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RINGS WITH NO NILPOTENT ELEMENTS AND WITH 
THE MAXIMUM CONDITION ON ANNIHILATORS 

BY 

W. H. CORNISH AND P. N. STEWART 

1. Introduction. Rings (all of which are assumed to be associative) with no 
non-zero nilpotent elements will be called reduced rings; R is a reduced ring if and 
only if x2=0 implies x=0, for all x e R. In 2. we prove that the following con
ditions on an annihilator ideal / of a reduced ring are equivalent: / i s a maximal 
annihilator, lis prime, lis a minimal prime, lis completely prime. A characteriza
tion of reduced rings with the maximum condition on annihilators is given in 3. 

Let R be a ring in which xy=0 if and only if j x = 0 , for all x, y e R. If x e R 
and xn=0 for some integer n>l, then any product of elements of R involving n 
occurrences of x must be 0. To see this let ni9 i=l,.. . ,k be positive integers such 
that nx+ • • • +nk=n and let riy i=l,. . . , k—\ be elements of R. Then in suc
cession we obtain: xn=0, rxx

n=0, xn-n^r1x
ni=0,. . . , xw*rjfe_1x

n*-1 • • • r1x
ni=0. 

It follows that if x n = 0 , then Xn= (0) where X is the ideal of R which is generated 
by x. Therefore, the set of nilpotent elements of JR is an ideal N, N is the prime 
radical of R, and R/N is a reduced ring. 

In fact, for R to be a reduced ring it is necessary and sufficient that R be semi-
prime (that is, R have no non-zero nilpotent ideals) and xy=0 if and only if 
yx=0, for all x, y e R. This follows because in a reduced ring jR, if xy=0 then 
(yx)2=y(xy)x=0 and so j x = 0 . Of course, all commutative semi-prime rings are 
reduced rings. 

Finally we note that every ring R contains a unique smallest ideal / such that 
R/I is a reduced ring. For details see the discussion of the generalized nil radical in 
Divinsky [1]. 

2. Maximal annihilators and minimal primes. An ideal P of a ring R is prime if 
and only if P^R and aRb^P implies that a eP or b eP, for all a, b e R; P is 
completely prime ifP^R and ab eP implies that a eP or b eP, for all a, b e R. 

Let R be a ring in which xy=0 if and only if yx=0, for all x,y e R. If S^R 
we shall denote the annihilator of S by S*; that is, 

S* = { r e £ : r s = 0 for all seS}. 

Because of the condition on R, an annihilator S* is a two-sided ideal of R. If 
y G R we shall denote {j}* by y*. An annihilator *S* is maximal if and only if 
S*?±R and S*^T*?±R implies that S* = r*, for all T^R. If S V ^ then there 
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is a 7 G S such thaty*?£R. Clearly S*^y* so all maximal annihilators are of the 
form j * for some y e R. 

PROPOSITION 2.1. Let R be a reduced ring and S £= R. Then the following are 
equivalent: 

(i) S* is a maximal annihilator, 
(ii) S* is prime, 

(iii) »S* is a minimal prime, 
(iv) S* is completely prime. 

Proof. (i)->(ii) Select yeS such that S * = j * . Since j * c ( y 2 ) * a n c j J S ^ Q , 
J * = ( J 2 )* . If aeR and (jfl)*=P then j 2 a = 0 so A G ( J 2 ) * = J * ; thus, if a$y* 
y*=i(ya)*. It follows that j * is completely prime, so of course S * = j * is prime. 

(ii)^-(iii) Suppose that g is a prime ideal and g ç S*. Since S* is a prime ideal, 
S*y£R; so we may choose a non-zero y e S. If ae S* in succession we obtain: 
ay=0, Ray=(0), yRa=(0)^Q, yeQoraeQ. Since g ^ S * and j V O , j £ g . 
Therefore a G g so g = S * . 

(iii)->(iv) Suppose that #6 G S*. In succession we obtain, for each y e S: 
aby=0, bya=0, Rbya=(0), aRby=(0). Thus aRb^S* and since *S* is prime, 
a G S* or 6 G 5*. 

(iv)->(i) Suppose that S*^T*?±R. Since T * ^ J R there is a non-zero j ; G P. 
If aeT* then a j = 0 G S * , so a e S* or J G ^ * . Because S*çT* and j V O , 
j $ S*. Therefore a G S* so S* = r*. 

3. Reduced rings with the maximum condition on annihilators. For any two 
sets A and B, let A—B={x e A:x £ B}. We require the following rather technical 
lemma. 

LEMMA 3.1. Let R be a ring and Pi9 i=\, . . . , n any prime ideals ofR such that 
for all k, l<n, P,$P fc ifl^k. 

If a G R and L is a left ideal of R such that for some k, 0<k<n: 

aï Pi if l<i<k 

aePj if n>j>k+l 

L $ P , if n >j>k+l, 

then there is a de R— (JlLi P< such that d—aeL n [flLi PJ-
Notice that if k=0, L n [flLi P J = £ -

Proof. Let y >k+l. By assumption £ $ P , and P^Pj for /^y, so 

L n * P , 

because Ps is a prime ideal. Thus we may choose u5 G (L n [Dt#i PiD—P*-
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Let 
n 

d = a+ 2 Mi-

Now, UjGL n [ f lLi A] for al l7>&+l so d-aeL n [f|*U AL 
If deP{ for some z<&, then a=d—%?=k+1 u3- ePt- contrary to assumption. 
If dePt for some />fc+l , then ut=d— a—2?=fc+i.^i ^ e ^ contrary to the 

way in which wz was chosen. 

Therefore, deR-{Jti^ 
An element */ of a ring P is regular if and only if for every r e R, rd=0 or dr=0 

implies that r = 0 . A ring R is an integral domain if and only if every non-zero 
element of R is regular. Finally, Ris a, ring with max—a (the maximum condition 
on annihilators) if and only if every non-empty set of annihilators has a maximal 
element. 

THEOREM 3.2. For any ring R?£(0) the following are equivalent: 
(i) R is a reduced ring with max—a, 

(ii) R has only a finite number of distinct minimal prime ideals Pz, i = l , . . . , n; 

n L i -P*=(P)> and att elements in R— ULi Pi are regular, 
(iii) R has a finite number of completely prime ideals Qi9 z = l , . . . ,k such that 

n«e*=(o), 
(iv) R is isomorphic to a subring of a direct product of a finite number of integral 

domains. 

Proof. (i)->(ii) Choose a non-zero yeR. Since j 2 7*0, y*ï£R; soy* is contained 
in a maximal annihilator of R. Thus JR has maximal annihilators. 

Let P~y*9 z = l , . . . , k+\ be maximal annihilator ideals of JR. Suppose that 

J * + i e [ n L i ^ ] * . T h e n ^ + i = J * + i ^ [ n t i A ] * * ^ n t i ^ . Since, by 2.1, 
Pjc+i is prime, P3^Pk+1 for some j<k. By the maximality of P i5 P3=Pk+1. There
fore, if the annihilators Pi9 i=l,. . . , fc+1 are distinct, yk+1 $ [f]f=1 PJ* and 
consequently [ n E Î A ] * ? i n « W 

Since R is a ring with max—a, there are only a finite number P — j * , / = 1 , . . . , n 
of distinct maximal annihilators, and by 2.1 they are all minimal prime ideals. 

If x G R and x^O then x*^P3- for some j<n, so if x e f |L i Pi t n e n Ji G * * ^ 
Pj=yf and hence j * = 0 . Since P is a reduced ring, n r = i ^ = (0)-

It follows that for any prime ideal P of P , P3^P for some j<n. Thus Pi9 i= 
1,. . . , n are the only minimal prime ideals of R. 

If j , z G P , j z = 0 and z^O then z ^ P so j ; G Z*^P3- for somey<«. Therefore, 
if j G R—(JiLi A t n e n J is regular. 

(ii)->(iii) It is sufficient to prove that each P3,j<n, is completely prime. 
First notice that R— (JLi A = t h e s e t of regular elements of R. This follows 

because we are assuming that all elements in R — \J n
i=x Pt are regular ; and no element 

in Ui-i-P* can be regular because for eachy<«, P ^ f h v i A ] - f lLi ^=(0)» a n ( i 
r i i^i A-9^(0) since the minimal prime ideals P i9 / = ! , . . . , H are distinct. 
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Suppose that a,b e R—Pj for some j<n. Taking L=R in 3.1 we find regular 
elements d, dx e R— (JLi Pi s u ch that d—a, d1—b e Pjt Now (d—a)b=db—ab e P} 

and d(dx—b)=ddx—db eP,-; so if ab eP, then db eP3 and ddxePjm But ddx^Pi 

because ddx is regular, so abeR—Pj. Therefore each Pj,j<n, is completely 
prime. 

(iii)-*(iv) The ring R is isomorphic to a subdirect product of the integral 
domains RlQi9 i = l , . . . , k. 

(iv)-^(i) A finite direct product of integral domains has no non-zero nilpotent 
elements and only a finite number of annihilators. Both properties are inherited by 
subrings. 

We note that these results can be applied to obtain the following version of 
Goldie's Theorem for reduced rings (see [2] for definitions). 

THEOREM 3.3 (Goldie). A ring R9^(0) has a classical left quotient ring which is 
isomorphic to a finite direct product of division rings if and only if R is a reduced 
ring with max—a and Rd is essential for each regular de R. 

To summarise: if R^iO) is a reduced ring with max—a, then R has only a 
finite number of distinct minimal prime ideals P{, / = 1 , . . . , n and 

Pi = yi*> / = i , . . . , » 

are maximal annihilators, 
Pi 9 i = 1 , . . . , n 

are completely prime, 

fi Pt = (0), and 

n 

R— U Pi = the set of regular elements of R. 

If R satisfies the conditions of 3.3, then 

Q(R) s f i Q(R)IQ(R)Pi = ft Q(m) 
i=l i = l 

where for any ring A, Q(A) denotes a classical left quotient ring of A. The last 
isomorphism is due to Goldie, a proof can be found in Lambek [2, 4.6]. 
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