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POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY
SUBALGEBRA IS A LEFT IDEAL

BY
D. J. RODABAUGH(Y)

1. Introduction. By an L-algebra we mean a power-associative nonassociative
algebra (not necessarily finite-dimensional) over a field F in which every subalgebra
generated by a single element is a left ideal. An H-algebra is a power-associative
algebra in which every subalgebra is an ideal. The H-algebras were characterized
by D. L. Outcalt in [2]. Let S, be the semigroup with cardinality « such that if
x,y € S, then xy=y. Consider the algebra over a field F with basis S,. Such an
algebra is an L-algebra that is not an H-algebra unless S, contains only one
element. In this paper we will prove that an algebra 4 over a field F with char. # 2
is an L-algebra if and only if it is either an H-algebra or has a basis S, where o is
the dimension of 4. Also, we will show that an algebra 4 has basis S, for «> 1 if
and only if A is the vector space sum {e}+ B where e?=e+#0 and B is a zero
algebra such that be=eb—b=0 for b in B.

2. Preliminaries. It is convenient to denote the algebra generated by x as {x}.
If every {x} is an ideal then for x in B a subalgebra of 4 and y in 4, we have xy, yx
in {x}< B. Hence, 4 is an H-algebra and we have proved

LeMMA 2.1. If A is a power-associative algebra then A is an H-algebra if and only
if every subalgebra generated by a single element is an ideal.

Some of our results can be derived in a more general setting than that of L-algebras.
Thus, we define a T-algebra as a power-associative algebra in which every sub-
algebra generated by a single element is either a right or a left ideal.

LemMmA 2.2. If A is a T-algebra with identity element 1 then A={1}.
Proof. For y in A, we have y=yl=1y so y is in {1}.
Lemma 2.3. If A is a T-algebra then {a} is finite-dimensional.

Proof. Suppose a, @, ..., a" are linearly independent for any n. Now a®=a®a
=aa?® is in {a?}. But then 4® is a linear combination of a finite number of elements
of the form a®™.

LeMMA 2.4. If a is a nilpotent element in a T-algebra then a®=0.
Proof. Supposea™=0,a""*#0withn>4, Let m=n/2ifnis evenand m=(n+1)/2
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if n is odd. Then m+1<n—1 and 2m>n. Hence, (a™)>=0 so {a¢™} is one-dimen-
sional. Now a™*!'=aa™=a"a is in {a"} so a™*!=aa™ with «#0, « in F (the base
field). Thus, a™*!=cd'a™ and 0=a?"=q«"a™ a contradiction.

If A4 is power-associative with char. # 2, and if e is an idempotent in 4, then
A=A,1)+ 4,(3)+ 4.(0) where 4,(X)={x: xe+ex=2Ax} (see [1]). Also, from [1]
we have for x in 4,(}), A#% then xe=ex=Ax.

Define x-y=(xy+yx)/2, (x, y)=xy—yx and (x, y, z)=(xy)z—x(yz). From [1],
we know that:

A4(1)4,0) = 4.0)4.(1) = 0.
44 = 4., A # 3.
Ae(’%)'Ae(%) s Ae(1)+Ae(O)-

A(2)-4(3) € 4B +4(1-2), A #3.
In any ring,

M (2, 2)+(yz, )+ (2%, y) = (x, 3, 2)+ (3, 2, ) + (2, X, ).
Furthermore, if char. # 2 in a power-associative ring then

@ &, x, )+, 3, )+, x, x) = 0.
Consequently,

A3) Gy, )+ (px, )+ (% y) = 0.

If {x} is a left ideal, we then have {yx} is in {x} so

@ Gy, )+ (32, y) = 0.

We shall now establish the following result.

THEOREM 2.1. If A is a non-nil L-algebra over a field F of char. # 2 then either
A={e}@DB for e an idempotent and B a nil L-algebra or A has a basis which under
multiplication forms a semigroup S,.

Proof. Suppose A4 is non-nil and let a be not nilpotent. Then {a} is finite-dimen-
sional so there is an idempotent e in {a}. Now,

A= Ae(l) + Ae(%) + Ae(o)-

Also, for x in A,(1), xe=ex=x so x is in {e}. Therefore 4,(1)={e}.

We will now prove that 4,(0) is a nil L-algebra. Since 4,(0)- 4.(0)< 4,.(0) then
{x}< 4.(0) for any x in 4.(0). Hence, y in A4.(0) implies yx is in {x}< 4,(0) so 4.(0)
is a subalgebra. It is clearly an L-algebra. If x is not nilpotent then there is an
idempotent fin {x}< A.(0). Hence f2=f, ef=fe=0. Obviously g=e+f is an idem-
potent so {e+/7} is one-dimensional. But, e(e+f)=e, f=f(e+f) are both in {e+-f}.
This contradiction establishes the fact that there can be no idempotent in A4,(0)
so A4,(0) is nil.

Now, let x be in 4,(}). We have xe=«e for xe is in {e}. Hence ex=xe+ex—xe
=x—ce is in {x}. From this 0=(ex, x)=(x— e, x)= — (e, x) so either «=0 or
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ex=xe=(})x which is impossible since xe=ce. We have shown that ex=x and
xe=0. Now x? is in 4,(3)- 4.(3)< 4.(1)+ 4,(0) so x*=Pe+z with z in 4,(0). Since
A.(0)is nil, z2=0 and (x%)%2=(Be+z)?=p% + 22, (x?)*>=B%. But A4 is power-associa-
tive so B3x=(x%)%x=x(x2)>=0 and B=0. Therefore x2=z and x is nilpotent. But
this implies x3=0. If x?#0 then (e+x+x%)?=e+x+x? for x? in A4,0). Also,
e, x, x? are linearly independent. Now {e+x+x?} is one-dimensional but e+ x
=e(e+x+x?) and x2=x(e+x+x?) are in {e+x+x2}. Hence, x2=0. If y is in
A,0) then xy is in {y} in 4,(0) and yx=cx is in 4,(3). But xy+yx=2x-y is in
A.(3)+A4.1) so xy=0.

If y2=0 then (4) implies «(x, y)=(yx, ¥)=0. Thus, yx=0. Now, (x+y)2=0 so
{x+y} is one-dimensional. Since x=e(x+y) and x+y are in {x+ y} we conclude
that either x=0 or y=0.

If 20 then y®=0. Now, interchanging x and y in (3) gives

Ox,»+0%Ax) =0

50 (3%, x)=co?x. But, xy?=0 so y?x=ca%x. Now, letting z=y? we have z2=0 so we
have shown zx=xz=0. Hence, «*=0 and yx=xy=0. Now, (x+)}=»%*(x+)=0
so {x+y} has dimension two. However, x=e(x+y), x+y, y2=y(x+y) are in
{x+y}. This contradiction shows that x=0 or y=0.

We conclude that 4,(})#0 implies 4.(0)=0. If 4,(3)=0 then either A ={e} which
has basis S, for e=1 or 4A={e}® A.(0) where 4,(0) is a nil L-algebra.

If 4,(3)#0, let {x;} be a basis for 4,(3). Clearly, e, {y,} form a basis for 4 where
ys=e+x; Now yy,=(e+xz)e+x,)=e+x,+xx,, We have xpx,=ax, and
x,x5=bx; with xzx,+x,x; in A,(1)+ 4.(0). Hence a=b=0 and y,;y,=y,. Also,
yse=e, ey;=1y; 80 e, { ys} forms a semigroup S, under multiplication. The proof of
the theorem is now complete.

3. Nil L-algebras. Throughout this sectioh, we will assume that 4 is a nil
algebra over a field F of char. # 2.

LemMA 3.1. If x2=0 then xA= Ax=0.

Proof. We will first prove that xy=yx=0 when »?=0. Indeed, (4) implies
(xy, x)=0=(px, ). If xy=ky then k=0 or xy=yx. Also, yx=mx implies m=0 or
xy=yx. Now, if xy=yx then mx=ky. Hence, in any case xy=yx=0.

Now, let »2#0, »*=0. From above, xy?=)%x=0 so (4) implies (yx, y)=0
=(xy, x). Let yx=kx and xy=my+ny% Hence, (xy, x)=0 implies mkx=(xy)x
=x(xy) = x(my +ny®) = mxy=m?y + mny®. If m#0, we have kx =my+ny?so 0= kx>
= x(my+ny?)=m?y+mny?. Since y, y? are linearly independent this is impossible
so m=0. Also, 0=(yx, y)=k(x, y)=kny*—k2x. Hence, 0=y(kny? —k2x)= —k3x.
Therefore, k=0 and yx=0. Consider {x —ny}. We have (x—ny)?=x%—nxy—nyx
+n%y?=0. Therefore {x—ny} is one-dimensional. If 0 then y(x—ny)= —ny? so
y2=o(x—ny) since y?#0. We then have 0=33=a(yx —ny%)= —any?. This is im-
possible so n=0 and xy=yx=0.
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LEMMA 3.2. If x2#0#y? then for a#0, «, B, v in F we have x*=«y?, xy=By* and
yx=yx2.

Proof. From Lemma 3.1, x?y=yx?=32x=xy?=0. Now, (4) implies (xy, x)=0
=(yx, y). Write xy=cy+dy? and yx =mx +nx% Now 0=(yx, y) =m(x, y)+n(x?, y)
=m(x,y) and 0=(xy, x)=c(y, x)+d(? x)=c(y, x). Hence, either xy=yx or
m=c=0. If xy=yx then xy=@3) [(x+y)?—x2—)»?] so (xy)*=0. If c#0 then
x=(xy—dy?)/c so x>=0 which contradicts our assumption that x2+#0. Therefore
¢=0. Similarly m=0. We have xy=dy? and yx=nx? as desired.

If (x+)?=0 then x2(1+n)+y*(1+d)=(x+)?=0 so x>=ay® with « 0 unless
n=—1, d=—1. In this case, dn=1.

If (x+)2#0 then, since (x+)®=0, {x+»} is two-dimensional. Now, x2+dy?
=x(x+y) and y*+nx%=y(x+y) are in {x+y} so there exist r, s, and ¢ not all zero
with r(x2+dy?) +s(y® +nx?) + t(x+y)=0. If t#0 then (x+y)2=0. Hence, t=0. If
x? and y? are linearly dependent, we are done; so assume that x2 and y? are linearly
independent. Then r+sn=dr+s5=0 and r= —sn= —drn. If r=0 then s=0. Hence
r#0 and dn=1 in this case as well.

Now, (x—dy)?2=x%—dxy—dyx+d?y>=0 so {x—dy} is one-dimensional. There-
fore x(x —dy) =x2—d?y?>=a(x —dy) for a in F. Hence 0= x(x2—d?y?) =a(x2—d?)?).
If a=0, we have x?=d?y? with d#0. If a#0 then x2=d?y? with d+# 0 and the proof
of the lemma is complete.

THEOREM 3.1. If A is a nil algebra over a field of char. #2 then A is an L-algebra
if and only if A is an H-algebra.

Proof. Clearly, if 4 is an H-algebra then A is an L-algebra. Now let 4 be a nil
L-algebra. If x>=0 then {x} is an ideal by Lemma 3.1. If x2#0 then x®*=0 and
yx=yx2. Also, xy=pBy?=(B/e)x? and {x} is an ideal. Hence, every subalgebra of
the form {x} is an ideal and we are done by Lemma 2.1.

4. Proof of the main theorem.

THEOREM 4.1. If A is an algebra over a field F of char. # 2 then A is an L-algebra
if and only if A is an H-algebra or has a basis S, where o is the dimension of A.

Proof. Let A be an L-algebra. If A4 is nil then A4 is an H-algebra by Theorem 3.1.
If A is non-nil, then by Theorem 2.1 either A ={e}@B with B a nil L-algebra or 4
has a basis S,. We claim that {¢}®B is an H-algebra. If x € B then {x} is an ideal
in B. Since ey=ye=0 for y in B then {x} is an ideal in 4. Now, {e} is an ideal in A.
Finally, let x=ce+y with y in B and « in F, a#0. Now, x2=c«%e+y? and x°®=o’e.
If y2=0, {x} is spanned by e and y while if 20 then {x} is spanned by e, y and 2.
Now zx=aze+zy is in {e}+{y}={x} and xz=wez+yz is in {€}+{y}={x} and 4
is an H-algebra.

Conversely, an H-algebra is an L-algebra. Suppose 4 is an algebra with basis S,.
If x and y are in A4 then x and y are linear combinations of a finite number of
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elements of S,. Call this set {z;}7,. Hence,

Now,

e (3505 )

Il
-,
M=
>
~—
P
M=
&
N
~——

= (i ﬂ,)x.

=1
Hence, A4 is an L-algebra. Now, if «=1 then 4 is also an H-algebra. Suppose «> 1.
Then z,z,=z, which is not in {z,}. We also have proved

THEOREM 4.2. If an algebra A has a basis S, then A is an H-algebra if and only
ifa=1.

Finally, we prove

THEOREM 4.3. An algebra A over a field F has basis S, with «>1 if and only if A
is a vector space sum {e}+ B where e?=e+#0 and B is a zero algebra such that
be=eb—b=0 for b in B.

Proof. Let e be a fixed element in S, and let {x;}z.c be the complement of e in
S.. Define y,=x;—e for B in C. Now let B be the algebra over F with basis {y;}sec-
We have y;y,=(x;—e)(x,—e)=0so Bis a zero algebra. Also ey;=ex; —ee=y,; and
yse=xze—e=0. Conversely, if A={e}+ B where B is a zero algebra and be=eb
—b=0, let {y;}pec be a basis of B. Then e, {xz}s11c is a basis for 4 where x,=e+y,
and this set is a semigroup of the form S,,.
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