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Mesonic spectrum from current algebra

11.1 Introduction

In this chapter we study the mesonic spectrum of various QCD2 theories. The
main idea is to use the current algebra of the underlying ungauged theories. In
addition we combine the bosonization techniques developed in Chapter 6 with
that of a large N expansion of Chapter 7 and a light-front quantization as in
Chapter 10. We will focus our attention on the massive mesonic spectrum of con-
formal field theories coupled to non-abelian gauge fields. In particular massless
multi-flavor fundamental quarks and adjoint quarks that will be shown to
correspond to the particular case of Nf = Nc .

First a universality theorem, that states that the massive mesonic spectrum
does not depend on the representation of the matter field but rather only on its
ALA level, will be derived, following Kutasov and Schwimmer [148].

We then present a detailed determination of the massive mesonic spectrum
using a ’t Hooft-like equation for the wave functions of “currentballs” states. We
will discuss in particular the special cases of Nf = 1, Nf = Nc and Nf � Nc . The
last section is devoted to the spectrum of states built by the action of a single
current creation operator on the adjoint vacuum. In both cases it will be shown
that the bosonization approach leads to the introduction of current quanta as
the basic degrees of freedom. Once the mass operator P+P− = M 2 is expressed
in terms of the current quanta, the bosonization has already left the scene.

The main content of this chapter, the mesonic spectrum from current algebra,
is based on [17].1 The spectrum based on the adjoint vacuum was introduced
in [3].

11.2 Universality of conformal field theories coupled to YM2

So far we have mainly discussed the coupling of matter in the fundamental
representation to the two-dimensional Y M fields. Obviously one can also couple
other matter fields to these non-abelian gauge fields. A natural class of matter
theories that one would like to gauge are the conformal field theories which admit
on top of the Virasoro algebra also an affine Lie algebra structure. These theories
which are characterized by the corresponding Lie algebra G and the level k of the

1 This was previously also discussed in [18].
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204 Mesonic spectrum from current algebra

affine Lie algebra, are candidates for coupling to non-abelian gauge fields of the
group G. A particular family of such theories are the WZW models, invariant
under G×G of level k. We have discussed in Chapter 6 the gauging of such
models. In this chapter we would like to address the issue of the spectrum of
such gauged conformal field theories, and in particular the massive sector of the
spectrum. In general the Lagrangian density of such a theory reads,

L = LC F T −
1

2e2 Tr
[
F 2

μν

]
+ LI

= LC F T −
1

2e2 Tr
[
(∂−A+)2]+ Tr [A+J−]

= LC F T −
e2

2
Tr
[
J+ 1

∂2
−

J+
]

= LC F T −
e2

2
Tr
[
J

1
∂2 J

]
, (11.1)

where we have used the light-cone gauge A− = 0. We will be using the notation
of J for J− and J̄ for J+, and similar for other holomorphic and anti-holomorphic
quantities.

A conformal field theory invariant under the symmetry generated by a G

ALA has holomorphic currents Ja in the adjoint representation of G, as well
as anti-holomorphic currents also in the adjoint representation of G. In general
the holomorphic currents obey an ALA with level k and the anti-holomorphic
currents an ALA of level k̄. However, gauging the conformal theory requires
vanishing of the chiral anomaly, namely it requires that,

k = k̄. (11.2)

Next we quantize the system on the light-front. This framework is very conve-
nient since both momenta P− and P+, or equivalently P and P̄ , can be expressed
in terms of J only (with no reference to J̄). This decoupling of one sector (the
anti-holomorphic one) can be attributed to the fact that in a frame moving to the
right with the speed of light there is no way to interact with massless left-moving
particles. The light-cone Hamiltonian is given by,

P+ =
1

[C(G) + k]

∫
dx− : Ja(x−)Ja(x−)

=
∞∑

n=1

1
n2 Ja

−nJa
n , (11.3)

where in the last line we have assumed that the light-cone space direction x− = z

has been put on a circle. Thus the Hamiltonian acts inside current blocks, and
the problem of finding the massive spectrum splits into diagonalizing the decou-
pled blocks of P+ on global G singlets. We want to emphasize again that the
light-front dynamics is fully independent of the anti-holomorphic sector, apart
from the constraint that k = k̄. This clearly means that we can replace the
anti-holomorphic sector with another anti-holomorphic sector, provided that
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11.2 Universality of conformal field theories coupled to Y M2 205

the latter has a level that equals k. Obviously we could have fixed the oppo-
site gauge A+ = 0, leaving only the anti-holomorphic sector with currents J̄ . In
that gauge we could have replaced the holomorphic sector with another one,
again provided that it has level k. Thus we conclude that the massive spectrum
does not depend on the representations r and r̄, but only on the gauge group G

and the level k.
We would like to demonstrate this universality in the context of a gen-

eralization of Schwinger’s model, which contains nR right moving fermions
ψR

i i = 1 . . . nR and nL left-moving fermions ψL
i i = 1 . . . nL [120]. Both the right-

and left-moving fermions are charged with respect to an abelian U(1) gauge
symmetry with charges qR

i and qL
i respectively. The system is described by the

Lagrangian density,

L = ψR
i

†
∂̄ψR

i + ψL
i

†
∂ψL

i + ĀJ − 1
4e2 (∂Ā)2 , (11.4)

where J =
∑nR

i qR
i ψR

i
†
ψR

i and we are using the gauge A = 0. Upon integrating
Ā we get,

L = ψR
i

†
∂̄ψR

i + ψL
i

†
∂ψL

i − e2J
1
∂2 J. (11.5)

We can now bosonize the system. Note that the fermions at hand are not Dirac
fermions but rather nR right and nL left chiral fermions. The system is consistent
in the sense that there is no chiral anomaly when,

kR ≡
N R∑
i=1

qR
i kL ≡

N L∑
i=1

qL
i kR = kL = k. (11.6)

One can use the prescription for chiral bosonization described in Section 6.4.
In fact it is enough to note that the interaction term takes the form,

Lint = −e2J
1
∂2 J = e2(φ)2 , (11.7)

where φ =
∑N R

i qR
i φR

i =
∑N L

i qL
i φL

i and φL and φL are the right and left chiral
bosons that corresponds to the right and left chiral fermions. Thus we conclude
that the spectrum includes one massive mode corresponding to φ plus nR − 1 and
nL − 1 massless right- and left-moving particles, respectively. It is now evident
that indeed in accordance with the universality theorem, the massive sector
does not depend on the explicit sequence of charges qR

i and qL
i but only on the

combination expressed in φ.
Another example of the universality theorem is the case of adjoint fermions.

The ALA associated with the currents built from the adjoint fermions Jab =
ψacψcb is of level Nc . The CFT based on a WZW model of SU(Nc) of level
k = Nc is another theory with the same ALA, and hence the massive sector of
the spectrum of these theories should, according to the theorem, be the same.
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206 Mesonic spectrum from current algebra

In the next section we describe the massive spectrum of such models based on a
’t Hooft-like equation for the currents.

11.3 Mesonic spectra of two-current states

In this section we derive the massive meson spectrum built from two current
creation operators acting on the vacuum. In the next section we will discuss
states constructed from a single current acting on the adjoint vacuum.

The first step in the determination of the spectrum is the derivation of a ’t
Hooft-like equation for the wave functions of the “currentball” states, at arbitrary
level Nf . This equation should interpolate between the description of a single
flavor (’t Hooft model), the model Nf = Nc equivalent to adjoint fermions and
the large Nf limit. We will argue that the equation obtained suggests that the
underlying degrees of freedom in the problem are interacting “gluons” with mass
e2 Nf

π . Actually, these are related to the color currents, but are color singlets.
Then we will solve the equation for the lowest massive state. Whereas the ’t

Hooft model Nf = 1 is exactly solvable, the multi-flavor case with Nf > 1 is not
solvable even in the Veneziano limit when both Nc and Nf are taken to infinity
(with a fixed ratio), since pair creation and annihilation are not suppressed.

For the case of the adjoint quarks, the results derived using the current quanta
will be shown to be compatible with those computed with fermions as the basic
degrees of freedom discussed in Chapter 12. For large Nf it will be shown that the
exact massive spectrum is a single particle with M 2 = e2 Nf

π . This phenomenon
is explained by the fact that this limit can be viewed as an “abelianization” of
the model.

11.3.1 The basic setup

We now establish the basic setup. We start with the fermionic formulation of the
various theories, impose the light-cone gauge, introduce the bosonized version
and finally write down the mass operator.

In Section 8.4 the classical theory of QCD2 with Dirac fermions in the fun-
damental representation was described. Here we will address this case as well
as massless Majorana fermions in the adjoint representation. Recall that these
theories are described by the following classical Lagrangian:

L = −Tr
[

1
2e2 F 2

μν + iΨ̄ 	DΨ
]

, (11.8)

where Fμν = ∂μAν − ∂ν Aμ + i[Aμ,Aν ] and the trace is over the color and fla-
vor indices. For case (i) Ψ has the group structure Ψia where i = 1,. . . ,Nc

and a = 1,. . . ,Nf with Dμ = ∂μ − iAμ , whereas for case (ii) Ψ ≡ Ψi
j and Dμ =

∂μ − i[Aμ, ]. In both cases Ψ is two-spinor parametrized as Ψ = ( ψ̄
ψ ).
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11.3 Mesonic spectra of two-current states 207

As we have seen in Chapter 10 it is useful to handle these models in the frame-
work of light-front quantization, namely, to use light-cone space-time coordinates
and to choose the chiral gauge A− = 0. In this scheme the Lagrangian takes the
form,

L = − 1
2e2 (∂−A+)2 + iψ†∂+ψ + iψ̄†∂−ψ̄ + A+J+ , (11.9)

where color and flavor indices were omitted and J+ denotes the + component of
the color current J+ ≡ ψ†ψ. This Lagrangian density is identical to (11.4) when
one replaces the complex coordinates with light-cone ones.

By choosing x+ to be the ‘time’ coordinate it is clear that A+ and ψ̄ are non-
dynamical degrees of freedom. In fact, ψ̄ are decoupled from the other fields,
so in order to extract the physics of the dynamical degrees of freedom, one has
to functionally integrate over A+. The result of this integration is the following
simplified Lagrangian,

L = L0 + LI = iψ†∂+ψ + iψ̄†∂−ψ̄ − e2

2
J+ 1

∂2
−

J+ . (11.10)

Since our basic idea is to solve the system in terms of the “quanta” of the col-
ored currents, it is natural to introduce bosonization descriptions of the various
fields.

(i) As was discussed in Section (9.3.2), the bosonized action of colored-flavored
Dirac fermions in the fundamental representation is expressed in terms of a WZW
action of a group element u ∈ U(Nc ×Nf ), with an additional mass term that
couples the color, flavor and baryon number sectors. In the massless case when
the latter term is missing, the action takes the form,

Sfund
0 = SWZW

(Nf ) (g) + SWZW
(Nc ) (h) +

1
2

∫
d2x∂μφ∂μφ, (11.11)

where g ∈ SU(Nc), h ∈ SU(Nf ) and e
i
√

4 π
N c N f

φ ∈ UB (1), with UB (1) denoting
the baryon number symmetry, and the WZW action was given in Section 4.1.

(ii) The current structure of free Majorana fermions in the adjoint repre-
sentation can be recast in terms of a WZW action of level k = Nc , namely
Sadj

0 = SWZW
(Nc ) (g), where now g is in the adjoint representation of SU(Nc), so

that it carries a conformal dimension of 1
2 . Multi-flavor adjoint fermions can be

described as SWZW
Nf

(g) + SWZW
N 2

c −1 (h) where g ∈ SO(N 2
c − 1) and h ∈ SO(Nf ). In

the present work we discuss only gauging of SU(Nc) WZW so the latter model
would not be considered.

Substituting now Sfund
0 or Sadj

0 for S0 the action that corresponds to 11.10
becomes,

S = S0 −
e2

2

∫
d2xJ+ 1

∂2
−

J+ , (11.12)

https://doi.org/10.1017/9781009401654.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.012


208 Mesonic spectrum from current algebra

where the current J+ now reads J+ = i k
2πg∂−g†, and the level k = Nf and k =

Nc for the multi-flavor fundamental and adjoint cases, respectively.
The light-front quantization scheme is very convenient because the correspond-

ing momenta generators P+ and P− can be expressed only in terms of J+. We
would like to emphasize that this holds only for the massless case.

Using the Sugawara construction, the contribution of the colored currents to
the momentum operator P+ takes the simple form,

P+ =
1

Nc + k

∫
dx− : Ji

j (x
−)Jj

i (x−) :, (11.13)

where J ≡
√

πJ+, Nc in the denominator is the second Casimir operator of
the adjoint representation and the level k takes the values mentioned above.
Note that for future purposes we have added the color indices i, j = 1 . . . Nc to
the currents. In the absence of the interaction with the gauge fields the second
momentum operator P− vanishes. For the various QCD2 models it is given by,

P− = − e2

2π

∫
dx− : Ji

j (x
−)

1
∂2
−

Jj
i (x−) : . (11.14)

In order to find the massive spectrum of the model we should diagonalize
the mass operator M 2 = 2P+P−. Our task is therefore to solve the eigenvalue
equation,

2P+P−|ψ〉 = M 2 |ψ〉. (11.15)

We write P+ and P− in term of the Fourier transform of J(x−), defined by,

J(p+) =
∫

dx−
√

2π
e−ip+ x−

J(x−).

Normal ordering in the expressions of P+ and P− are naturally with respect
to p, where p < 0 denotes a creation operator, and to simplify the notation we
will write from here on p instead of p+. In terms of these variables the momenta
generators are,

P+ = 2
N +k

∫∞
0 dpJi

j (−p)Jj
i (p)

P− = e2

π

∫∞
0 dp 1

p2 Ji
j (−p)Jj

i (p). (11.16)

Recall that the light-cone currents Ji
j (p) obey a level k, SU(Nc) affine Lie algebra,[

Jk
i (p), Jn

l (p′)
]

=
1
2
kp

(
δn
i δk

l −
1
N

δk
i δn

l

)
δ(p+p′)+

1
2
(
Jn

i (p+p′)δk
l −Jk

l (p+p′)δn
i

)
.

(11.17)
We can now construct the Hilbert space. The vacuum |0, R〉 is defined by the
annihilation property,

∀p > 0, J(p)|0, R〉 = 0, (11.18)
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11.3 Mesonic spectra of two-current states 209

where R is an “allowed” representation depending on the level. Thus, a physical
state in Hilbert space is,

Tr J(−p1) . . . J(−pn )|0, R〉.

Note that this basis is not orthogonal.

11.3.2 ’t Hooft-like equation for the two-current wave function

We restrict ourselves to the simplest case of the two-current sector of the Hilbert
space, (in Section 11.4 we will also mention the special case of one current on an
adjoint vacuum),

|Φ〉 =
1

NcNf

∫ 1

0
dk Φ(k)Ja(−k)Ja(k − 1)|0〉, (11.19)

namely to states which are color singlets of two currents with total P+ = 1
momentum and a distribution of P− momentum Φ(k). Note that Φ is a sym-
metric function,

Φ(k) = Φ(1− k). (11.20)

Our task now is to find the eigenvalue (Schrödinger) equation for the wave
function Φ(k). Let us start by the action of the “Hamiltonian” P− on the state
|Φ〉.

The commutator of P− with a current Jb(−k) yields the result,[∫ ∞

0

dp

p2 Ja(−p)Ja(p), Jb(−k)
]((

1
2
Nf −Nc

)
1
k

+ Nc
1
ε

)
Jb(−k)

+
∫ ∞

k

dp

(
1
p2 −

1
(p− k)2

)
ifabcJa(−p)Jc(p− k)

+
∫ k

0

dp

p2 ifabcJc(p− k)Ja(−p). (11.21)

We introduced ε as an IR cutoff, namely, the lower limit of integration. This is
the analog of λ in the derivation of the ’t Hooft equation of Chapter 10. We take
ε to go to zero at the end of the calculation.

The above expression (11.21) contains three terms on the right-hand side The
first term contains a single creation operator. The second term contains an anni-
hilation current and therefore should again be commuted with Jb(k − 1). The
third term contains two creation currents and it would lead to a three-current
state. This is a manifestation of the fact that pair creation is, generically, not
suppressed in multi-flavor QCD2.

Note that while deriving eqn (11.21) we get an “infinite” contribution
Nc

1
ε Jb(−k). This contribution will be cancelled by a counter contribution which

comes from the regime p ∼ k in the first integral on the right-hand side of (11.21),
as below.
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210 Mesonic spectrum from current algebra

The commutator of the second term on the right-hand side of (11.21) with
Jb(k − 1) yields,[∫ ∞

k

dp

(
1
p2 −

1
(p− k)2

)
ifabcJa(−p)Jc(p− k), Jb(k − 1)

]
(11.22)

= Nc

∫ ∞

k

dp

(
1
p2 −

1
(p− k)2

)
(Ja(−p)Ja(p− 1)− Ja(p− k)Ja(k − p− 1)).

Our results can be summarized by the following set of equations,

M 2 |Φ〉 =
1

NcNf

∫ 1

0
dk Φ̃(k)Ja(−k)Ja(k − 1)|0〉+ 1

(NcNf )
3
2

(11.23)

×
∫ 1

0
dk dp dl δ(k + p + l − 1)Ψ(k, p, l)ifabcJa(−k)Jb(−p)Jc(−l)|0〉,

with,

Ψ(k, p, l) =
2e2(NcNf )

1
2

π

(
Φ(l)− Φ(k)

p2

)
, (11.24)

and,

Φ̃(k) =
e2

π

(
(Nf −Nc)

(
1
k

+
1

1− k

)
Φ(k) +

2Nc

ε
Φ(k) (11.25)

−Nc

∫ k−ε

0
dp

Φ(p)
(p−k)2−Nc

∫ 1

k+ε

dp
Φ(p)

(p−k)2 +Nc

(
1
k2−

1
(1−k)2

)∫ k

0
dpΦ(p)

)

Ignoring the three-current term (see below), we get that Φ(k) obeys the eigen-
value equation,

M 2

e2/π
Φ(k) = (Nf −Nc)

(
1
k

+
1

1− k

)
Φ(k) (11.26)

−NcP
∫ 1

0
dp

Φ(p)
(p− k)2 + Nc

(
1
k2 −

1
(1− k)2

)∫ k

0
dp Φ(p).

We assumed that
∫ 1

0 dp Φ(p) = 0, which we will justify shortly.
For general Nc and Nf , discarding the three-current term is unjustified. How-

ever, since the length of Ψ is |Ψ(k, p, l)|∼ e2(NcNf )
1
2 , in the limit of large Nc

with fixed e2Nc and fixed Nf , or large Nf with fixed e2Nf and fixed Nc , the
three-current contribution is indeed negligible, as compared with the two-current
term, the latter being of order 1.

The first integral in eqn. (11.26) should be calculated as a principal value
integral (denoted by P). The divergent part of this integral (arising from the
regime p ∼ k) cancels the previously mentioned infinity. In order to make contact
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11.3 Mesonic spectra of two-current states 211

with the ordinary ’t Hooft equation, it is useful to integrate eqn. (11.26) with
respect to k and rewrite it in terms of ϕ(k) ≡

∫ k

0 dp Φ(p), to get,

M 2

e2/π
ϕ(k) = (Nf −Nc)

(
1
k

+
1

1− k

)
ϕ(k)−NcP

∫ 1

0
dp

ϕ(p)
(p− k)2

+Nf

∫ k

0
dp

ϕ(p)
p2 + Nf

∫ 1

k

dp
ϕ(p)

(1− p)2 . (11.27)

The derivation goes as follows. First, integrating eqn. (11.20) we get ϕ(k) =
−ϕ(1− k) + const. Then taking ϕ(1) = 0 we get,

ϕ(k) = −ϕ(1− k). (11.28)

Now ϕ(1) = 0 implies
∫ 1

0 dkΦ(k) = 0, which was our assumption above. Then,
differentiating (11.27) we do get (11.26), and by the last equation we also get
that there is no extra integration constant.

We would like to comment on the issue of the Hermiticity of the “Hamiltonian”
M 2 . Naively, it seems that M 2 is not Hermitian with respect to the scalar product
<ψ|ϕ> =

∫ 1
0 dkψ�(k)ϕ(k), since the Hermitian conjugate of (11.27) is,(

M 2

e2/π

)†
ϕ(k) = (Nf −Nc)

(
1
k

+
1

1− k

)
ϕ(k)

−NcP
∫ 1

0
dp

ϕ(p)
(p− k)2 −Nf

1
k2

∫ k

0
dpϕ(p)−Nf

1
(1− k)2

∫ 1

k

dpϕ(p).

(11.29)

However, as we shall see in the next subsection, the numerical solution yields
real eigenvalues and eigenfunctions. Therefore, at least on the subspace which is
spanned by the eigenfunctions, namely real functions that are zero at k = 0, 1 and
anti-symmetric with respect to k = 1

2 , the operator M 2 is Hermitian. Note that
(11.29) is “more regular” than (11.27), as in (11.27) it is ϕ(p)/p2 that appears
in the integration from zero.

Equation (11.27) is similar to the ’t Hooft equation for a massive single flavor
large Nc QCD2, with m2 = e2 Nf

π . It differs from ’t Hooft’s equation by having two
additional terms (the two last terms in (11.27)). It suggests that the dynamics
that governs the lowest state of the multi-flavor model is given, approximately, by
a model of a massive “glueball” with an SU(Nc) gauge interaction and additional
terms which are proportional to Nf .

Before we present our solution of (11.27) it is important to note that it is only
an approximate solution. We neglected the three-current state with, a priori, no
justification. We shall see, however, that the restriction to the truncated two-
current sector is an excellent approximation for the lowest massive meson.
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212 Mesonic spectrum from current algebra

11.3.3 The two-current mesonic spectrum

The most convenient way to solve (11.27) is to expand ϕ(k) in the basis,

ϕ(k) =
∞∑

i=0

Ai

(
k − 1

2

)
[k(1− k)]β+i

. (11.30)

The value of β is chosen so that the Hamiltonian will not be singular near k → 0
or k → 1. This consideration leads to the equation,(

Nf

Nc
− 1
)
− Nf /Nc

β + 1
+ βπ cot βπ = 0, (11.31)

as derived from eqn. (11.29). Had we started with (11.27), it would have been
−β replacing β in (11.31), and constrained to β larger than 1.

Upon truncating the infinite sum in (11.30) to a finite sum, the eigenvalue
problem reduces to a diagonalization of a matrix. So, the problem can be
reformulated as,

λNijAj = HijAj , (11.32)

with,

Nij =
∫ 1

0
dk

(
k − 1

2

)2

(k(1− k))2β+i+j
, (11.33)

and,

Hij =
(

Nf

Nc
− 1
)∫ 1

0
dk

(
k − 1

2

)2

(k(1− k))2β+i+j−1

−Nf

Nc

∫ 1

0
dk

(
k − 1

2

)
(k(1− k))β+i 1

k2

∫ k

0

(
p− 1

2

)
(p(1− p))β+j

−Nf

Nc

∫ 1

0
dk

(
k − 1

2

)
(k(1− k))β+i 1

(1− k)2

∫ 1

k

(
p− 1

2

)
(p(1− p))β+j

−
∫ 1

0
dkdp

(
k − 1

2

)
(k(1− k))β+i (

p− 1
2

)
(p(1− p))β+j

(k − p)2 (11.34)

Hence,

Nij =
B(2β + i + j + 2, 2β + i + j + 2)

2(2β + i + j + 1)
, (11.35)

and,

Hij =
(

Nf

Nc
− 1
)

B(2β + i + j + 1, 2β + i + j + 1)
2(2β + i + j)

−Nf

Nc

B(2β + i + j + 1, 2β + i + j + 1)
2(2β + i + j)(β + j + 1)

+
(β + i)(β + j)B(β + i, β + i)B(β + j, β + j)

8(2β + i + j)(2β + i + j + 1)
, (11.36)
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11.3 Mesonic spectra of two-current states 213

Table 11.1. The mass of the lowest massive meson,
in units of e2 Nc

π , as a function of Nf /Nc and β.

β Nf /Nc M 2

0.0000 0 5.88
0.0573 0.2 6.91
0.1088 0.4 7.91
0.1552 0.6 8.91
0.1978 0.8 9.89
0.2366 1.0 10.86
0.2725 1.2 11.83
0.3050 1.4 12.77
0.3360 1.6 13.73
0.3645 1.8 14.67

where B(x, y) is the beta function,

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

. (11.37)

In practice, the process converges rapidly and a 5× 5 matrix yields the ‘contin-
uum’ results.

The lowest eigenvalues of (11.27) as a function of the ratio Nf

Nc
are listed in

Table 11.1 (see also Fig. 11.1). Note that by β = 0, Nf /Nc = 0 we mean the limit
β → 0, Nf /Nc → 0.

These values are in excellent agreement with recent DLCQ calculations, as
will be given in the next chapter.

The typical error is less than 0.1 %.
An interesting observation is that the eigenvalues depend linearly on Nf ,

Fig. 11.1. The dependence is,

M 2 =
e2Nc

π

(
5.88 + 5

Nf

Nc

)
. (11.38)

We do not have a good understanding of this observation. It is not clear why the
lowest eigenvalue sits on a straight line.

In the following sections we will consider some special cases.

11.3.4 Special cases: Nf = 1, Nf = Nc and Nf � Nc

We now discuss three special cases, the massless ’t Hooft model where the
fermions are in the fundamental representation with Nf = 1, the case of adjoint
fermions namely Nf = Nc and the “abelianized” model of large Nf � Nc .
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Mass Eigenvalues
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Fig. 11.1. The Green’s function of the quark bilinear.

Nf = 1, currentized massless ’t Hooft model

The limit Nc →∞ with e2Nc fixed and Nf � Nc corresponds to the well-known
’t Hooft model. In this limit QCD2 was solved exactly by ’t Hooft [124] (see
Chapter 10), using the fermionic basis. Let us see how our approach looks in the
fermionic basis in this case. In the limit Nf � Nc we can neglect terms which
are proportional to Nf . Equation (11.27) takes the form,

M 2

e2/π
ϕ(k)−Nc

(
1
k

+
1

1− k

)
ϕ(k)−NcP

∫ 1

0
dp

ϕ(p)
(p− k)2 , (11.39)

which is just the ’t Hooft equation for the massless case. Note that (11.39) is

exact, since in the small Nf limit the three-current state is suppressed by N
− 1

2
c

with respect to the two-current state and therefore we can neglect it. Note also
that in this eqn. (11.29) looks the same too.

Since the wave function ϕ(k) is anti-symmetric, we will recover only the odd
states in the spectrum of QCD2 (the even states can be recovered by considering
other sectors of the Hilbert space which decouple from the two-current state).

Though eqn. (11.39) is formally the same as the ’t Hooft equation, the interpre-
tation of ϕ(k) should be different. It is the integral of the function Φ(k) which
corresponds to the two-current state, namely to a mixture of 4-fermions and
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2-fermions. What is the relation between the states that we find here and the
mesons in ’t Hooft’s model?

In order to answer this question let us expand the currents in terms of fermions.
It is useful to denote the current in double index notation

Ja(k)→ Ji
j (k) =

∫ ∞

−∞
dq

(
Ψ̄i(q)Ψj (k − q)− 1

Nc
δi
j Ψ̄

k (q)Ψk (k − q)
)

. (11.40)

We do not bother about normal ordering, as no problem for k non zero, and we
have to treat the k = 0 part in a limiting way. The state |Φ〉 can be written as,

|Φ〉 =
1

2Nc

∫ 1

0
dk Φ(k)Ji

j (−k)Jj
i (k − 1)|0〉 (11.41)

=
1

2Nc

∫ 1

0
dk Φ(k)

∫ ∞

−∞
dq dp

(
Ψ̄i(−q)Ψj (−k + q)− 1

Nc
δi
j Ψ̄

k (−q)Ψk (−k + q)
)

×
(

Ψ̄j (−p)Ψi(k + p− 1)− 1
Nc

δj
i Ψ̄

k (−p)Ψk (k + p− 1)
)
|0〉.

Note that the above expression (11.41) contains creation and annihilation
fermionic operators. Written in terms of creation operators only; (11.41) reads,

|Φ〉 =
1

2Nc

∫ 1

0
dk

∫ k

0
dq

∫ 1−k

0
dp Φ(k)Ψ̄i(−q)Ψj (−k + q)Ψ̄j (−p)Ψi(k+p−1)|0〉

− 1
2N 2

c

∫ 1

0
dk

∫ k

0
dq

∫ 1−k

0
dp Φ(k)Ψ̄i(−q)Ψi(−k + q)Ψ̄j (−p)Ψj (k + p− 1)|0〉

−
(

1− 1
N 2

c

)∫ 1

0
dk

∫ k

0
dq Φ(k)Ψ̄i(−q)Ψi(q − 1)|0〉. (11.42)

The last term in (11.42) corresponds to a meson. It can be written also as,∫ 1

0
dq

∫ 1

q

dk Φ(k)Ψ̄i(−q)Ψi(q − 1)|0〉 = −
∫ 1

0
dq ϕ(q)Ψ̄i(−q)Ψi(q − 1)|0〉,

(11.43)
which is exactly the ’t Hooft meson. We conclude that the two-current state has
an overlap with the ’t Hooft meson and this is why (11.27) reproduces exactly
the (odd part of the) spectrum of the ’t Hooft model.

Large Nf � Nc limit

In the limit Nf � Nc , with e2Nf fixed, the truncation to two-current state
should again predict exact results. The reason is that the three-current state
is suppressed by N

− 1
2

f with respect to the two-current state.
In this limit eqn. (11.26) takes the form,

M 2 =
e2Nf

π

(
1
k

+
1

1− k

)
. (11.44)
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It describes a continuum of states with masses above 2m, where m2 = e2 Nf

π .
The interpretation is clear: in this limit the spectrum of the theory reduces to a
single non-interacting meson (or “currentball”) with mass m.

Nf = Nc , The Adjoint Fermions Model

The case Nf = Nc is the most interesting one. It was shown that the massive
spectrum of this model is equivalent to the massive spectrum of a model with a
single adjoint fermion, due to ‘universality’ [148]. Since this model is not exactly
solvable, it is interesting to see how our approach reproduces, almost accurately,
previous numerical results.

The mass of the lowest massive meson, predicted by (11.27), is M 2 = 10.86×
e2 Nc

π . The values reported from DLCQ calculations are M 2 = 10.8 and M 2 =
10.84, in units of e2 Nc

π , as will be detailed in the next chapter.
This agreement is very surprising. In the regime Nf ∼ Nc , the three-current

state is not suppressed by factors of color or flavor with respect to the two-
current state. Why, therefore, is our approach so successful? The reason seems
to be that as in the fermionic basis [38], the lowest massive state is an almost
pure two-current state. However, the present approach is much more successful
than the fermionic basis, where the prediction for the mass of the lowest massive
boson of the adjoint model is twice as much as the lowest massive boson of the
’t Hooft model. It seems that the “correct” underlying degrees of freedom are
currents and not fermions, as predicted by the authors of [148].

To summarize, we have used a description of massless QCD2 in terms of cur-
rents. With this basis we wrote down a ’t Hooft-like equation (11.27) for the
wave function of the two-current states.

The equation interpolates smoothly between the description of a single flavor
model with large Nc (’t Hooft model), the adjoint fermions model Nf = Nc and
the large Nf model. The equation is derived by using an a-priori unjustified
suppression of the three-current coupling. Nevertheless, we observe an excellent
agreement with the DLCQ results for the first excited state. For higher excited
states the agreement deteriorates and it is of the order of 20%.

The accuracy of the results for the first excited state, which implies that for
this state the truncation of the “pair creation terms” is harmless, deserves further
investigation.

11.4 The adjoint vacuum and its one-current state

Next we construct the spectrum of states, which is obtained by the action of a
current on the “adjoint vacuum”, in the color singlet combination. This way we
get physical states, which are in a sense “one-current” states.
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11.4 The adjoint vacuum and its one-current state 217

The “adjoint vacuum” is created from the singlet vacuum by applying the
adjoint zero mode, which is taken as the limit ε→ 0 of the product of quark and
anti-quark creation operators, each one at momentum ε. Hence in our case,

|0, R〉 = lim
ε→0

ψi
−1(ε)ψ

†
−1,j (ε) |0〉 , (11.45)

where ψi
−1 and ψ†

−1,j are the creation operators of a quark and anti-quark respec-
tively. We can represent the action of the above adjoint zero mode on the vacuum
by the derivative of a creation current taken at zero momentum. Differentiating
the current with respect to k, and acting on the vacuum we get,

J
′i
j (k) |0〉k=0− =

√
π

2
d
dk

∫ ∞

0
dp

∫ ∞

0
dqδ(k + p + q)ψi

−1(p)ψ†
−1,j (q) |0〉k=0−

= −
√

π

2
ψi
−1(ε)ψ

†
j (ε) |0〉ε→0 . (11.46)

As the currents are traceless, we have to subtract the trace part for i = j. The
latter can be neglected for large Nc . For any given Nc , results that follow are
also the same after the trace is subtracted.

The adjoint vacuum we have is a bosonic one, constructed from fermion-
antifermion zero modes, and as we show it can be written as the derivative
of the current acting on the singlet vacuum. In the case of adjoint fermions there
is another adjoint vacuum, a fermionic one, obtained by applying the adjoint
fermion zero mode on the singlet vacuum.

As we showed already, (Ja)
′
(0) |0〉 represents the adjoint zero mode

b†(0)d†(0) |0〉 (indices suppressed), for any Nf and Nc , so in particular also
for Nf = Nc . But in the latter case the theory is equivalent to that of adjoint
fermions, as follows from the equivalence theorem discussed in Section 11.2. As
also stated there, states built on the adjoint vacuum above, cannot be distin-
guished from those built on the fermionic adjoint vacuum, the latter obtained
by applying the adjoint fermions on the singlet vacuum.

The adjoint bosonic vacuum can also have flavor quantum numbers, when the
fermion has flavor. This does not change our results about the mass of the new
state we have. Our “currentball” will have flavor too in such a case. In our scheme
of bosonization, which is the “product scheme”, especially convenient when the
quarks are massless, the flavor sector is decoupled, and so the flavor multiplets
are given by the action of flavor zero modes, not changing the mass values.

Let us introduce the notation,

Za ≡ −
√

2
π

(Ja)
′
(0).

The state we have in mind is,

|k〉 = Jb(−k)Zb |0〉.
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This state is obviously a global color singlet, but in our light-cone gauge A− = 0
it is also a local color singlet, as the appropriate line integral vanishes.

Now, √
π

2
[
Ja(p), Zb

]
=

1
2
Nf δabδ(p)− ifabc(Jc)

′
(p), (11.47)

and thus, for p > 0,

Ja(p)Zb |0〉 = ZbJa(p)|0〉 − i

√
2
π

fabc(Jc)
′
(p)|0〉 = 0.

Hence the state Zb |0〉 is annihilated by all the annihilation currents, and so it is
indeed a colored vacuum.

Using, [
P+ , Jb(−k)

]
= kJb(−k), (11.48)

we get that our state |k〉 is indeed of momentum k.
Note that when quantizing on a circle of radius R, the adjoint vacuum would

be an eigenstate of P+ with eigenvalue Nc/R. As we work in the continuum
limit, we get zero.

11.4.1 The action of M2 on the one-current states

First, we evaluate the commutator of P− with a creation current,[∫ ∞

0
dpφ(p)Ja(−p)Ja(p), Jb(−k)

]
=

1
2
Nf

1
k

Jb(−k) + ifabc

∫ k

0
dpφ(p)Ja(−p)Jc(p− k)

+ ifabc

∫ ∞

k

dp (φ(p)− φ(p− k))Ja(−p)Jc(p− k),

note that in P− (and in P+) we ignore contributions from zero-mode states, that
is, we cut the integrals at ε, and then take the limit.

As P+ and P− act on a singlet state, and as Ja(0), being the color charge,
annihilates this state, the contribution from the zero modes in both P+ and P−

is zero. Therefore it is legitimate to cut the integration limit above the zero mode
and then take the cutoff to zero, as we have done. Note also that the integral
of φ(p) around p = 0 is finite, and in fact zero when integrating over the whole
line, therefore there are no divergences when we take the limit.

It is important, however, to remember that the zero mode does contribute
when we act upon non singlet states, like the adjoint vacuum Zb |0> itself.
When quantizing on a circle of radius R one gets that P+ is of order 1/R.
And then, with P− of order e2R, M 2 is R independent, and so remains finite
in the continuum limit. However, this is subtle, as P− becomes IR divergent in

https://doi.org/10.1017/9781009401654.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.012


11.4 The adjoint vacuum and its one-current state 219

the continuum and needs to be regularized. This subtlety does not affect our
calculation as we work in the singlet sector only.

Actually, the argument connected with P− acting on singlets should be some-
what sharpened. Let us put the lower limit at ε, and let it go to zero at the end.
This IR cutoff is similar to the one introduced in the derivation of ’t Hooft’s
model discussed in Section 10. Then J(ε), when acting on a singlet, would go
like ε. We have two currents in the integral, so we get ε2 . But then we have 1/ε2

from the denominator, so a finite integrant. But the region for integration is of
order ε, so indeed the total contribution goes to zero.

Now apply P− on our state,

P−Jb(−k)Zb |0〉 =
[
P−, Jb(−k)

]
Zb |0〉, (11.49)

as the Hamiltonian annihilates the color vacuum as well.
Using the commutator of the Hamiltonian with a current, we get,

π

e2 P−Jb(−k)Zb |0〉 =
1
2
Nf

1
k

Jb(−k)Zb |0〉

+ ifabc

∫ k

0
dpφ(p)Ja(−p)Jc(p− k)Zb |0〉.

Note that we use the fact that annihilation currents do annihilate the colored
vacuum also.

Let us apply the operator M 2 to our one-current state,

M 2Jb(−k)Zb |0〉 = 2P−P+Jb(−k)Zb |0〉2kP−Jb(−k)Zb |0〉

=
(

e2Nf

π

)
Jb(−k)Zb |0〉+

(
2e2

π
k

)
ifabc

∫ k

0
dpφ(p)Ja(−p)Jc(p− k)Zb |0〉.

(11.50)
So it seems that, in the large Nf limit, the state Jb(−k)Zb |0〉 is an (approximate)
eigenstate, with eigenvalue e2 Nf

π .
To see the exact dependence of the two terms in the equation above (the

one- and two-current states) on Nf and Nc , we should normalize them. The
normalization of Jb(−k)Zb |0〉 is,

〈0|ZaJa(k)Jb(−k)Zb |0〉 = 〈0|Za
[
Ja(k), Jb(−k)

]
Zb |0〉

=
1
2
Nf kδ(0) 〈0|ZbZb |0〉+ ifabc 〈0|ZaJc(0)Zb |0〉 (11.51)

=
1
2
Nf kδ(0) 〈0|ZbZb |0〉+ Nc 〈0|ZbZb |0〉 .

The second term in the last line can be neglected compared with the first, as it
is a constant to be compared with δ(0) [the space volume divided by 2π].

Now,

〈0|ZbZb |0〉 = (N 2
c − 1)〈0|Z1Z1 |0〉,
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and the factor kδ(0) is the normalization of a plane wave of momentum k. So
the normalized state is, for Nc � 1,

1

Nc

√
1
2 Nf

Jb(−k)Zb |0〉, (11.52)

relative to 〈0|Z1Z1 |0〉.
The normalization of the second term is more complicated. A lengthy but

straightforward calculation gives,∥∥∥∥∥
(

ifdefk

∫ k

0
dqΦ(q)Jd(−q)Jf (q − k)

)
Ze |0〉

∥∥∥∥∥
2

= Nc

(
N 2

c − 1
)(1

2
Nf

)2

kδ(0)
〈
0
∣∣Z1Z1

∣∣ 0〉 (11.53)

× k

(∫ k

0
dpp(k − p)Φ(p) (Φ(p)− Φ(k − p))− Nc

Nf

∫ k

0
dpΦ(p)

∫ k−p

0
dqqΦ(q)

)
.

Using the following relations,

fabcfabd = Tr(T cT d) = Nδcd

fabcfa′bc′faa′dfcc′d = Tr(T bT dT bT d)

= ifbdeTr(T eT bT d) + Tr(T bT bT dT d) =
1
2
N 2(N 2 − 1),

we have evaluated only the terms proportional to δ(0) as they are the dominant
ones.

The various momentum integrals (including the ones for the non dominant
terms) are divergent for ε→ 0, thus they should be regulated. We leave this
problem for now, and assume henceforth that they are regulated and finite. For
simplicity the integrals (including the factor k) appearing in the two dominant
terms will be denoted R1 and −R2 in the following expressions. Note that we
have 1

ε2 and 1
ε divergences and also ln( k 2

ε2 ). It seems that these are cancelled in
R2 .

Define now the normalized states,

|S1〉 = C1
(
Jb(−k)Zb |0〉

)
(11.54)

|S2〉 = iC2kfabc

∫ k

0
dpΦ(p)Ja(−p)Jc(p− k)Zb |0〉 , (11.55)

where,

C1
1

Nc

√
1
2 Nf

, C2 =

2
Nf

√
N 3

c√
R1 + R2

Nc

Nf

. (11.56)
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The mass eigenvalue equation of the normalized states is,

M 2 |S1〉 =
e2

π
Nf |S1〉+

e2Nc

π

√
2
√

R1
Nf

Nc
+ R2 |S2〉, (11.57)

thus, we see that in the large flavor limit, our state |S1〉 is an eigenstate with
mass

M =

√
e2Nf

2π
. (11.58)

In the large color limit, however, we actually get that the second term dominates
by a factor of Nc . Moreover, while the first term goes to zero in the large Nc

limit, due to the factor of e2 , the second term survives in that limit.
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