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Abstract

We obtain analogues, in the setting of semigroups with zero, of McAlister's covering theorem and the
structure theorems of McAlister, O'Carroll, and Margolis and Pin. The covers come from a class C of
semigroups defined by modifying one of the many characterisations of E-unitary inverse semigroups,
namely, that an inverse semigroup is E-unitary if and only if it is an inverse image of an idempotent-pure
homomorphism onto a group. The class C is properly contained in the class of all £*-unitary inverse
semigroups introduced by Szendrei but properly contains the class of strongly categorical £*-unitary
semigroups recently considered by Gomes and Howie.
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Introduction

We assume that the reader is familiar with the classical theory of Zs-unitary inverse
semigroups due to McAlister [5, 6] as presented, for example, in [3]. The essence
of this theory is that every inverse semigroup is 'closely related' to an £-unitary
inverse semigroup (by having an is-unitary inverse cover), and that the structure of
£-unitary inverse semigroups is well understood (by virtue of what is now known
as the P-theorem). Another description of £-unitary inverse semigroups was given
by O'Carroll [8] who characterised them as the inverse semigroups which can be
embedded in a semidirect product of a semilattice and a group. In [4], Margolis and
Pin introduced a different approach to the study of (not necessarily regular) E-unitary
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16 Sydney Bulman-Fleming, John Fountain and Victoria Gould [2]

semigroups by making use of groups acting on categories. They were able to recover
the P-theorem from their more general results.

When dealing with inverse semigroups with zero, the theory outlined above is
unsatisfactory for the reason that an £-unitary inverse semigroup with zero is nec-
essarily a semilattice. Consequently, the only inverse semigroups with zero which
have an £-unitary cover with a zero are semilattices. Our aim in this paper is to
obtain both a covering theorem for all inverse semigroups with zero and a structure
theorem for the covers. The semigroups we use as covers belong to a class, which
for the class of inverse semigroups with zero, is one analogue, among many, of the
class of £-unitary inverse semigroups. There are many characterisations of £-unitary
inverse semigroups and we now remind the reader of the one of particular interest
for us. Recall that a function <p : S -*• T from a semigroup S to a semigroup T is
idempotent-pure if a is idempotent whenever a<p is idempotent. An inverse semigroup
S is £-unitary if and only if there is an idempotent-pure homomorphism from S onto
a group. This is the condition which we adapt to the case of semigroups with zero.

A function <p : S -> T between semigroups with zero is O-restricted if 0<p~l = {0}.

DEFINITION 1. Let 5 be a semigroup with zero and G° be a group with zero. A
O-restricted function <p : S —> G° is a 0-morphism if (st)<p = s<ptcp for all s, t € S
with st / : 0.

DEFINITION 2. An inverse semigroup S with zero is strongly E*-unitary if there is
an idempotent-pure 0-morphism <p from 5 into a group with zero.

Let T be a subset of a semigroup 5 with zero. The set of non-zero elements of T
is denoted by T*, and E*(S) denotes the set of non-zero idempotents of S.

An inverse semigroup S is E*-unitary [9] if 5 has a zero and whenever a € S, e e
E*(S), and either ea or ae belongs to E*(S), then a e E*(S). While it is true that
every inverse semigroup with zero has an £*-unitary inverse cover, there is, as yet, no
structure theorem for general £*-unitary inverse semigroups.

We observe that every strongly £*-unitary inverse semigroup is E* -unitary. The
converse, however, is not true. In Section 1 we give an example of a commutative
inverse semigroup with zero that is £*-unitary but not strongly £*-unitary.

Adapting the classical notion of cover, we say that a semigroup P with zero is a
0-cover of a semigroup S with zero if there is a surjective homomorphism \/r:P -> S
that is O-restricted and idempotent-separating. We begin Section 1 by showing that
every inverse semigroup with zero has a strongly £""-unitary inverse 0-cover. Next we
discuss groups acting on semigroupoids and the way in which such actions give rise
to strongly £"*-unitary inverse semigroups. We then introduce McAlister 0-triples to
give another construction of such semigroups.
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[3] Inverse semigroups with zero 17

The main result of Section 2 is a structure theorem for strongly £""-unitary in-
verse semigroups which includes an analogue of McAlister's P-theorem. It also
contains two other characterisations of these semigroups corresponding to results of
O'Carroll [8] and Margolis and Pin [4]. We show that they are precisely the inverse
subsemigroups containing zero of O-semidirect products of semilattices with zero by
groups, and that they can also be described in terms of groups acting on inverse
semigroupoids.

In [2], Gomes and Howie obtain a type of P -theorem for strongly categorical E*-
unitary inverse semigroups. Munn [7] has shown that a strongly categorical inverse
semigroup S admits a O-restricted homomorphism onto a Brandt semigroup S/f) (its
largest Brandt homomorphic image). It is shown in [2] that such a semigroup 5
is E*-unitary if and only if fi is idempotent-pure. We use this to show that if S
is an £*-unitary inverse semigroup which is strongly categorical, then S is strongly
£*-unitary.

In the final section we specialise to the case of E'-unitary inverse semigroups that
are strongly categorical. Using our results we recover the P-theorem of [2].

1. Rees quotients of £-unitary inverse semigroups

In this section we give our covering theorems and introduce two constructions of
strongly £*-unitary inverse semigroups. The first construction is based on a group
acting on a semigroupoid and the second is our analogue of a P-semigroup. We adapt
the theory of £-unitary inverse semigroups by using the following simple lemma.

LEMMA 1.1. Every Rees quotient of an E-unitary inverse semigroup S is strongly
E*-unitary.

PROOF. Let <p : S —> G be an idempotent-pure homomorphism from 5 to a group
G, and let / be an ideal of 5. Then S/I is inverse, and 7p : S/I -> G° given by
sip = sip for s € 5 \ / and lip = 0 is an idempotent-pure 0-morphism. •

We now have our covering result.

PROPOSITION 1.2. Every inverse semigroup with zero has a strongly E*-unitary
inverse 0-cover.

PROOF. Let 5 be an inverse semigroup with zero. Then S has an £-unitary cover,
that is, there is an Zs-unitary inverse semigroup P and a surjective homomorphism
ijr : P -*• S having the property that \jr restricted to E(P) is an isomorphism of E(P)
onto E(S).
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Let J denote the ideal OT/^1 of P. Then clearly \jr factors through P/J via
a surjective homomorphism r) : P/J —>• S which is O-restricted and idempotent-
separating. By Lemma 1.1, P/J is strongly £*-unitary. •

We recall that semigroup 5 is categorical at zero if S has a zero and for all
a,b,ce S, if ab ^ 0 and be ^ 0, then abc ^ 0. An inverse semigroup 5 is strongly
categorical if 5 is categorical at zero and, in addition, the intersection of any two
non-zero ideals of 5 is non-zero.

COROLLARY 1.3. Every strongly categorical inverse semigroup has an E*-unitary
inverse 0-cover which is strongly categorical.

PROOF. Let S be a strongly categorical inverse semigroup. By Proposition 1.2, 5
has a strongly £"*-unitary inverse 0-cover Q. Let r\ : Q —> S be a covering homo-
morphism. By [7, Theorem 2.7], there is a O-restricted homomorphism A. : S —• B
onto a Brandt semigroup B. Hence r)k is a O-restricted homomorphism from Q onto
B and so by [7, Theorem 1.1], Q is strongly categorical. •

A semigroupoid C, also known as a 'category without identities', or 'quiver'
in the terminology of [1], consists of a set of objects Ob C and for each ordered
pair (u, v) of objects a set of morphisms Mor(M, v) which may be empty. The
set Ua v€Obc^or("' u) °f a^ morphisms is denoted by Mor C and there is a partial
operation called composition on Mor C which satisfies the axioms of a category except
for those involving identities. Many common semigroup terms can be easily adapted
to semigroupoids.

A semigroupoid C is regulariffor all objects u, v 6 Ob C and for all/? e Mor(w, v),
there exists q e Mor(u, u) such that p + q + p = p, where here, as elsewhere, we
use + to denote composition of morphisms. The morphism q is an inverse of p if, in
addition, q + p + q = q. Notice that if p + q + p = p, then q + p + q is an inverse
of p . A semigroupoid is inverse if every morphism has a unique inverse.

For each object u of a semigroupoid C, the set of morphisms Mor(M, u) is a
semigroup (possibly empty) under the operation of composition. The semigroups
Mor(M, M) are called the local semigroups of C and if P is a semigroup property, then
C is said to be locally P if all its local semigroups have property P. We note that a
regular semigroupoid is inverse if and only if it is locally inverse.

A non-empty subset / of Mor C is an ideal if, whenever p € /, q e Mor C, and
p + q (q + p) is defined, then p + q (q + p) is in / .

We remark that the definitions and properties of Green's relations carry over to
semigroupoids in the obvious way.

A group G acts on a semigroupoid C (on the left) if G acts on Ob C and on Mor C,
and for all g e G, if p e Mor(«, v), then gp e Mor(gH, gv) and if q e Mor(u, w),
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then g(p + q) = gp + gq. The group G acts transitively if, for any u, v € Ob C,

there exists g € G with gu — v. It acts /ree/y when for any j e C and « g O b C , if

gu = u, theng = 1.
Now let G be a group acting freely on a semigroupoid C. Fix an object u in Ob C

and let

Cu = {(p, g) G Mor C x G : p € Mor(w, gu)}

and define a multiplication on Ca by

(p, g)(q, h) = (p + gq, gh).

Then Cu is a semigroup.

Note that while [4] is concerned with groups acting on categories, the proofs of
results relevant here are easily adapted to semigroupoids. The following proposition
is contained in [4, Propositions 3.11 and 3.14]. We note that the part of the proof
of Proposition 3.14 used for the inverse semigroupoid result does not require the
semigroupoid to be connected. We observe further that when the action is transitive
and free, Cu = Cv for any objects u, v of a semigroupoid C.

PROPOSITION 1.4. Let G be a group acting transitively and freely on an inverse,
locally idempotent semigroupoid C. Let u € Ob C. Then Cu is E-unitary inverse.

PROPOSITION 1.5. Let G be a group acting transitively and freely on an inverse,
locally idempotent semigroupoid C. Suppose that I is an ideal of C and GI c / . Let
u e ObC and put

h = [(p,g)e Cu:p € / } .

Then Iu is an ideal of Cu and the Rees quotient Cu/lu is strongly E*-unitary.

PROOF. Since G acts transitively, we see that /„ is non-empty, and clearly, /„ is
an ideal of Cu. The remainder of the proposition follows from Lemma 1.1 and
Proposition 1.4. CU

In our main result, Theorem 2.5, we show that all strongly £*-unitary inverse
semigroups can be obtained using the construction of Proposition 1.5. To this end we
adapt the notion of the weak derived category of a monoid morphism as given, for
example, in [4] where it is called the derived category.

Let 5 be a strongly E*-unitary inverse semigroup. Then there is a group G
and idempotent-pure 0-morphism cp : S —> G° from 5 into G°. We construct a
semigroupoid C from 5, G and <p by defining

Ob C = G,
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and for a,b e G,

Morc(a, b) = [(a, s, b) : s € S, s = 0 or a(s(p) = b}.

With composition of morphisms given by

(a,s,b) + (b,t,c) = (a,st,c),

C is a semigroupoid. The group G acts on C with the action on objects given by
group multiplication and the action on morphisms given by g(a, s, b) = (ga, s, gb).
Clearly, G acts transitively and freely on C. We now gather together some facts
concerning C.

PROPOSITION 1.6. Let S be a strongly E*-unitary inverse semigroup, G be a group,
and <p : S —> G° be an idempotent-pure 0-morphism. Then, for a, b, c, d e G and
s,t e S,

(1) C is an inverse semigroupoid where for all (a,s,b) e MorC, the inverse of
(a, s, b) is (b, s~l, a);
(2) Mor(a, a) = {(a, e, a) : e e E(S)} is a semilattice isomorphic to E(S), for

every a € G; in particular, C is locally idempotent and locally commutative;

(3) if(a,s,b)Jr(a,t,b),thens = t;
(4) J = 9 in C;
(5) (a, s, b)@(c, t, d) if and only if a = c and s3?A, and (a, s, V)S£ (c, t, d) if and

only ifb = d and sJift;
(6) (a, s, b)@ (c, t, d) if and only if s = t = 0 or there exists r G S* such that

a(r<p) = d, ss~l = rr~l and r~[r = t~]t.

PROOF. TO show (1) is routine; (2) follows from the fact that <p is idempotent-pure.
For (3), simply note that [4, Proposition 3.4] holds for semigroupoids. The fact that
® = ^ follows from [4, Proposition 3.1]. The proof of (5) is routine and (6) follows
easily. •

We now modify the usual notion of P-semigroup so that we obtain strongly £"*-
unitary inverse semigroups. This is, in fact, not difficult. Recall from [3, Section 5.9]
that a triple (G, 3£, &) is a McAlister triple if G is a group which acts by order
automorphisms on a partially ordered set 3£, and <3/ is a subsemilattice of X (in the
sense that for every J, K € &, there is a greatest lower bound of J and K, also in &)
and an order ideal of 3£ such that

(i) G<& = X, and
(ii) g<& n & + 0 for all g e G.
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[7] Inverse semigroups with zero 21

If in addition 3£ has a smallest element 0, we say that (G, 3E, # 0 is a McAlister
0-triple. Note that in this case, since gO = 0, the condition that gty D *3/ ^ 0 for all
g € G is automatically satisfied.

Let (G, #", <&) be a McAlister triple. Then Jt(G,%, W) denotes the 'P-
semigroup' with universe

and multiplication defined by

From [5] and [6], the classes of P-semigroups and £-unitary inverse semigroups
coincide.

LEMMA 1.7. If(G, 3£ ,W) is a McAlister 0-triple, then gO = 0 for any g e G, and
{0} x G is the unique minimum ideal of P = ~rf(G, 3C, W).

PROOF. The first statement is clear and it follows that {0} x G is an ideal of P.
Let J be an ideal of P and let (A,g) e J. If h e G, then (0, g~lh) e P and since
(0, h) = (A, g)(0, g~lh) we see that (0, h) € J. Thus {0} x G is the unique minimum
ideal, as required. •

Let (G, SC, <&) be a McAlister 0-triple. Throughout the paper, ^ 0 ( G , 3C, W)
denotes the Rees quotient of ^ ( G , SC, &) by its ideal {0} x G. The following result
is immediate from Lemma 1.1.

COROLLARY 1.8. With the above notation, Jto(G, 3£, $ 0 is a strongly E*-unitary
inverse semigroup.

REMARK. When 3£ - W the semigroup J((G, <&, <&) is just a semidirect product
<& * G of the semilattice <& and the group G. If W has a zero, then ^ 0 ( G , ^ , 3 0 is
the 0-semidirect product introduced by Szendrei [9]. It is the Rees quotient of W * G
by the ideal {0} x ty and is denoted by <3/ *o G. Noting that an inverse subsemigroup
containing zero of a strongly E*-unitary inverse semigroup is strongly £"*-unitary, the
following corollary is immediate.

COROLLARY 1.9. Every inverse subsemigroup containing zero of a 0-semidirect
product of a semilattice and a group is strongly E* -unitary.

In the next section, we will see that every strongly £""-unitary inverse semigroup
arises in the manner described in Proposition 1.5, Corollary 1.8 and Corollary 1.9.
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We conclude this section with an example of an £""-unitary inverse semigroup
which is not strongly £*-unitary.

Clearly, a Clifford semigroup has a zero if and only if it is a semilattice Y of groups
Ga (a € Y) where Y has a least element 0 and Go is the trivial group. Further, such a
semigroup is £'*-unitary if and only if for all a, p 6 Y with a > fi / 0, the connecting
homomorphism <pa ^ is one-to-one.

EXAMPLE. Let Y be the free semilattice on three generators a, fi, y; write 0 for the
zero afiy of Y. For each /x e Y*, let GM be the infinite cyclic group with generator
aM and identity e^, and let Go = {0}. For fx, v e Y with /x > v / 0, let <p^v be the
injective homomorphism induced by the rule:

I a2
v if /I = a and v = aft

av otherwise.

Let S be the semilattice Y of groups Ga (a e Y) constructed with these connecting
homomorphisms (there is no choice for the ones remaining undefined). From the
comments above, S is £'*-unitary. However, S is not strongly £'*-unitary, for if there
were an idempotent-pure 0-morphism 9 from 5 to a group with zero, then since
QnVn.v = a\xev, we would have

a2
a(Q = aa6 = aaY8 = aY9 = afiy6 — afi9 = aafid,

contradicting the fact that aap is not idempotent.

2. A characterisation theorem

Before stating and proving the main result of this section, Theorem 2.5, we present
some preliminary material to help clarify the exposition.

Let S be a strongly Zs'-unitary inverse semigroup. Then there is a group G and an
idempotent-pure 0-morphism (p : 5 -> G°. Let C be the semigroupoid constructed
from 5, G and <p. We denote the principal ideal generated by a morphism (a, s, b) of
C by (a, s, b), and observe that {a, s, b) = {a, ss~l, a) = (b, s~ls, b). We define the
sets SCs^s and 2FS as follows:

(1) 2TS is the set of ideals of C;
(2) %~s = {(a,e,a) :ae G,e€ E(S)}\
(3) y s = { ( U , l } : « € £ ( 5 ) } .

The set 2?s is partially ordered by inclusion and hence so are its subsets SCS and
&s- Each has least element / where / = (a,0,a) for any a e G. Clearly 2fs is a
semilattice under this partial ordering. Notice that by (2) of Proposition 1.6, ^s is in
one-one correspondence with E(S).
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[9] Inverse semigroups with zero 23

LEMMA 2.1. Ife,f e E(S), then (1, e, l > n ( l , / , 1) = (1, ef, 1) and consequently,
) is a semilattice isomorphic to E{S).

PROOF. Suppose first that {a, s, b) e (1, e, 1) n (1, / , 1) for some s / 0. Then, for
some u, v , iB ,z6 S* we have

(a, s, b) = (a, u, 1)(1, e, 1)(1, u, ft) = (a, w, 1 ) ( 1 , / , 1)(1, z, ft)

where M̂ J = a"1 = w<p, v<p = b = zcp, and «ei; = wf z = s ^ 0. The last equality
implies u~lw ^ 0 so that («~'u;)<p = (wip)"1^^) = 1 giving u~lw e £"*(S). Now
u~luev = u~lwf z = f u~[wf z = f u~luev = u~luef v so that uev = uef v. Hence
ef ^0a.nd(a,s, b) = (a,uefv,b) = (a, u, l)(l,ef, l)(l,v,b) e {\,ef, 1).

On the other hand, we see that (l,ef, 1) = (l,e, 1 ) ( 1 , / , 1) € (1, e, 1) n ( 1 , / , 1),
and so the claim is established. •

We extend the action of G on C to an action on 2?s by putting gj = {gx : x e J}
for every J e 2fs- Note that g(J n K) = gj n gK for any g e G and J, K e 2?s so
that we can form the 0-semidirect product 2Ts *o G.

If p, q e Mor C and p J? q, then, as noted in [4, Proposition 3.5], gp J? gq for all
g 6 G. It follows that 3ts is a G-subset of 2TS, that is, 3£s is closed under the action
of G. Indeed, if g, a, b € G and s e 5, then g(a, s, b) = (ga, s, gb). Clearly, G acts
on 3ts by order automorphisms and g&s H ^ ^ 0 for any g e G, since g / = / .

Since (a, e, a) = a ( l , e, 1) for every (a, e, a) € Xs we have JTs =

LEMMA 2.2. Mr/i the above notation, (G, JT5, ^s) is a McAlister Q-triple.

PROOF. All that remains is to show that ^ is an order ideal in 5CS- Sup-
pose that a e G and e , / e £"*(S) are such that (a,e,a) c ( 1 , / , 1). Then
(a, e, a) = (a, M, 1 ) (1 , / , 1)(1, V, a) for some (a, u, 1), (1, v, a) e C. Since (a, e, a)
is idempotent, we obtain

(a, e , a ) — (a, uf, 1 ) ( 1 , v u f v u , l ) ( l , f v , a )

so that (a, e, a) € (1, vuf vu, 1). Also,

(1, vufvu, 1) = (1, v, a)(a, e, a)(a, u, 1),

and so (1, vufvu, 1) is in (a, e, a). It follows that (a, e, a) = (1, vuf vu, 1} and
consequently, {a, e, a) e ^ . Thus ^ s is an order ideal in SCS as required. •

The next lemma, which follows from parts (4) and (6) of Proposition 1.6 will be
used repeatedly in what follows.
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LEMMA 2.3. Let S be a strongly E*-unitary inverse semigroup and <p be an idem-
potent-pure 0-morphism to a group with zero. If (a, e, a) and (b, f, b) are elements of
C, (where necessarily e,f€ E(S)), then (a, e, a) = (b, f, b) if and only ife = / = 0
or there is a non-zero element s of S such that e = ss~\ f = s~ls, and a(s<p) = b.

COROLLARY 2.4. With the above notation,

{l,ss~\ 1) = {s<p,s~ls,s<p).

We are now ready to give the main result of this section.

THEOREM 2.5. Let S be an inverse semigroup with zero. Then, the following
statements are equivalent:

(1) S is strongly E* -unitary;
(2) 5 = Jto(G, X, <3T) for some McAlister 0-triple (G, SC. W);
(3) 5 is isomorphic to an inverse subsemigroup containing zero of a 0-semidirect

product Y *o G where G is a group acting by order automorphisms on a semilattice
Y with zero;
(4) S is isomorphic to Cu/Iu, where C is an inverse locally idempotent and locally

commutative semigroupoid on which a group G acts transitively and freely, u e Ob C,
and I is an ideal of C with GI c / .

PROOF. The implications (2) implies (1), (3) implies (1), and (4) implies (1) are
given by Corollary 1.8, Corollary 1.9, and Proposition 1.5, respectively.

We now prove that (1) implies (2). Since S is a strongly £*-unitary inverse
semigroup, there is a group G and an idempotent-pure 0-morphism <p : S -*• G°. By
Lemma 2.2, (G, 3£s, &s) is a McAlister 0-triple and so we can form the semigroup
^#o(G, SCs, $s ) . We now show that this semigroup is isomorphic to S. Let

y : S ̂  JZ0(G, Xs, <&s)

be defined by sy = ({\,ss~x, l),s<p) if s ^ 0, and 0y = 0. By Corollary 2.4,

(s<p)~l{l, ss~\ 1) = (1, s~ls, 1) so that (s(p)~l(l, ss'\ 1) is a member of % and
sy G JKQ(G, 3CS, WS) as required.

To see that y is injective, note that if sy = ty and s ^ 0, then t ^ 0, scp = tq>, and

whence s = tby part (3) of Proposition 1.6.
To show that y is surjective, take any ({1, e, 1), g) with e =£ 0 and (g~\ e, g~x) =

( 1 , / , 1) G #s . By Lemma 2.3, there exists s € S* such that sq> = g, e = ss~l and
/ = 5- 15. Then sy = ((1, e, 1), g), as desired.
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To see that y is a morphism, suppose that s, t e S*. Then, taking products in
JK{G, 3£s, %) and using Corollary 2.4,

syty = ((1, ss-\ 1), s<p)((l, tt~\ 1,), t<p)

= ((l,ss-\l)ns<p{l,tt-l,l),s(pt<p)

If st = 0, then by Lemma 2.1,

so that syty e {/} x G, and, viewed as a product in ^0(G, %s, #s) , we have
syty —0 = (st)y. On the other hand, if st ^ 0, then using Lemma 2.1 gives

syty = ({s<p, s~lstrl,s<p), (st)cp) = ((1, st(st)~l, 1), (st)<p)

by parts (4) and (6) of Proposition 1.6 because l(stt~l)<p = s<p, st(st)~l =
stt~l(stt~*)~l and (str^^str1 =s~1stt~1. Hence syty = (st)y as required.

The proof of (2) implies (3) is accomplished by observing that ^ 0 ( G , 5£s, ^s) is
an inverse subsemigroup of 2fs *o G and contains the zero of 2fs *o G.

Finally, we must show that (1) implies (4). Again let <p : 5 -> G° be an idempotent-
pure 0-morphism from S to a group with zero. As shown in Proposition 1.6, the
semigroupoid C constructed from G, S and <p is inverse, locally idempotent and
locally commutative. Also, G acts transitively and freely on C and GI c / . Let
a € G. By Proposition 1.5,

Ia = {(p,g)€Ca:p€l}

is an ideal of Ca and we may thus form the Rees quotient Ca/Ia. We show that this is
isomorphic to 5.

Let 9 : 5 -* Ca/Ia be defined by

it? {

Certainly 0 is a bijection.
Let i, t e S*. Then multiplying in Ca,

sdtd = ((a, s, a(s<p)), a(s<p)a-x)((a, t, a(t<p)), a(t<p)a~l)

= ((a, st, a(s<p)(t<p)), a(s(p)(t<p)a-1).

Now if if = 0, then sGtO e Ia so that viewed as a product in Ca/Ia,

sGtO = Ia = (st)6.
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On the other hand, if st ^ 0, then as <p is a 0-morphism, (st)cp = (s<p)(t<p) and

s0t6 = ((a, st, a(st)<p), a(st)<pa~l) = (st)9.

Thus 0 is an isomorphism. This completes the proof of the theorem. •

3. Strongly categorical £*-unitary inverse semigroups

We recall from Section 1 that an inverse semigroup with zero is strongly categorical
if it is categorical at zero and has the property that the intersection of any two non-zero
ideals is non-zero.

PROPOSITION 3.1. Let S be an E*-unitary inverse semigroup. If S is strongly
categorical, then S is strongly E* -unitary.

PROOF. Since every strongly categorical £*-unitary inverse semigroup admits an
idempotent-pure O-restricted homomorphism onto a Brandt semigroup [2], the fol-
lowing suffices.

Let B = ^ ° ( G ; / , / ; A) be a Brandt semigroup. Let H be a group in one-one
correspondence with / ; for simplicity, we assume H = I. It is easy to verify that
the mapping <p : B -> (G x H)° defined by (c, g, d)<p = (g, cd~l) and Ocp = 0
is an idempotent-pure 0-morphism from B to (indeed, onto) a group with zero, as
required. •

Not every strongly £*-unitary inverse semigroup is strongly categorical. For
example, the three element semilattice containing a pair of incomparable elements
is strongly £'*-unitary but not strongly categorical.

In [2] Gomes and Howie give a 'P-theorem' for strongly categorical £*-unitary
inverse semigroups in terms of Brandt semigroups acting by partial order-automorph-
isms on a partially ordered set. We now describe their construction.

Let 5E be a partially ordered set containing a least element 0. Departing from our
usual notation, we regard partial maps on X as acting on the left of their arguments.
A partial {order)-automorphism of 3E is an order-isomorphism a : &/ —*• 88 where
srf and 3) are subsets of SC. Given such an a we denote its domain si by domo; and
its image 88 by im a. A partial automorphism a is O-restricted if dom a and im a both
contain 0, and a(0) = 0. The set ^ ( ^ " ) of all O-restricted partial automorphisms of
$F is an inverse subsemigroup of the symmetric inverse semigroup on 3C. We put

= {a e jSfo(^) : dom a and ima are order ideals of SC\

and note that ^f/(^") is an inverse subsemigroup of JS?0 (.$£") and that the unique map
with domain and image {0} is the zero of f̂/
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To say that a Brandt semigroup B acts on SC (on the left) by partial order-
automorphisms means that there is a O-restricted homomorphism cp : B -*• S£i(3C).
When B acts on 3C we write b * A for (b(p)(A) and write dom b and im b for dom b<p
and im bcp respectively.

For any subset sf of 3C, we denote the set s/ \ {0} by s/*. Let B act on 3E and
let & be a subset of # \ The triple (5, #*, $ 0 is a Brand? fnp/e if conditions (PI) to
(P4) are satisfied:

(PI) ty is a subsemilattice and order ideal of 5C\
(P2) for all e € £*(B) and all P, Q € dom <? n #" , we have P A ( 2 ^ 0 ;

(P3) B * ̂  = .2";
(P4) (fc * ^*) n ^ * / 0 for all b e B*.
The reader might note that we have amalgamated two of the conditions in the list

given in [2]. Now let

M = J?(B, X, 30 = {(P, b) € <&* x B* : b~x * P € <&*\ U {0}

where (B, 5£\ 9) is a Brandt triple. We define a multiplication on Af by the rule that

[0 otherwise,

and

(P, b)0 = 0(P, *) = 00 = 0.

PROPOSITION 3.2 ([2]). Let M = Jt(B, SC, &) be defined as above. Then M is a
strongly categorical E*-unitary inverse semigroup.

Note In [2] it is insisted that the action of B must be faithful, that is, <p must be
one-one, and effective, that is, X = |JfreB dom B. However, faithfulness is not
needed; the weaker condition that dom& ^ {0} for all b e B* suffices to construct
P. Moreover, given a strongly categorical £"*-unitary inverse semigroup S, the recipe
provided in [2] to construct a Brandt triple does not always yield a faithful action.
For a counterexample, let S be any non-trivial group with zero. We also note that the
effectiveness of the action follows from (P3).

Our aim in this section is to prove the converse of Proposition 3.2 directly from our
version of the P-theorem for strongly E*-unitary inverse semigroups.

THEOREM 3.3. Let S be a strongly categorical E*-unitary inverse semigroup. Then
S is isomorphic to Jt(B, 3C, &)for some Brandt triple (B, SC, &).
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PROOF. By Proposition 3.1, 5 is strongly £*-unitary. Thus by Theorem 2.5, 5 is
isomorphic to JK0(G, 3C, &), for some McAlister 0-triple (G, SC, <&). Put PO =
J%o(G, 3E, ?¥) and note that since Po is categorical at zero, so is W.

Munn [7] has shown that for a strongly categorical inverse semigroup S the relation

P - {(a, b) 6 S x S : ea - eb ^ 0 for some e = e2 in 5} U {(0, 0)}

is a O-restricted congruence on 5 such that S/p is a Brandt semigroup. Thus Po/P is
Brandt. We show that Po/P acts on X; our Brandt triple will be

The principal order ideal of SC generated an element C of 3t is denoted by (C].
For a non-zero element (A, g) of Po, put

A(Aig) = {0} U | C e i " : for all D e (gC]\ there is a lower bound of A

and D in g'*}

and note that A(Avg) is an order ideal of 3C'.
Let (A, g), (B, h) e Po* and suppose that (A, g)P(B, h). Then g = h and A A B ^

0. We claim that A(/4g) = A(B/,).
Let C e A(Aii) and let D € (C]*. Then there is an element T of <&* with T ^ A

and T ^ gD. In particular, I A A / 0 and, since & is categorical at zero and
A A B ^ 0, we have T A B ^ 0. It follows that C e A(B A). A similar argument
shows that A(B>/,) is contained in A(A,g) and the claim is proved. Thus the order ideal
A(/)jg) depends only on the /J-class of (A, g) and we can define an action of P0/fi on
% by setting dom(A, g)P = &(A,g) for any (A, g)0 e (P0/PT, and

(A,g)fl*B = gB

for allfi € AWig). Clearly, every element of (PQ/P)* acts as a partial order-automorph-
ism.

To show that our definition determines a O-restricted homomorphism from P0/p
into l£i(3C) it suffices to prove that

dom((A, g)(B, h))B = dom(A,g)P n ((B, /i)^)"1 dom(A, g)B

for all (A, g)P and (5, /i)^ in (Po/P)*. Thus we must prove that C e A(A,g)(BA) if
and only if C e A(BiA) and hC & A(/j,g).

If C € A*A g)(fi A), then A AgB ^ 0 and if D € (C]*, then there is a lower bound £
of A AgB and ghD mty*. Thusg"1^ is non-zero and is a lower bound of B and AD.
Since g~lE ^ B, we also have g~lE e ^ * and so C e A(SA). Now let F € (hC]*.
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Then h'1 F e (Q* so that A A gB and ghh~lF have a lower bound in <&* and this
must also be a lower bound of A and gF. Hence hC e A(A,g).

Conversely, suppose that C e A*B h) and hC e A(A,g). If D e (C]*, then there is
a lower bound U of B and /iD in ̂ * . Since U ̂  hC there is a lower bound V of
A and gU in ̂ * . Since [/ ^ B we have V ̂  gB so that V ̂  A A gB. Further,
V ^ gU ^ ghD so that V is a lower bound of A A gB and g/iD and consequently,
C <= A^.SXB,/,, as required.

This completes the proof that there is a O-restricted homomorphism TJS from P0/fi
to Jz?/(.T). Put 2T = (Po/W * ̂ . Then ^ c ^ and we claim that (P0/jS, 2f, <&)
is a Brandt triple.

If (A, g) e Po*, then g"'A e A(A,g) n <8/*. Putting g = 1 gives A e A(A,D SO that
A = 1A = (A, 1)/JA e 5". Hence g~lA e 2? and so A(Aig) n J^, which is an order
ideal of 2f, is non-zero. It follows that when the action of P0/fi is restricted to 2? we
get a O-restricted homomorphism from Po/P into Jf/(2f), that is, Po/fi acts on 2? by
partial automorphisms.

We now check that conditions (PI) to (P4) hold with B replaced by P0/fi and 3C by
2£. That (PI) holds is immediate; (P3) is routine and (P2) follows from the categoricity
at zero of <&. For (P4), let (A, g)fi 6 (Po/0)*- Then, as above, g~lA € A(A,g) n <&*
and as ^ c 2f, we have that (A, g)fl * g~lA is defined and equal to A.

We have shown that (Po//J, 2f, $0 is a Brandt triple. To complete the proof of the
theorem we must show that Po is isomorphic to M = ^(P0/p, 2?, &).

We define 9 : Po -> M by putting 00 = 0, and (A, g)G = (A, (A, g)P) for
(A,g) € Po*. Now ((A, g)/3)"' = (A, g)~lp = (g-'A, g"1)^ and, as noted above,
( iT '^ 'Or 'A) is in A(g-iA^-i) fl 3^*. Hence A € A^-^.g-i, and since (A,g) € Po*
we have ((A, g)PYlA = g~xA e Y*. Thus (A, g)9 e M and 0 is a map.

That 0 is one-one follows from the fact that (A, g)fi = (A, h)fi implies g = h.
To see that 6 is onto, suppose that (P, (A,g)fi) € M. Then P 6 A^-M.^-I) and
g^P e £̂ * so that there isalower bound of g- 'Aandg^P in ̂ * . Hence A AP ^ 0 .
Thus (P, g) € P* and (A, g)/?(P, g).

Finally, we show that 6 is a homomorphism. To this end, let (A, g), (B, h) €
(Po/)S)\ If A A gfl = 0 then certainly (A, g)p{B, h)0 = 0/3 and ((A, g)(B, h))9 =
0 = (A, g)9(B, h)G. On the other hand, if A A gB ^ 0, then A A gB is the meet of
A and gB in 2f and

(A, g)0(B, A)0 = (A, (A, g)0)(£, (B, h)/l)

= (AA(A,g)P*B,(A,g)P(B,h)p)
= (A A gB, (A A gB, g/0/3) = (A A gB, gh)9

= ((A,gXB,h))G

as required. •
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