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POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY 
SUBALGEBRA IS A LEFT IDEAL 

BY 

D. J. RODABAUGHO 

1. Introduction. By an L-algebra we mean a power-associative nonassociative 
algebra (not necessarily finite-dimensional) over a field Fin which every subalgebra 
generated by a single element is a left ideal. An //-algebra is a power-associative 
algebra in which every subalgebra is an ideal. The //-algebras were characterized 
by D. L. Outcalt in [2]. Let Sa be the semigroup with cardinality a such that if 
x,yeSa then xy=y. Consider the algebra over a field F with basis Sa. Such an 
algebra is an L-algebra that is not an //-algebra unless Sa contains only one 
element. In this paper we will prove that an algebra A over a field F with char. ^ 2 
is an L-algebra if and only if it is either an //-algebra or has a basis Sa where a is 
the dimension of A. Also, we will show that an algebra A has basis Sa for a> 1 if 
and only if A is the vector space sum {e} + B where e2 = e^0 and B is a zero 
algebra such that be = eb — b = 0 for b in B. 

2. Preliminaries. It is convenient to denote the algebra generated by x as {x}. 
If every {x} is an ideal then for x in B a subalgebra of A and y in A, we have xy, yx 
in {x}^B. Hence, A is an //-algebra and we have proved 

LEMMA 2.1. If A is a power-associative algebra then A is an H-algebra if and only 
if every subalgebra generated by a single element is an ideal. 

Some of our results can be derived in a more general setting than that of L-algebras. 
Thus, we define a /"-algebra as a power-associative algebra in which every sub­
algebra generated by a single element is either a right or a left ideal. 

LEMMA 2.2. If A is a T-algebra with identity element 1 then A=={1}. 

Proof. For y in A, we have y=y\ = \y so y is in {1}. 

LEMMA 2.3. If A is a T-algebra then {a} is finite-dimensionaL 

Proof. Suppose a, a2,..., an are linearly independent for any n. Now a3 = a2 a 
= aa2 is in {a2}. But then a3 is a linear combination of a finite number of elements 
of the form a2m. 

LEMMA 2.4. If a is a nilpotent element in a T-algebra then a3 — 0. 

Proof. Suppose an=0, an " 1 ̂  0 with n > 4. Let m = n/2 if n is even and m = (n+l)/2 
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if n is odd. Then m+l<n-l and 2m>n. Hence, (am)2 = 0 so {am} is one-dimen­
sional. Now am+1 = aam = ama is in {am} so am + 1 = aam with a # 0 5 a in F (the base 
field). Thus, am+i = aiam and 0 = a2m = amam a contradiction. 

If A is power-associative with char. # 2, and if e is an idempotent in ^4, then 
A=Ae(l)+AeQ)+Ae(0) where 4,(A)={x: xe + ex=2Ax} (see [1]). Also, from [1] 
we have for x in Ae(X), \ ^ \ then xe=ex=Ax. 

Define X - J = ( X J > + J X ) / 2 , (x, y)=xy-yx and (x, j , z) = (xy)z-x(yz). From [1], 
we know that: 

Ae(l)Ae(0) = Ae(0)Ae(l) = 0. 

Ae{\yAe(\) ç ^e(A), A # i . 

^ ( i ) - i « * ) £ ^ ( l ) + ^ ( 0 ) . 
^ ( A ) ^ e a ) ^ ^ e ( i ) + A ( l - A ) , A # ± . 

In any ring, 

(1) (xy, z) + (yz, x) + (zx, j ) = (x, y, z) + (}>, z, x) + (z, x, j ) . 

Furthermore, if char. ^ 2 in a power-associative ring then 

(2) (x, x, y) + (x, y, x) + (y, x, x) = 0. 

Consequently, 

(3) (xy, x) + (yx, x) + (x2, y) = 0. 

If {x} is a left ideal, we then have {yx} is in {x} so 

(4) (xj,x) + (x2,j;) = 0. 

We shall now establish the following result. 

THEOREM 2.1. If A is a non-nil L-algebra over a field F of char. ^ 2 then either 
A={e}@Bfor e an idempotent and B a nil L-algebra or A has a basis which under 
multiplication forms a semigroup Sa. 

Proof. Suppose A is non-nil and let a be not nilpotent. Then {a} is finite-dimen­
sional so there is an idempotent e in {a}. Now, 

A = Ae(l) + A9(i) + Ae(0). 

Also, for x in Ae(\), xe — ex = x so x is in {e}. Therefore Ae(l)={e}. 
We will now prove that Ae(0) is a nil L-algebra. Since Ae(0)-Ae(0)^Ae(0) then 

{x}^Ae(0) for any x in Ae(0). Hence, y in Ae(0) implies yx is in {x}^Ae(0) so Ae(0) 
is a subalgebra. It is clearly an L-algebra. If x is not nilpotent then there is an 
idempotent / i n {x}^Ae(0). Hence f2=f ef=fe = 0. Obviously g = e+f is an idem-
potent so {e+f} is one-dimensional. But, e(e+f) = e,f=f(e+f) are both in {e+f}. 
This contradiction establishes the fact that there can be no idempotent in Ae(0) 
so Ae(0) is nil. 

Now, let x be in Ae(%). We have xe = ae for xe is in {e}. Hence ex = xe + ex — xe 
=x—ae is in {x}. From this 0=(ex, x) = (x — ae, x)= — a(e, x) so either a = 0 or 
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ex=xe=(%)x which is impossible since xe=ae. We have shown that ex=x and 
xe = 0. Now x2 is in Ae(%)-Ae(%)^Ae(l)+Ae(0) so x2=fie+z with z in Ae(0). Since 
^e(0) is nil, z 3 =0 and (x2)2 = (/te+z)2=/?2e+z2, (x2)3=£3e. But A is power-associa­
tive so /33x=(x2)3x=x(x2)3=0 and £=0 . Therefore x2=z and x is nilpotent. But 
this implies x3 = 0. If x V O then (e+x+x 2 ) 2 = e + x + x 2 for x2 in Ae(0). Also, 
6, x, x2 are linearly independent. Now {e+x+x2} is one-dimensional but e + x 
= e(e + x + x2) and x2 = x(e + x+x 2 ) are in {e + x+x2}. Hence, x2 = 0. If y is in 
Ae(0) then xy is in {y} in ^4e(0) and yx=ax is in ^4e(i). But xy+yx=2x-y is in 
^ e ( i )+^ e ( l )soxj> = 0. 

If y2 = 0 then (4) implies a(x, y) = {yx, y)=0. Thus, j>x=0. Now, ( x + j ) 2 = 0 so 
{x+y} is one-dimensional. Since x=e(x+y) and x + j are in {x+y} we conclude 
that either x = 0 or j>=0. 

If j 2 # 0 then y3 = 0. Now, interchanging x and y in (3) gives 

so (y2, x) = a2x. But, x.y2 = 0 so y2x=a2x. Now, letting z=y2 we have z 2 =0 so we 
have shown zx=xz=0 . Hence, a2 = 0 and yx=xy=0. Now, (x+<y)3=j2(x+j)=0 
so {x+y} has dimension two. However, x = e(x+y), x+y, y2=y(x+y) are in 
{x+y}. This contradiction shows that x = 0 or y = 0. 

We conclude that AeQ) # 0 implies Ae(0)=0. If ^ e ( i )=0 then either ^4={e} which 
has basis Sa for a = 1 or A={e}@ Ae(Q) where >4e(0) is a nil L-algebra. 

If Ae(%)^0, let {x^} be a basis for A(i)- Clearly, e, {y0} form a basis for A where 

<yyS = e+x^. Now y0yy = (e + x0)(e+Xy) = e+xY + X0Xy. We have xy5xy=flxy and 
xYxj3 = bx0 with x̂ Xy + XyX̂  in Ae(l) + Ae(G). Hence a = 6 = 0 and y^yy—yy. Also, 
y&e = e, eyp=y0 so e, {j^} forms a semigroup ^ under multiplication. The proof of 
the theorem is now complete. 

3. Nil L-algebras. Throughout this section, we will assume that A is a nil 
algebra over a field F of char. =£ 2. 

LEMMA 3.1. Ifx2=0 then xA = Ax=0. 

Proof. We will first prove that xy=yx=0 when y2=0. Indeed, (4) implies 
(xy, x) = 0 = (yx, y). If xy=&y then k = 0 or xy=jx . Also, j x = m x implies m—0 or 
xy=jx . Now, if xy=yx then mx = ky. Hence, in any case xy=yx=0. 

Now, let j 2 # 0 , j 3 = 0. From above, xy2=.y2x=0 so (4) implies (yx, y)=0 
= (xy,x). Let yx=kx and xy=my+ny2. Hence, (xy, x )=0 implies wfcx=(xj)x 
= x(x>>) = x(my+«j2) = mxy = m2y + m«y2. If m ̂  0, we have &x=my + ny2 so 0=fcx2 

= x(/wiy + ?2j2) = m2>' + w«<y
2. Since y, y2 are linearly independent this is impossible 

so m = 0. Also, 0 = (yx, y)=k(x, y) = kny2—k2x. Hence, 0=y(kny2—k2x)=—k3x. 
Therefore, k = 0 and yx=0. Consider {x-ny}. We have (x-ny)2=x2 —nxy—nyx 
+ /22y2 = 0. Therefore {x — ny} is one-dimensional. If « # 0 then X * ~ «y) = — «y2 so 

j 2 = a(x—ny) since jrVO. We then have 0=y3 = a(yx-ny2)= —any2. This is im­
possible so « = 0 and xy=yx=0. 
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LEMMA 3.2. Ifx2^0^y2 then for a=£0, «, & y in F we have x2 = ay2, xy=py2 and 
yx = yx2. 

Proof. From Lemma 3.1, x2y=yx2=y2x=xy2 = 0. Now, (4) implies (xy, x)=0 
= (yx, y). Write xy = cy+dy2 and yx=mx+«x2. Now 0 = (jx, >>) = m(x, y) + «(x2, >>) 
=AW(X,J>) and 0 = (xy, x) = c(y, x) + d(y2, x) = c(y, x). Hence, either xy=yx or 
m = c=0. If XJ>=JX then *y=(i ) [(x+y)2-x2-y2] so (xj/)2 = 0. If c / 0 then 
x=(xy—dy2)jc so x 2 = 0 which contradicts our assumption that x 2 ^ 0 . Therefore 
c=0. Similarly m=0. We have xy=dy2 and j x = « x 2 as desired. 

If (x+y)2 = 0 then x 2 ( l+«)+j 2 ( l+r f ) = (xH-.y)2 = 0 so x2 = ay2 with a^O unless 
n = — 1, rf= — 1. In this case, dn = l. 

If (x+j>)V0 then, since (*+j>)3=0, {x+.y} is two-dimensional. Now, x2 + dy2 

=x(x+y) and y2+nx2=y(x+y) are in {x+j} so there exist r, s, and t not all zero 
with iix2 + dy2) + s(y2 + nx2) + t(x+y) = 0. If f^O then ( JC+J) 2 = 0. Hence, f = 0. If 
x2 and >>2 are linearly dependent, we are done; so assume that x2 and y2 are linearly 
independent. Then r+sn = dr+s=0 and r=—sn = —dm. If r = 0 then s=0 . Hence 
r / 0 and dn= 1 in this case as well. 

Now, ( x - dy)2=x2 — dxy—dyx+d2y2=0 so {x-dy} is one-dimensional. There­
fore x(x - dy)=x2- d2y2 = a(x - dy) for a in F. Hence 0=x(x2 - d2y2) = a(x2 - d2y2). 
If a = 0, we have x2 = J 2 j 2 with d^ 0. If a # 0 then x2 = c/2^2 with d^ 0 and the proof 
of the lemma is complete. 

THEOREM 3.1. If A is a nil algebra over afield o/char. ^ 2 then A is an L-algebra 
if and only if A is an H-algebra. 

Proof. Clearly, if A is an //-algebra then A is an L-algebra. Now let A be a nil 
L-algebra. If x2 = 0 then {x} is an ideal by Lemma 3.1. If x 2 / 0 then x3 = 0 and 
yx=yx2. Also, xy=py2 = (fi/a)x2 and {x} is an ideal. Hence, every subalgebra of 
the form {x} is an ideal and we are done by Lemma 2.1. 

4. Proof of the main theorem. 

THEOREM 4.1. If A is an algebra over afield F of char. =£ 2 then A is an L-algebra 
if and only if A is an H-algebra or has a basis Sa where a is the dimension of A. 

Proof. Let A be an L-algebra. If A is nil then A is an //-algebra by Theorem 3.1. 
If A is non-nil, then by Theorem 2.1 either A = {e}@B with B a nil L-algebra or A 
has a basis Sa. We claim that {e}@B is an //-algebra. If x e B then {x} is an ideal 
in B. Since ey=ye = 0 for y in B then {x} is an ideal in A. Now, {e} is an ideal in A. 
Finally, let x = ae +y with y in B and a in /% a / 0 . Now, x2 = a 2 e + j 2 and x3 = a3e. 
If j 2 = 0, {x} is spanned by e and y while if y 2 # 0 then {x} is spanned by e, y and j 2 . 
Now zx = aze+zy is in {e} + {j>}={x} and xz = aez+yz is in M + {.}>} = M and A 
is an //-algebra. 

Conversely, an //-algebra is an L-algebra. Suppose A is an algebra with basis Sa. 
If x and y are in 4̂ then x and >> are linear combinations of a finite number of 
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elements of S„. Call this set {zjf.j. Hence, 
n 

x = 2 «A 
i = l 

Now, 

n n 

= 2 2 «f^y^i 
3=1<=1 

n n 

= 2 2 aM 

-fèA)(JH 

Hence, A is an L-algebra. Now, if a= 1 then 4̂ is also an //-algebra. Suppose a> 1. 
Then z1z2=z2 which is not in {zx}. We also have proved 

THEOREM 4.2. If an algebra A has a basis Sa then A is an H-algebra if and only 
ifcc=L 

Finally, we prove 

THEOREM 4.3. An algebra A over afield F has basis Sa with a> 1 if and only if A 
is a vector space sum {e} + B where e2 = e^0 and B is a zero algebra such that 
be = eb — b = 0for b in B. 

Proof. Let e be a fixed element in Sa and let {x0}0eC be the complement of e in 
Sa. Define yp = xfi — e for fi in C. Now let B be the algebra over F with basis {y^^c-
We have y0yY=(x0 - e)(xY — e) = 0 so B is a zero algebra. Also ey0 = ex0 — ee=y0 and 
y^ = x^e — e = 0. Conversely, if A—{e} + B where B is a zero algebra and be — eb 
— 6 = 0, let {}>/?}/?ec be a basis of i?. Then e, {x0}0inC is a basis for A where ^ = e+y0 

and this set is a semigroup of the form Sa. 
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