalent for regular elements v by Theorem 15; the converse
of the first implication is false in general by Theorem 17.

5. Unit-regular endomorphisms. If
[

R V
W S

]
is a Morita context, the multiplication

map s �→ ·s is a ring morphism S → end(RV ) with kernel rS(V ) and image {·s | s ∈ S}.
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Hence, if b is a unit in S, then ·b : RV → RV is an R-isomorphism. A context
[

R V
W S

]
is

called S-full if end(RV ) = {·s | s ∈ S}, and we say that the context is S-iso-full if every
R-isomorphsm σ : RV → RV has the form σ = ·b for some unit b ∈ S.

THEOREM 26. Let
[

R V
W S

]
be an S-iso-full Morita context in which VS is faithful.

Then the following are equivalent for s ∈ S :4

(1) s is unit-regular in the ring S.

(2) There is a unit b ∈ S such that V = Vs ⊕ [lV (s)]b.

(3) Vs and lV (s) are both direct summands of RV and lV (s) ∼= V/Vs.

Proof. (1)⇒(2). Let sus = s where u is a unit in S. Then
lV (s) = V (1S − su) = Vu−1(1S − bs)u = V (1S − bs)u,

so V (1S − us) = [lV (s)]u−1. But Vs = Vus, so (2) follows because

V = Vus ⊕ V (1S − us) = Vs ⊕ [lV (s)]u−1.

(2)⇒(3). By (2), let V = Vs ⊕ [lV (s)]b, b a unit in S. Then V = Vb−1 = Vsb−1 ⊕
lV (s), so both Vs and lV (s) are direct summands. Finally, V/Vs ∼= [lV (s)]b ∼= lV (s),
proving (3).

(3)⇒(1). By (3), let V = Vs ⊕ K = lV (s) ⊕ N, so K ∼= V/Vs ∼= lV (s). Let γ :
K → lV (s) be an R-isomorphism. We have Vs = [lV (s) ⊕ N]s = Ns, so V = Ns ⊕ K.

Using this, define

σ : V = Ns ⊕ K → V by (ns + k)σ = n + kγ, where n ∈ N and k ∈ K.

This is well defined because Vs ∩ K = 0 = N ∩ lV (s), and we claim that σ is an
isomorphism. Indeed, σ is monic because ker(σ ) = N ∩ Kγ = 0, and σ is epic because
Vσ = N + Kγ = N + lV (s) = V.

So, by the S-iso-full hypothesis, σ = ·b for some b ∈ U(S). Hence, to prove (1), it
suffices to show that sbs = s. Since VS is faithful, it is enough to show that v(sbs) = vs
for all v ∈ V. As V = lV (s) ⊕ N, write v = v0 + n where v0s = 0 and n ∈ N. Hence,

v(sb) = (vs)b = (ns)b = (ns)σ = n.

Finally, v(sbs) = [v(sb)]s = ns = vs, as required. �
If RM is any module, the hypotheses of Theorem 26 are satisfied for the standard

context, so we obtain

PROPOSITION 27. Given a module RM, the following are equivalent for α ∈ end(M) :

(1) α is unit-regular.
(2) There is an automorphism σ : M → M such that M = Mα ⊕ (ker α)σ.

(3) Mα and ker(α) are both direct summands of M and ker(α) ∼= M/Mα.

The equivalence of (1) and (3) in Proposition 27 is due to Ehrlich [6]. Of course,
Mα and ker(α) are both direct summands if and only if α is regular in end(M) by
Proposition 2.

The following result appears in [10, Lemma 1].

4The hypotheses that the context is S-iso-full and that VR is faithful are only used in (3)⇒(1).
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LEMMA 28. The following are equivalent for α ∈ end(M) where M = RM is a module.

(1) M/Mα ∼= ker(α).
(2) Mα = ker(β) and ker(α) = Mβ for some β ∈ end(M).
(3) Mα = ker(β) and ker(α) ∼= Mβ for some β ∈ end(M).

Given a module M = RM, an endomorphism α ∈ end(M) is called morphic [10] if the
conditions in Lemma 28 are satisfied.

COROLLARY 29. α ∈ end(M) is unit-regular if and only if it is regular and morphic.

EXAMPLE 30. Let DV be vector space over a division ring D on basis {v0, v1, v2, . . .}.
Then DV is unit-regular but not morphic, and end(DV ) is not a unit-regular ring.

Proof. Let v ∈ V = DV. As V is regular (by Proposition 2), let v = (vλ)v where
λ ∈ V∗. If v 
= 0, then λ 
= 0 so Vλ = D, that is λ is epic. Hence, DV is a unit-regular
module. If α : V → V is the shift operator (viα = vi+1), we saw in Example 13 that
α is not unit-regular. Moreover, V/Vα ∼= Dv0 and ker(α) = 0, so V is not a morphic
module. �

A ring R is called left morphic (respectively regular, unit-regular) if every
element has the corresponding property, regarded as an element of endRR via right
multiplication. Camillo and Khurana [3] have given the following characterization of
unit-regular rings.

THEOREM. A ring R is unit-regular if and only if every element a ∈ R can be written
as e + u where e2 = e, u−1 ∈ R and aR ∩ eR = 0.

Our final result is to extend the Camillo–Khurana theorem:

THEOREM 31. Let M = RM be a module and write E = end M. Assume that M is
morphic and quasi-projective. Let θ ∈ E be such that Mθ + ker(θ ) and Mθ ∩ ker(θ ) are
direct summands of M. Then θ is unit-regular if and only if θ = π + σ where π2 = π ∈ E,

σ is a unit in E, and Mθ ∩ Mπ = 0.

Proof. If the condition holds, then

πσ−1θ = πσ−1(π + σ ) = πσ−1π + π = (πσ−1 + 1)π

so mπσ−1θ ∈ Mθ ∩ Mπ = 0 for every m ∈ M. It follows that πσ−1θ = 0, and hence
that θσ−1θ = (π + σ )σ−1θ = πσ−1θ + θ = θ. Thus, θ is unit-regular.

For the converse, write P = Mθ + ker(θ ) and K = Mθ ∩ ker(θ ) for convenience,
and let P ⊕ Y = M and K ⊕ Z = M. We have Mθ ⊆⊕ P because Mθ ⊆⊕ M (as θ is
unit-regular). Since P is quasi-projective (being a direct summand of M), it follows
from [9, Lemma 2.8] that there exists RX ⊆ ker(θ ) such that P = Mθ ⊕ X. In particular,
M = Mθ ⊕ X ⊕ Y. Moreover, since X ⊆ ker(θ ) ⊆ X ⊕ Mθ the modular law gives
ker(θ ) = X ⊕ K. Since M is morphic, we obtain

X ⊕ K = ker(θ ) ∼= M/Mθ ∼= X ⊕ Y,

so K ∼= Y because M has IC by [10, Corollary 47]. So let

φ : K → Y and η : X ⊕ K → X ⊕ Y
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be isomorphisms. Since K ⊆ Mθ and K ⊆⊕ M, we have Mθ = K ⊕ L where RL ⊆ Mθ.

Thus, we obtain

M = K ⊕ L ⊕ X ⊕ Y,

and so we can define υ and ω in endRM as follows:

M = X ⊕ Y ⊕ K ⊕ L
υ ↓ η−1 ↓ φ ↓ 0 ↓

M = X ⊕ K ⊕ Y ⊕ L
and

M = X ⊕ K ⊕ Y ⊕ L
ω ↓ η ↓ 1Y ↓ 0 ↓

M ⊇ X ⊕ Y + Y + L
.

Then we have ωυω = ω. Indeed:

(y)ωυω = (y)υω = (yη−1)ω = (yη−1)η = y = (y)ω for all y ∈ Y,

(x)ωυω = (xη)υω = (xηη−1)ω = (x)ω for all x ∈ X,

(k + z)ωυω = (k)ωυω = (kη)υω = (kηη−1)ω = (k)ω = (z + k)ω for all z ∈ L and k ∈ K.

Hence, π = υω is an idempotent in E. Also, Mπ ∩ Mθ = 0 because Mπ ⊆ X ⊕ Y :

Mπ = Mυω ⊆ (X ⊕ K ⊕ Y )ω ⊆ (X ⊕ Y ) + Y = X ⊕ Y.

Thus, it remains to show that θ − π is invertible in E. Since M is morphic, it suffices
to show that θ − π is monic [10, Corollary 2]. So suppose that m ∈ ker(θ − π ). Write
m = x + y + z + k with the obvious notation, so that

mπ = mυω = [(x + y)η−1 + kφ]ω = (x + y)η−1η + kφ = x + y + kφ.

Also, mθ = (y + z)θ because ker(θ ) = K ⊕ X. Hence, m(θ − π ) = 0 becomes

(y + z)θ = mθ = mπ = x + y + kφ.

Since kφ ∈ Y, this means that (y + z)θ ∈ Mθ ∩ (X ⊕ Y ) = 0, so that

y + z ∈ ker(θ ) ∩ (Y ⊕ L) = 0.

This means that y = 0 = z, and hence that x + kφ = 0. Thus, kφ = −x ∈ Y ∩ X = 0,

whence x = 0 = k because φ is monic. �

REMARK 1. In the above proof, we showed X ⊕ Y ⊆ (X ⊕ K)(θ − π ). In fact, this
is equality: Given x and y write y = kφ and compute

(−x − k)(θ − π ) = −(x + k)(θ − π ) = −[0 − (x + k)υω] = x + kφ = x + y.

QUESTION 3. If Mθ + ker(θ ) and Mθ ∩ ker(θ ) are direct summands of M, is θ

regular?
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