AN EXTRAPOLATION THEOREM FOR POSITIVE OPERATORS

H. D. B. MILLER

Introduction. Denote by S and M respectively the complex vector spaces of simple and measurable complex valued functions defined on the finite measure space X. Let T be a positive linear map from S to M such that for each $p, 1<p<\infty$, $\sup \left\{\|T f\|_{p}: f \in S,\|f\|_{p} \leqq 1\right\}$ is finite. T then has an extension to a bounded transformation of every $L_{p}(X), 1<p<\infty$, and these extensions are "consistent". The norm of T as a transformation of L_{p} is denoted $\|T\|_{p}$. The aim of this note is to prove the following theorem.

Theorem. Suppose (i) $\|T\|_{p}=1$ for three values p_{0}, r, p_{1} of p, where $1<p_{0}<$ $r<p_{1}<\infty$: and (ii) there is a $p, p_{0}<p<p_{1}$, andf >0 a.e. such that $\|T f\|_{p}=$ $\|f\|_{p}=1$. Then $T 1=T^{*} 1=1$, where 1 is the function whose value is 1 at all points of X (and consequently T is a contraction on all $L_{p}(X)$ spaces, $1 \leqq p$ $\leqq \infty)$.

The main step in proving this result is to show that if T satisfies (i), and if (ii)' there is an $f \geqq 0$ a.e. such that $\|T f\|_{p}=\|f\|_{p}=1$, then $T \chi_{A}=\chi_{B}$, where $A=\{f>0\}$ and $B=\{T f>0\}$. The hypotheses (i) and (ii)' imply $T^{*}(T f)^{p-1}=f^{p-1}$, so T^{*} satisfies (i) and (ii) for $p_{0}{ }^{*}, r^{*}, p_{1}{ }^{*}, p^{*}$ and $(T f)^{p-1}$. Noting $\left\{(T f)^{p-1}>0\right\}=\{T f>0\}$ and $\left\{f^{p-1}>0\right\}=\{f>0\}$, we see $T^{*} \chi_{B}=$ χ_{A}. The theorem follows, since $\mu(A)=\mu(B)$ and if $f>0$ a.e., then $\chi_{A}=1$ (§4).

The idea of the proof of this supporting result is to examine the function $F:(0,1) \rightarrow[0, \infty)$ given by

$$
F(t)=\int T\left(f^{p}\right) g^{q(1-t)}
$$

where $g=(T f)^{p-1}$. This is logarithmically convex (cf. § 1, Prop. 1). F is also dominated by the $1 / t$-norm of T. It follows from (i) and (ii)' that $F(t)=1$ if $t \in\left[1 / p_{1}, 1 / p_{0}\right]$. By (i) and the condition for equality in Hölder's Inequality, we conclude that for each $t \in\left[1 / p_{1}, 1 / p_{0}\right]$,
(*) $T\left(f^{p t}\right)=(T f)^{p t}$ a.e.
(cf. § 3, Prop. 3).
In the case of a discrete measure on a finite set, T is a positive matrix, and both sides of $\left(^{*}\right)$ are analytic on \mathbf{C}. Since they agree on $\left[1 / p_{1}, 1 / p_{0}\right]$, they

Received January 19, 1976 and in revised form, August 19, 1977.
agree everywhere, so putting $t=0$ gives the desired result. In the general case, an appropriate analyticity holds for the $\operatorname{strip}\{z: 0<\operatorname{Re} z<1\}$ (cf. §2, Prop. 2). In $\S 4$ we use this to obtain the conclusion in the general case, and give the details of the proof of the main theorem.

In § 5 we include remarks relating to the results given here.

1. Lemmas 1 and 2 are needed for Proposition 1, the main result of this section. Lemma 1 is known (cf. [1, p. 17, Prop. 2.1.2] for a similar result).

Lemma 1. Let $1<r<\infty, 0 \leqq f, f \in L_{r}, 0 \leqq f_{n}, f_{n} \in L_{r}, n=1,2, \ldots$ (1) If $f_{n} \uparrow f$, then $T f_{n} \uparrow T f$ a.e.
(2) If $f_{n} \downarrow f$, then $T f_{n} \downarrow T f$ a.e.

Proof. (1) For each $n \geqq 1$, there is a set $A, \mu(A)=0$, such that $0 \leqq$ $T f_{n}(x) \leqq T f_{n+1}(x) \leqq T f(x)<\infty$ if $x \in X-A$. This follows from the positivity of T and the L_{r} boundedness of T. The union of the sets A has measure zero, and on its complement, $g=\lim _{n} T f_{n}$ exists. Put $g=0$ at all other points. Then g is finite everywhere and $g \leqq T f$. If $n \geqq 1$,

$$
\int(T f-g)^{\tau} \leqq \int\left(T f-T f_{n}\right)^{\tau} \leqq\|T\|_{\tau}^{\tau} \int\left(f-f_{n}\right)^{\tau}
$$

Since $f_{n} \rightarrow f$ in L_{r} (by Lebesgue's Theorem of Dominated Convergence) we conclude $T f=g$ a.e.
(2) This follows from (1) using the sequence $f_{1}-f_{n} \uparrow f_{1}-f$.

Lemma 2. If $h \geqq 0, h \in L_{1}, 0<x<y<1,0<a<1$, then $T\left(h^{w}\right) \leqq$ $\left[T\left(h^{x}\right)\right]^{1-a} \cdot\left[T\left(h^{y}\right)\right]^{a}$ a.e., where $w=(1-a) x+a y$.

Proof. If h is simple, this follows from Hölder's inequality. If h is not simple, let s be simple and $0 \leqq s \leqq h$. Then by the positivity of T,

$$
T\left(s^{w}\right) \leqq\left[T\left(h^{x}\right)\right]^{1-a} \cdot\left[T\left(h^{y}\right)\right]^{a} \quad \text { a.e. }
$$

The conclusion follows from Lemma 1-(1).
Proposition 1. Let h and $k \in L_{1}, h \geqq 0, k \geqq 0$. If $G:(0,1) \rightarrow[0, \infty)$ is given by

$$
G(t)=\int T\left(h^{t}\right) k^{1-t}
$$

then G is logarithmically convex.
Proof. We must show that if $0<t, s, a<1$ then $G((1-a) t+a s) \leqq$ $G(t)^{1-a} \cdot G(s)^{a}$.

Using Lemma 2, we see that

$$
G((1-a) t+a s) \leqq \int\left[T\left(h^{t}\right) \cdot k^{1-t}\right]^{1-a}\left[T\left(h^{s}\right) k^{1-s}\right]^{a}
$$

so the proposition follows from Hölder's inequality for the conjugate indices $1 / 1-a$ and $1 / a$.

2.

Lemma 3. Let $a>b>0, x, y$ real, $d \geqq x \geqq c>0$. Let $z=x+i y$.
(1) If $b \geqq 1$, then $\left|a^{2}-b^{z}\right| \leqq|z|\left(a^{d}-b^{d}\right) / d$.
(2) If $a \leqq 1$, then $\left|a^{z}-b^{z}\right| \leqq|z|\left(a^{c}-b^{c}\right) / c$.

Proof. We have

$$
a^{2}-b^{2}=z \int_{0}^{a} t^{z-1} d t .
$$

Thus,

$$
\left|a^{2}-b^{2}\right| \leqq|z| \int_{b}^{a} t^{x-1} d t
$$

For (1), since $b \geqq 1$, if $t \geqq b, t^{x-1} \leqq t^{d-1}$. Thus,

$$
\left|a^{2}-b^{2}\right| \leqq|z| \int_{b}^{a} t^{d-1} d t=\frac{|z|}{d}\left(a^{d}-b^{d}\right) .
$$

For (2), since $a \leqq 1$, if $t \leqq a$, then $t^{x-c} \leqq 1$, so $t^{x-1} \leqq t^{c-1}$.
Thus,

$$
\left|a^{z}-b^{z}\right| \leqq|z|\left(a^{c}-b^{c}\right) / c
$$

Proposition 2. If $1<r<\infty, g \in L_{r}, g \geqq 0$ and $h \in S$, then

$$
H(z)=\int T\left(g^{r z}\right) h
$$

is analytic on the strip $0<\operatorname{Re} z<1$.
Proof. If g is simple, say $g=\sum_{1}{ }^{n} c_{i} \chi\left(A_{i}\right)$, where $c_{i}>0, A_{i}$ are disjoint, $i=1,2, \ldots, n$, then for each z,

$$
g^{\tau 2}=\sum_{1}^{n} c_{i}{ }^{\tau 2} \chi\left(A_{i}\right) \quad \text { a.e. }
$$

so

$$
H(z)=\int T\left(g^{T z}\right) h=\sum_{1}^{n} c_{i}^{\tau z} \int T \chi\left(A_{i}\right) h
$$

Clearly H is analytic (for all z). If g is not simple, let $g_{n} \in L_{r}, g_{n} \geqq 0, n=$ $1,2, \ldots$, be simple functions such that $g_{n} \uparrow g$ and such that $\left\{g_{1} \geqq 1\right\}=$ $\{g \geqq 1\}$. Let

$$
H_{n}(z)=\int T\left(g_{n}{ }^{r^{z}}\right) h .
$$

To show H is analytic, it is sufficient to show $H_{n} \rightarrow H$ uniformly on compact subsets of $0<\operatorname{Re} z<1$. Note

$$
\left|H(z)-H_{n}(z)\right| \leqq \int T\left|g^{\tau_{z}}-g_{n}^{r^{r}}\right| \cdot|h| .
$$

If $A=\left\{g_{1} \geqq 1\right\}$ and $B=\{g<1\}, A \cap B$ has measure zero and $A \cup B=X$. Thus $\left|H(z)-H_{n}(z)\right| \leqq \int_{A}+\int_{B}$. Let $\epsilon>0$ and let K be a compact subset of $0<\operatorname{Re} z<1$. There are $R, d, c\rangle 0$ such that $z \in K \Rightarrow|z|\langle R, 1\rangle d\rangle$ $\operatorname{Re} z>c$. We have then

$$
\left|H(z)-H_{n}(z)\right| \leqq \frac{R}{d} \int_{A} T\left(g^{r d}-g_{n}{ }^{r d}\right) \cdot|h|+\frac{R}{c} \int_{B} T\left(g^{r c}-g_{n}{ }^{r c}\right) \cdot|h| .
$$

Let $0<a<1$. By Lemma 2-(1), $T\left(g^{r a}-g_{n}{ }^{r a}\right) \cdot|h| \rightarrow 0$ as $n \rightarrow \infty$. Also, this function is dominated a.e. by $T\left(g^{r a}\right) \cdot|h|$, which has finite integral since the $1 / a$-norm of T is finite. By Lebesgue's Theorem of Dominated Convergence, if $\delta>0$, there is N such that if $n \geqq N$

$$
\int T\left(g^{r a}-g_{n}^{r a}\right) \cdot|h|<\delta / 2 .
$$

From this, if $\delta=\epsilon c / R$ it is clear that there is an N such that if $n \geqq N$, then $\left|H(z)-H_{n}(z)\right|<\epsilon$. This gives the result of the proposition.

3.

Proposition 3. Suppose T satisfies the hypotheses (i), (ii)' stated in the Introduction. If $t \in(0,1)$, and f is the function mentioned in (ii)', then

$$
T\left(f^{p t}\right)=(T f)^{p t} \quad \text { a.e. }
$$

Proof. Let $g=(T f)^{p-1}$. Then $\|g\|_{q}=1$, where $1 / p+1 / q=1$. Consider F, where

$$
F(t)=\int T\left(f^{p t}\right) g^{g(1-t)}, \quad t \in(0,1)
$$

By Proposition 1, F is a log-convex function. Since $f^{p t}$ and $g^{g(1-t)}$ have respectively $1 / t$ and $1 /(1-t)$ norm equal to 1 , we see $F(t) \leqq 1 / t$-norm of T. Thus, $F\left(1 / p_{1}\right) \leqq 1, F\left(1 / p_{0}\right) \leqq 1$. Since $F(1 / p)=1$, (by (ii) $\left.{ }^{\prime}\right)$, we conclude from the log-convexity that $F(t)=1$ if $t \in\left[1 / p_{1}, 1 / p_{0}\right]$. By the Riesz convexity theorem, and (i), the $1 / t$-norm of T is 1 for $t \in\left[1 / p_{1}, 1 / p_{0}\right]$. Using $F(t)=1$ and Hölder's inequality for the conjugate indices $r=1 / t$ and $s=1 /(1-t)$, we have if $r \in\left[p_{0}, p_{1}\right]$ that

$$
1 \leqq\left\|T\left(f^{p t}\right)\right\|_{r}\left\|g^{q(1-t)}\right\|_{s}=\left\|T\left(f^{p}\right)\right\|_{r} \leqq\|T\|_{r}=1 .
$$

By the condition for equality in Hölder's theorem, there are positive constants A, B not both zero such that

$$
A\left(T\left(f^{p}\right)\right)^{r}=B\left(g^{q(1-t)}\right)^{s} \quad \text { a.e. }
$$

Integrating and using $\left\|T\left(f^{p t}\right)\right\|_{r}=1$, we see $A=B \neq 0$. Thus,

$$
T\left(f^{p t}\right)=g^{q t} \quad \text { a.e. }
$$

if $t \in\left[1 / p_{1}, 1 / p_{0}\right]$. This equality can be extended to all $t \in(0,1)$, since for any simple function h, on $\{0<\operatorname{Re} z<1\}$ the function K,

$$
K(z)=\int\left[T\left(f^{p z}\right)-g^{q z}\right] \cdot h
$$

is analytic by Proposition 2 . Since K vanishes on $\left[1 / p_{1}, 1 / p_{0}\right]$ it must vanish identically. Since h was arbitrary, we conclude $T\left(f^{p z}\right)=g^{q z}$ a.e., for each $z \in\{0<\operatorname{Re} z<1\}$.
4. We may assume $f<\infty$. Let $A=\{f>0\}, B=\{T f>0\}$. Put $f_{0}=$ $\chi\{0<f<1\} \cdot f, f_{1}=\chi\{1 \leqq f\} \cdot f, f_{0 n}=\exp \left\{(p / n) \log f_{0}\right\}, f_{1 n}=\exp$ $\left\{(p / n) \log f_{1}\right\}, f_{n}=\exp \{(p / n) \log f\}$. Then $f_{0_{n}} \uparrow \chi\{0<f<1\}, f_{1 n} \downarrow \chi\{1 \leqq f\}$, and $f_{n}=f_{0 n}+f_{1 n}$. Noting $\chi\{0<f<1\} \in L_{2}$, say, and $f_{12} \in L_{2}$, we have by Lemma 2, $T f_{0_{n}} \rightarrow T \chi\{0<f<1\}$ and $T f_{1 n} \rightarrow T \chi\{1 \leqq f\}$. This gives $T f_{n} \rightarrow$ $T \chi\{0<f\}$. It is clear that $\exp \{(p / n) \log T f\} \rightarrow \chi\{(T f)>0\}$. Thus, by Proposition 3,

$$
T \chi\{f>0\}=\chi\{(T f)>0\}
$$

i.e. $T \chi(A)=\chi(B)$. To show $T^{*} \chi(B)=\chi(A)$, we note that T^{*} satisfies the hypothesis (i) of the theorem with indices conjugate to those given for T. Also, if $q=p^{*},\|g\|_{q}=1$, and by Hölder's inequality,

$$
1=\int f T^{*} g \leqq\|f\|_{p}\left\|T^{*} g\right\|_{q}=\left\|T^{*} g\right\|_{q} \leqq\left\|T^{*}\right\|_{q}=1
$$

We conclude $\left\|T^{*} g\right\|_{\varphi}=1$. Hence, hypothesis (ii) ${ }^{\prime}$ of the theorem is satisfied for T^{*}, g, p^{*}, and we can conclude as above that

$$
T^{*} \chi\{g>0\}=\chi\left\{T^{*} g>0\right\} .
$$

Now $\{g>0\}=B$; we must show $\left\{T^{*} g>0\right\}=A$. By the condition for equality in Holder's theorem, there are constants $A, B \geqq 0$, not both zero, such that

$$
A f^{p}=B\left(T^{*} g\right)^{q}
$$

Integrating gives $A=B$. Thus, $f^{p}=\left(T^{*} g\right)^{q}$, so $\chi\left\{T^{*} g>0\right\}=\chi\{f>0\}$. This concludes the proof of the supporting result.

To obtain the Main Theorem, we note that in general

$$
\int T \chi_{A} \chi_{B}=\int \chi_{B}=\mu(B)
$$

and

$$
\int T_{\chi_{A} \chi_{B}}=\int \chi_{A} T^{*} \chi_{B}=\int \chi_{A}=\mu(A) .
$$

Thus, $\mu(A)=\mu(B)$. If T satisfies (ii), then $\chi_{A}=1$, and from the above we conclude $\chi_{B}=1$ a.e. Thus, $T 1=1$ and $T^{*} 1=1$, as desired. That T is a contraction on all $L_{p}(X)$ follows from the Riesz Convexity Theorem since $\|T\|_{\infty}=1$, and $\left\|T^{*}\right\|_{\infty}=1$ so that $\|T\|_{1}=\left\|T^{*}\right\|_{\infty}=1$.
5. The function F in Proposition 1 was suggested by the proof of the Riesz Convexity Theorem (see e.g. [2, pp. 69-70]).
If (ii) is not assumed, the conclusion of the Theorem is in general false. An example is provided by the direct sum of two finite measure spaces X_{1} and X_{2}. Let T_{1} and T_{2} be bounded transformations of $L_{r}\left(X_{1}\right)$ and $L_{p}\left(X_{2}\right)$ respectively for each $1 \leqq p \leqq \infty$. Assume $\left\|T_{1}\right\|_{p}=1$ for all $1 \leqq p \leqq \infty$ (e.g., $T=I$) and let T_{2} be such that $\left\|T_{2}\right\|_{1}>1,\left\|T_{2}\right\|_{\infty}>1,\left\|T_{2}\right\|_{2}<1$. By the Riesz Convexity Theorem, the set of p such that $\left\|T_{2}\right\|_{p}<1$ is an open interval (p_{0}, p_{1}) where $1<p_{0}<p_{1}<\infty$. If $T=T_{1} \oplus T_{2}$, then $\|T\|_{p}=\max \left\{\left\|T_{1}\right\|_{p},\left\|T_{2}\right\|_{p}\right\}$. Clearly (i) holds. Since every f measurable on X can be written $f=f_{1}+f_{2}$ where $\operatorname{supp} f_{i} \subset X_{i}, i=1,2$, if $p \in\left(p_{0}, p_{1}\right)$, then

$$
\|T f\|_{p}^{p}=\left\|T_{1} f_{1}\right\|_{p^{p}}^{p}+\left\|T_{2} f_{2}\right\|_{p^{p}} \leqq\left\|f_{1}\right\|_{p^{p}}+\left\|f_{2}\right\|_{p^{p}}
$$

with strict inequality if $f_{2}>0$ on a set of positive measure. Hence (ii) cannot hold. It is also clear that the conclusion of the theorem fails.

We note finally that the hypothesis (ii)' always holds when T is compact, as pointed out by P. Rosenthal. If $T f(x)=\int K(x, y) f(y) d y$, where K is measurable in the product σ-algebra, then T is compact provided $\int\left(\int K(x, y)^{d} d y\right)^{p / g}$ $d x<\infty$ (see [3, pp. 277-278]).

References

1. A. Garsia, Topics in almost everywhere convergence (Markham, Chicago).
2. W. Rudin, Real and complex analysis (McGraw-Hill, 1974).
3. E. M. Stein, Topics in harmonic analysis (Princeton, 1970).
4. K. Yosida, Functional analysis, 4th Ed. (Springer, 1974).

University of Toronto,
Toronto, Ontario

