RINGS WITH NO NILPOTENT ELEMENTS AND WITH THE MAXIMUM CONDITION ON ANNIHILATORS

BY
W. H. CORNISH AND P. N. STEWART

1. Introduction. Rings (all of which are assumed to be associative) with no non-zero nilpotent elements will be called reduced rings; R is a reduced ring if and only if $x^{2}=0$ implies $x=0$, for all $x \in R$. In 2 . we prove that the following conditions on an annihilator ideal I of a reduced ring are equivalent: I is a maximal annihilator, I is prime, I is a minimal prime, I is completely prime. A characterization of reduced rings with the maximum condition on annihilators is given in 3.

Let R be a ring in which $x y=0$ if and only if $y x=0$, for all $x, y \in R$. If $x \in R$ and $x^{n}=0$ for some integer $n \geq 1$, then any product of elements of R involving n occurrences of x must be 0 . To see this let $n_{i}, i=1, \ldots, k$ be positive integers such that $n_{1}+\cdots+n_{k}=n$ and let $r_{i}, i=1, \ldots, k-1$ be elements of R. Then in succession we obtain: $x^{n}=0, r_{1} x^{n}=0, x^{n-n_{1}} r_{1} x^{n_{1}}=0, \ldots, x^{n_{k} r_{k-1}} x^{n_{k-1}} \cdots r_{1} x^{n_{1}}=0$. It follows that if $x^{n}=0$, then $X^{n}=(0)$ where X is the ideal of R which is generated by x. Therefore, the set of nilpotent elements of R is an ideal N, N is the prime radical of R, and R / N is a reduced ring.

In fact, for R to be a reduced ring it is necessary and sufficient that R be semiprime (that is, R have no non-zero nilpotent ideals) and $x y=0$ if and only if $y x=0$, for all $x, y \in R$. This follows because in a reduced ring R, if $x y=0$ then $(y x)^{2}=y(x y) x=0$ and so $y x=0$. Of course, all commutative semi-prime rings are reduced rings.

Finally we note that every ring R contains a unique smallest ideal I such that R / I is a reduced ring. For details see the discussion of the generalized nil radical in Divinsky [1].
2. Maximal annihilators and minimal primes. An ideal P of a ring R is prime if and only if $P \neq R$ and $a R b \subseteq P$ implies that $a \in P$ or $b \in P$, for all $a, b \in R ; P$ is completely prime if $P \neq R$ and $a b \in P$ implies that $a \in P$ or $b \in P$, for all $a, b \in R$.

Let R be a ring in which $x y=0$ if and only if $y x=0$, for all $x, y \in R$. If $S \subseteq R$ we shall denote the annihilator of S by S^{*}; that is,

$$
S^{*}=\{r \in R: r s=0 \text { for all } s \in S\} .
$$

Because of the condition on R, an annihilator S^{*} is a two-sided ideal of R. If $y \in R$ we shall denote $\{y\}^{*}$ by y^{*}. An annihilator S^{*} is maximal if and only if $S^{*} \neq R$ and $S^{*} \subseteq T^{*} \neq R$ implies that $S^{*}=T^{*}$, for all $T \subseteq R$. If $S^{*} \neq R$ then there
is a $y \in S$ such that $y^{*} \neq R$. Clearly $S^{*} \subseteq y^{*}$ so all maximal annihilators are of the form y^{*} for some $y \in R$.

Proposition 2.1. Let R be a reduced ring and $S \subseteq R$. Then the following are equivalent:
(i) S^{*} is a maximal annihilator,
(ii) S^{*} is prime,
(iii) S^{*} is a minimal prime,
(iv) S^{*} is completely prime.

Proof. (i) \rightarrow (ii) Select $y \in S$ such that $S^{*}=y^{*}$. Since $y^{*} \subseteq\left(y^{2}\right)^{*}$ and $y^{3} \neq 0$, $y^{*}=\left(y^{2}\right)^{*}$. If $a \in R$ and $(y a)^{*}=R$ then $y^{2} a=0$ so $a \in\left(y^{2}\right)^{*}=y^{*}$; thus, if $a \notin y^{*}$ $y^{*}=(y a)^{*}$. It follows that y^{*} is completely prime, so of course $S^{*}=y^{*}$ is prime.
(ii) \rightarrow (iii) Suppose that Q is a prime ideal and $Q \subseteq S^{*}$. Since S^{*} is a prime ideal, $S^{*} \neq R$; so we may choose a non-zero $y \in S$. If $a \in S^{*}$ in succession we obtain: $a y=0, R a y=(0), y R a=(0) \subseteq Q, y \in Q$ or $a \in Q$. Since $Q \subseteq S^{*}$ and $y^{2} \neq 0, y \notin Q$. Therefore $a \in Q$ so $Q=S^{*}$.
(iii) \rightarrow (iv) Suppose that $a b \in S^{*}$. In succession we obtain, for each $y \in S$: $a b y=0$, bya $=0$, Rbya $=(0), a R b y=(0)$. Thus $a R b \subseteq S^{*}$ and since S^{*} is prime, $a \in S^{*}$ or $b \in S^{*}$.
(iv) \rightarrow (i) Suppose that $S^{*} \subseteq T^{*} \neq R$. Since $T^{*} \neq R$ there is a non-zero $y \in T$. If $a \in T^{*}$ then $a y=0 \in S^{*}$, so $a \in S^{*}$ or $y \in S^{*}$. Because $S^{*} \subseteq T^{*}$ and $y^{2} \neq 0$, $y \notin S^{*}$. Therefore $a \in S^{*}$ so $S^{*}=T^{*}$.
3. Reduced rings with the maximum condition on annihilators. For any two sets A and B, let $A-B=\{x \in A: x \notin B\}$. We require the following rather technical lemma.

Lemma 3.1. Let R be a ring and $P_{i}, i=1, \ldots, n$ any prime ideals of R such that for all $k, l \leq n, P_{l} \not \ddagger P_{k}$ if $l \neq k$.

If $a \in R$ and L is a left ideal of R such that for some $k, 0 \leq k \leq n$:

$$
\begin{aligned}
& a \notin P_{i} \text { if } \\
& a \in P_{;} \text {if } n \geq j \geq k+1 \\
& L \notin P_{j} \text { if } \\
& n \geq j \geq k+1
\end{aligned}
$$

then there is a $d \in R-\bigcup_{i=1}^{n} P_{i}$ such that $d-a \in L \cap\left[\bigcap_{i=1}^{k} P_{i}\right]$.
Notice that if $k=0, L \cap\left[\bigcap_{i=1}^{k} P_{i}\right]=L$.
Proof. Let $j \geq k+1$. By assumption $L \nsubseteq P_{j}$ and $P_{i} \nsubseteq P_{j}$ for $i \neq j$, so

$$
L \cap\left[\bigcap_{i \neq j} P_{i}\right] \nsubseteq P_{j}
$$

because P_{j} is a prime ideal. Thus we may choose $u_{j} \in\left(L \cap\left[\bigcap_{i \neq j} P_{i}\right]\right)-P_{j}$.

Let

$$
d=a+\sum_{j=k+1}^{n} u_{j} .
$$

Now, $u_{j} \in L \cap\left[\bigcap_{i=1}^{k} P_{i}\right]$ for all $j \geq k+1$ so $d-a \in L \cap\left[\bigcap_{i=1}^{k} P_{i}\right]$.
If $d \in P_{i}$ for some $i \leq k$, then $a=d-\sum_{j=k+1}^{n} u_{j} \in P_{i}$ contrary to assumption.
If $d \in P_{l}$ for some $l \geq k+1$, then $u_{l}=d-a-\sum_{j=k+1, j \neq l}^{n} u_{j} \in P_{l}$ contrary to the way in which u_{l} was chosen.

Therefore, $d \in R-\bigcup_{i=1}^{n} P_{i}$.
An element d of a ring R is regular if and only if for every $r \in R, r d=0$ or $d r=0$ implies that $r=0$. A ring R is an integral domain if and only if every non-zero element of R is regular. Finally, R is a ring with max-a (the maximum condition on annihilators) if and only if every non-empty set of annihilators has a maximal element.

Theorem 3.2. For any ring $R \neq(0)$ the following are equivalent:
(i) R is a reduced ring with max-a,
(ii) R has only a finite number of distinct minimal prime ideals $P_{i}, i=1, \ldots, n$; $\bigcap_{i=1}^{n} P_{i}=(0)$, and all elements in $R-\bigcup_{i=1}^{n} P_{i}$ are regular,
(iii) R has a finite number of completely prime ideals $Q_{i}, i=1, \ldots, k$ such that $\bigcap_{i=1}^{k} Q_{i}=(0)$,
(iv) R is isomorphic to a subring of a direct product of a finite number of integral domains.

Proof. (i) \rightarrow (ii) Choose a non-zero $y \in R$. Since $y^{2} \neq 0, y^{*} \neq R$; so y^{*} is contained in a maximal annihilator of R. Thus R has maximal annihilators.

Let $P_{i}=y_{i}^{*}, i=1, \ldots, k+1$ be maximal annihilator ideals of R. Suppose that $y_{k+1} \in\left[\bigcap_{i=1}^{k} P_{i}\right]^{*}$. Then $P_{k+1}=y_{k+1}^{*} \supseteq\left[\bigcap_{i=1}^{k} P_{i}\right]^{* *} \supseteq \bigcap_{i=1}^{k} P_{i}$. Since, by 2.1, P_{k+1} is prime, $P_{j} \subseteq P_{k+1}$ for some $j \leq k$. By the maximality of $P_{j}, P_{j}=P_{k+1}$. Therefore, if the annihilators $P_{i}, i=1, \ldots, k+1$ are distinct, $y_{k+1} \notin\left[\bigcap_{i=1}^{k} P_{i}\right]^{*}$ and consequently $\left[\bigcap_{i=1}^{k+1} P_{i}\right]^{*} \neq\left[\bigcap_{i=1}^{k} P_{i}\right]^{*}$.

Since R is a ring with max-a, there are only a finite number $P_{i}=y_{i}^{*}, i=1, \ldots, n$ of distinct maximal annihilators, and by 2.1 they are all minimal prime ideals.

If $x \in R$ and $x \neq 0$ then $x^{*} \subseteq P_{j}$ for some $j \leq n$, so if $x \in \bigcap_{i=1}^{n} P_{i}$ then $y_{j} \in x^{*} \subseteq$ $P_{j}=y_{j}^{*}$ and hence $y_{i}^{2}=0$. Since R is a reduced ring, $\bigcap_{i=1}^{n} P_{i}=(0)$.

It follows that for any prime ideal P of $R, P_{j} \subseteq P$ for some $j \leq n$. Thus $P_{i}, i=$ $1, \ldots, n$ are the only minimal prime ideals of R.

If $y, z \in R, y z=0$ and $z \neq 0$ then $z^{*} \neq R$ so $y \in z^{*} \subseteq P_{j}$ for some $j \leq n$. Therefore, if $y \in R-\bigcup_{i=1}^{n} P_{i}$ then y is regular.
(ii) \rightarrow (iii) It is sufficient to prove that each $P_{j}, j \leq n$, is completely prime.

First notice that $R-\bigcup_{i=1}^{n} P_{i}=$ the set of regular elements of R. This follows because we are assuming that all elements in $R-\bigcup_{i=1}^{n} P_{i}$ are regular; and no element in $\bigcup_{i=1}^{n} P_{i}$ can be regular because for each $j \leq n, P_{j}\left[\bigcap_{i \neq j} P_{i}\right] \subseteq \bigcap_{i=1}^{n} P_{i}=(0)$, and $\bigcap_{i \neq j} P_{i} \neq(0)$ since the minimal prime ideals $P_{i}, i=1, \ldots, n$ are distinct.

Suppose that $a, b \in R-P_{j}$ for some $j \leq n$. Taking $L=R$ in 3.1 we find regular elements $d, d_{1} \in R-\bigcup_{i=1}^{n} P_{i}$ such that $d-a, d_{1}-b \in P_{j}$. Now $(d-a) b=d b-a b \in P_{j}$ and $d\left(d_{1}-b\right)=d d_{1}-d b \in P_{j}$; so if $a b \in P_{j}$ then $d b \in P_{j}$ and $d d_{1} \in P_{j}$. But $d d_{1} \notin P_{j}$ because $d d_{1}$ is regular, so $a b \in R-P_{j}$. Therefore each $P_{j}, j \leq n$, is completely prime.
(iii) \rightarrow (iv) The ring R is isomorphic to a subdirect product of the integral domains $R / Q_{i}, i=1, \ldots, k$.
(iv) \rightarrow (i) A finite direct product of integral domains has no non-zero nilpotent elements and only a finite number of annihilators. Both properties are inherited by subrings.

We note that these results can be applied to obtain the following version of Goldie's Theorem for reduced rings (see [2] for definitions).

Theorem 3.3 (Goldie). A ring $R \neq(0)$ has a classical left quotient ring which is isomorphic to a finite direct product of division rings if and only if R is a reduced ring with max-a and $R d$ is essential for each regular $d \in R$.

To summarise: if $R \neq(0)$ is a reduced ring with $\max -a$, then R has only a finite number of distinct minimal prime ideals $P_{i}, i=1, \ldots, n$ and

$$
P_{i}=y_{i}^{*}, i=1, \ldots, n
$$

are maximal annihilators,

$$
P_{i} \quad, i=1, \ldots, n
$$

are completely prime,

$$
\begin{gathered}
\bigcap_{i=1}^{n} P_{i}=(0), \text { and } \\
R-\bigcup_{i=1}^{n} P_{i}=\text { the set of regular elements of } R .
\end{gathered}
$$

If R satisfies the conditions of 3.3 , then

$$
Q(R) \cong \prod_{i=1}^{n} Q(R) / Q(R) P_{i} \cong \prod_{i=1}^{n} Q\left(R / P_{i}\right)
$$

where for any ring $A, Q(A)$ denotes a classical left quotient ring of A. The last isomorphism is due to Goldie, a proof can be found in Lambek [2, 4.6].

References

1. N. J. Divinsky, Rings and radicals, University of Toronto Press, Toronto, 1965.
2. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, 1966.

The Flinders University of South Australia, Bedford Park, South Australia
Dalhousie University, Halifax, Nova Scotia

