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0. Introduction

Chen and Gratzer [3], [4] have had great success in describing the proper-
ties of Stone lattices by way of representing them as triples. Their triple repre-
sentation has recently been generalized to distributive pseudo-complemented
lattices by Katrinak [6]. By varying the approach slightly Katrinak [5] has
been able to obtain a triple representation for distributive pseudo-complemented
semilattices that enabled him to characterize semilattices from distributive
pseudo-complemented semilattices through to Stone lattices and Brouwer lattices
in an elegant unified manner.

Two questions arise from Katrinak's work. Firstly, to what extent is distri-
butivity necessary in order to obtain a triple representation? Secondly, is there
something special about pseudo-complementation that enables a semilattice to
possess some type of triple representation? We answer the first question by show-
ing that the triple representation can be achieved for a modular pseudo-comple-
mented semilattice, provided its filter of dense elements is neutral. This last pro-
viso is satisfied when the semilattice is either distributive or a lattice. Our ap-
proach is achieved by way of giving a negative answer to the second question.

Thus, in section 1 of this paper modular semilattices are introduced and
those properties necessary to give a triple representation in the style of Katrinak
[5] are studied. Many such properties are characteristic of modularity. Incident-
ally, modular semilattices are not new and have been studied briefly by Varlet [12]
and in great detail by Rhodes [10]. In Section 2, loosely speaking we show that
a modular semilattice S with 1 is represented and is uniquely determined by a
triple (C, \jt, D), where C and D are modular semilattices with 1 and \j/ is a 1-dual
homomorphism of C into the lattice of filters of D, if and only if S possesses
a multiplicative closure operator n such that each element of S has the form
c A d, where c is Tt-closed and d is rc-dense, and the filter of 7t-dense elements
is neutral. Actually n is also determined by the triple. These results are then spe-
cialized to pseudo-complemented modular semilattices in the final section.
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240 William H. Cornish [2]

1. Modular semilattices

Throughout this paper we shall be concerned with lower semilattices. A non-
empty subset JF of such a semilatticeS is called a filter if it is subsemilattice and
a ^ b, beS, aeF imply beF. If S is directed above then the set-theoretic
intersection of two filters is a filter and the set F(S) of all filters on S forms a
lattice under set-inclusion, where the meet of filters Ft and F2 is F t n F2 and
their join is FtV F2 = {seS:s ^ ^ A/2 for some f1eF1 and / 2 e F 2 } . The
smallest filter containing x e S is denoted by [x) and is given by [x)= {seS:
s k x}. Such filters are called principal.

A semilattice S is called modular if, for any x,y and z in S such that y ^ z
and z ^ x A y , there exists xt ^ x satisfying z = xt f\ y. This concept has been
introduced in an equivalent yet slightly more complicated form by Varlet [12].
Modular semilattices have also been studied recently by Rhodes in [8], [9] and
[10]. Though the following characterization is known from Rhodes' work, a
proof is included since it is fundamental to the rest of the paper.

PROPOSITION 1.1. A semilattice S is modular if and only if
(i) S is directed above, and
(ii) the lattice F(S) of filters of S is a modular lattice.

PROOF. Suppose that S is modular. If x,yeS then y ^ y and y 2> x A y
imply y = xt A y for some xt ^ x. Hence xt is an upper bound of both x and
y and (i) holds. Due to (i) F(S) is a lattice. Suppose that J,H,Ke F(S) and J ^ K.
Letxe(JV H)nK. Then x ^ a A b for suitable aeJ and betf, while xeK
also. As S is modular x A a ^ d A i and a ^ x A a imply x /\ a = a /\ bt for
some £>! ̂  f>. Then biSH. As aeJ^K,xf\aeK so bLeK since t , ^ x A a.
Hence ^ e H n K and x ^ a A &i implies xeJ\J (HC\K), and it follows that
(J V H)nK £ J V (HC\K). As the reverse inequality holds in any lattice, f(S)
is modular.

If (i) and (ii) hold and x,y,z e S with y ^ z ^ x A y then [3;) s [z) s [x)V | » •
By the modularity of

z e [z) = (|»v [x))n [z) = | » v ([x)n [z))

so z ^ y A w, where w e [x) i.e. w ^ x, proving that S is modular. •

COROLLARY 1.2. A lattice(L, A,V) is a modular lattice if and only if the
semilattice (L, A) is modular.

PROOF. The filters of the lattice (L, A, V) are one and the same thing as
those of the semilattice (L, A) • •

Before continuing with the theme of the paper some amplification might be
in order. A semilattice S is called distributive (prime) if for each x,y, z in S such
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that z ^ x A y ( W y exists in S) there exist xt and yt such that xx ^ x, yl ^ y
and z = xt /\ yl ((z A x) V (z A y) exists in S and

z A O V y) = (z A x) V (z A y)) •

Distributive semilattices were introduced by Gratzer and Schmidt. Attention was
given to them by Schmidt in [11]. It is widely known that Proposition 1.1. holds
if "distributive" replaces "modular", see [5], [10], [11] and [12]. Prime semi-
lattices were studied recently by Balbes [1], who showed that a distributive semi-
lattice is prime. The converse is not true since a prime semilattice need not be
directed above, for example, consider the three element semilattice which is not
a lattice. Indeed, Balbes gave an example of a directed above prime semilattice
which is not distributive. It is S = {0,x,y,z,ao,al,a7, ••• ,«„,•••: 0 < x,y,z < a,
for all i and a0 > at > a2 > ••• > an > }. We remark that Balbes' example fur-
nishes us with an example of a modular semilattice which is not distributive. It is
scarcely worth remarking that a distributive semilattice is modular and that a
finite modular semilattice is a lattice. This last assertion follows from part (i) of
Proposition 1.1. Rhodes' paper [10] contains a detailed treatment of modular
and distributive semilattices. The rest of the results of this section were motivated
by the triple construction and are independent of Rhodes' work.

PROPOSITION 1.3. Let Ft and F2 be filters in a modular semilattice S. If
FXV F2 and F1(~~\F2 are principal then F1 and F2 are principal.

PROOF. Let F t V F2 = [a) and Flr\F2 = \b) for suitable a,beS. Then
a £i at f\a2 for some a± e Ft and a2eF2. But F 1 ; F2 £ [a), so a = ax f\a2.
Take any x in Ft, then since at A a2 = a :£ x A «i ^ «i by modularity there
is a2 2: a2 such that x A « , = at A a'i • Also a'2 ^ x A «i eFl and a'2e Fl(~\F2

and a'2 ^ b. Therefore x ^ x A «i = «i A a'2 ^ «i A b. This is for all
x in F t , so that F t = [«! A b). A similar argument shows that F2 = [a2 A b).

The next result is an immediate corollary of the two preceding propositions
and [2, Theorem 8, p. 187].

COROLLARY 1.4. If a and b are two elements of a complete modular algebraic
lattice such that a V b and a /\ b are compact, then a and b are both compact.

If F is a filter on semilattice S then $(F) denotes the semilattice congruence
defined by x = y [<D(F)] (x, y e S) iff x A t = y f\ t for some t e F . For b e S, d>6

denotes the congruence: x = y(<&b) iffxAb = yAb.Of course, 4>6 = $([&)).

It is worth mentioning explicitly that x = y(<S>(F)) if and only if F V [*)
= F V DO holds in F(S).

If x,y e S and ( e f are such that x A y = x A ' then [x]d>(F) ^ [y]<D[F)
in the factor semilattice S/<b(F). The converse is characteristic of modularity.
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PROPOSITION 1.5. Let x and y be arbitrary elements of semilattice S. Then,
for any filter F, [x]<D(F) g [y]<J>(F) in S/O(F) implies x A y = x A t for some
te F, if and only if S is modular.

PROOF. Suppose that S is modular. If [x] <D(F) g [>] O(F) holds then x Ay
= x(O(F)) so that x A y A w = x A w f o r some weF. Then x ^ x A y ^ x A w

imply, by virtue of modularity, that x f\ y ~ x /\ t for some t §; w, and so l e f .
Suppose that x , y , z e S and I A ) 1 ^ ^ and that the order in the factor

semilattice of S modulo an arbitrary filter F is determined as announced. Choose
F = 0 ) . Since z f\y = x /\y,z~ x(<5(F)) so that [x] 4>(F) ^ [z] O(F). Hence
there is f e F , i.e. t 2: y, such that x /\t = x f\z = z, proving that S is modular.

Rhodes [10] has observed that a homomorphic image of a distributive semi-
lattice may fail to be even modular. This should be compared with the following
special case.

PROPOSITION 1.6. If F is a filter on a modular (resp. distributive semilattice)
S then Sj<b{F) is modular (distributive).

PROOF. The distirbutive case has been established by Schmidt [11, Hilfssatz
4.2]. See [5, 3.1] also.

Suppose that S is modular. For xeS, let x denote the O(F)-class of x.
Suppose that a,b,ceS and « A ^ ^ c ^ 5 . A s S i s modular Proposition 1.5
implies a f\b /\c = a [\b f\w and b f\c — c f\u for some w,ueF. Hence
a /\c /\u = a /\b Aw so that c A « ^ (b A ") A {a A w) and b A " ^ c A «•
Since S is modular c A « = (2> A ") A x for some x ^ a A w . Then c = c A "
= O A « ) A x = *>A xODCF)) a n d x A a = * A a A w = a A w = a(0>(F)). Thus
c = b A x and x ^ a.

Suppose that S is a semilattice, C is a subsemilattice and D is a filter on S.
For c e C , put c\jj = { d e D : d ^ c} = D n [ c ) . Of course a// is a filter on both
D and S. O(al/) and 0 C denote the restrictions of $(ci/>) and <t>c, respectively,
to D. <&(ci]/) ^ <DC so that Q(c\j/) ^ 0 C . The next proposition describes when
Q(cij/) and &c have the same restriction on D.

PROPOSITION 1.7. For a semilattice S, the following are equivalent:
(i) S is modular,
(ii) O(a\j/) = &a for any aeS and any filter D,
(iii) Q(a\j/) =Qa for any aeS and any principal filter D.

PROOF, (i) => (ii). Suppose that S is modular. It suffices to prove that Qa

. If x = y(&a), (x,yeD), then x A a = yAa so

[x)V [a) = | » V {a) in F(S).

As [x), [j;) ^ D, Proposition 1.1 implies
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[x)V # = [x) V (I»nD) = ([» V [a))nD = ([» V [a))nD

Hence x = y(Q>(a\j/)) so x = y&(a\p).
(ii) => (iii) is trivial.
(iii) => (i). Let x, j>, z e S be such that y Si z ̂  x A y- Put D = [z) and a = x

and apply (iii). Since z /\x = y /\x,z= y (0a) so z = y (©(at/')). That is z A w
= >> A w for some w e D = [z) such that w ^ a = x. Then z = z/\w = y/\w
and w ^ x, so that (i) holds. •

\\i: C -*• F(D), defined by \j/: c-*c\fi, is an order reversing map. In general
it may not be a dual homomorphism, i.e. (c A c{)\j/ = c\j/\J c$ for each c, ct e C.
(Note that the join of the niters c^i and c1ij/1 is the same in F(D) as it is in F(S)
so that there is no ambiguity if it is simply denoted by c\p \J c^). To study this
phenomenon we must recall the concept of a neutral element. An element n of
a lattice L is called neutral if the sublattice generated by n and any two other
elements x and y of L is distributive. When L is modular it is well-known, see
[2, Theorem 12, p. 37] that any "distributive equation" linking n, x and y,

e.g. (x V y) A n = (x A n)V (y An),

implies that all other distributive equations between n, x and y hold. Thus the
neutral elements of modular lattices can be described by any of the various dis-
tributive equalities. A neutral filter F of a directed semilattice S is a filter which
is a neutral element of the lattice F(S).

PROPOSITION 1.8. Let S be a modular semilattice with largest element I, C
a sublattice and D a filter on S. Suppose that S,C and D are interrelated by
the condition:

for all seS, there exist ceC and deD such that s = c A d. Then the
following are equivalent:

(i) D is a neutral filter,
(ii) for any a,beC, (a A b)^/ = aij/ V bxjj,
(in) for any a, be C,®a^b = @a\f @b holds in the lattice of congruences

on D.

PROOF, (i) => (ii) is trivial in view of our preceding remarks.
(ii)=>(i). (ii) implies that

([a)V [i))nfl = ([a)riD)V([i)nfl)

for any a,be C.

Now let x,yeS with x = a /\d and y = b A e for suitable a,beC and

d,eeD. Then

\d))r\D = fl»nz>) v 00
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since deD and S is modular. Similarly, [y)nD = (\_b)nD) V | » . Thus

([*)n £) v (0)nD) = ([a)ni))v ([6)nD) v [<0 V [e)

= ([aAb)nfl)V[(IAe) = ([a A 6) V[dAe))nD = [a A b AdAe)nD

using (ii) and the modularity of S.
Now let / and J be arbitrary filters on S. To prove that D is neutral it is

sufficient to show that (JV J)r\D = (I Ci D) \/(J n D) since S is modular. For
this we need only prove (/ V J) n D ^ (I C\ D) \/ (J (~\ D) since the reverse ine-
quality always holds. Thus, let we(/ V J)n I>, so weD and w ^ x A J' for some
x e 7 and y e J. Then we([*) V [ » ) n Z? = ( [x)n D) V ( [ » n D)c ( J n D ) V ( J n O ) .

(ii) => (iii). Since ®(ai]/) is the congruence on D induced by the filter a\j/ on
D, Q(a\l/) V ©(fci/O = ©(aiA V b\ji). Thus, by (ii), Q{a\ji) V 0(fc^) = ©((a A * # ) .
S is modular so Proposition 1.7 implies 0O V ©* = ©OAi>-

(iii)^>(ii). Using (iii) and Proposition 1.7, ©((a A 2 # ) = ©(aiA) V © W )
= ©(ai/' V fri/O- As xi/' is order-reversing, (a A )̂"A ^ ai// \J b\j/. Now if x 6
(a /\b)ipthenx = 1 (0((a A W ) = ©(a^ V b\j/)). Hence x e a ^ V fciA- (ii) fol-
lows. D

2. Neutral p-closure operators

PART A. Introduction.

Let S be a semilattice with largest element 1. Recall that a map n: S-> S is
called a closure operator if (i) (x7t)7t = xrc, (ii) x ^ y implies XTI ^ yn, and
(iii) x ^ X7t hold for all x, y e S.

Cn(S) = {xeS: x = xn} and Dn(S) = {xeS: xn = 1} are respectively cal-
led the set of n-closed elements and n-dense elements of S.

Closure operator n is called normalized if S has a smallest element 0 and
0 is 7i-closed.

Closure operator n is called multiplicative if (iv): (x A y)n = xn A 3"t for
all x, y in S. If 7i is multiplicative then Cn(S) is a subsemilattice of S and I>S(S)
is a filter on S.

A p-closure operator n on S is a multiplicative closure operator such that(p):
for each se S, there exist c e Cn(S) and d e £>n(S) such that s = c A d. (v) is equiv-
alent to (u)'; for each seS there exists deDn(S) such that s = sn /\d.

A multiplicative closure operator TT is called neutral if (vi): the filter Dn(S)
of n:-dense elements is a neutral filter.

PROPOSITION 2.1. Let n be a multiplicative closure operator on semilattice
S with 1. Then the map a: S/<i>(Dn(S))^> Cn(S), defined by ([s]0)(Dn(S)))a = sn,
is an isomorphism if n is a p-closure operator.
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Conversely, if a is an isomorphism and S is modular then n is a p-closure
operator.

PROOF. Suppose that n is a p-closure. Then a is well defined because n is
multiplicative and is a homomorphism for the same reason, a is clearly onto
and it is one-to-one since n satisfies (v)'.

Now suppose that S is modular and a is an isomorphism. Since
([s]4>(Z),,(S)))a = sn = ([sn]0>(Dn(S)))a, s A d = sn A d for some deDn(S).
Hence sn 2: s ^ SK A dso thats = sn A d1 for some dt ^ d, so that rfx eD^(S).
Thus 7t is a p-closure. •

COROLLARY 2.2. / / 7t is a p-closure operator on a modular (distributive)
semilattice S then D^(S) and Cn(S) are both modular (distributive).

PROOF. D^(S) is modular (distributive) since any filter of a modular (distri-
butive) semilattice is clearly itself a modular (distributive) semilattice. The rest
follows from Propositions 1.6 and 2.1. •

PART B. The associated triple and uniqueness theorem.

If S is a lower semilattice with 1 and T is an upper semilattice with 0 then
\p:S->T is called a l-dual homomorphism if lij/ = Oand(x A yW — xipV yij/
for each x and y in S. If S and T also have a smallest element 0 and largest
element 1, respectively, then a l-dual homomorphism ij/ is called a (0, Y)-dual
homomorphism if Oî  = 1.

If S is a modular semilattice with 1 (resp. 0 and 1) possessing a p-closure
operator n (normalized p-closure operator n) then

F.:C.(S)-*F(DAS)), defined by

cipl = {deDn(S): d 2: c} for each ce C, is a l-dual homomorphism ((0, l)-dual
homomorphism) if and only if n is a neutral closure operator. This is because
of Proposition 1.8. In this case \pl is called the structure homomorphism asso-
ciated with S and n.

(Cn(S), i/^, Dn(S)) is called the frip/e associated with the modular semilatti-
ce S and neutral p-closure operator %.

S and 7i can be recovered from this triple. Indeed, if Sx = {c, [d] 0(ct/^)):
ceC,(S), deDn(S)} then /*: S->S 1 ; given by sfi = (sn,[d]Q((sK)\j/s

K), where
d e Dn(S) is such that s = sn Ad, is a bijection. For, as S is modular, Proposi-
tion 1.7 implies that 0((s7r)i/£) = 0SJt and it readily follows that (i is both well-
defined and one-to-one. If ce Cn(S) and deD^S) then (c A <Q/* = (c, [ d ] 0 ( c O
so that ^ is onto.

Thus we can introduce a semilattice order on S t and a neutral p-closure
operator nl on Sj such that n becomes an isomorphism and for each xeS,
(xn)n = (xfi)^. In fact, if x,yeS and Xfi = (
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then we define the infimum in S t by x/x A J7* = (# A b, [d A e]0((a A fr)i/£) so
that Sn becomes a semilattice and it is clear that (x A y)l* = xn A y^-^i- Si -» St

is defined by (x^Tij = (a, [l]0(ai/^)) and it is readily checked that (xn)n =
(xfi)n1 so that 7^ becomes a neutral p-closure operator on S1. All this can be
summarized by the uniqueness theorem.

THEOREM 2.3. A modular semilattice S with 1 (resp. 0 and 1) and a neutral
p-closure operator n is such that itself and the closure operator are determined
up to a closure-isomorphism by the triple (Cn(S), i/'*,

Corollary 2.2 gives the required information on the modularity or distribu-
tivity of Cn(S) and Dn(S).

By a closure-isomorphism i]/: S -> T, where S and T are two semilattices
with closure operators n and p respectively, we mean an isomorphism such that
(si//)p = (sn)ijj f o r e a c h s e S .

PART C. Triples and the construction theorem.

{C,\JJ,D) is called a triple if C and D are both modular semilattices with 1
and \j/ is a 1-dual homomorphism mapping C into FCD). It is a 0-triple if C has
0 and ij/ is a (O-l)-dual homomorphism. It is a distributive triple if both C and
£> are distributive.

With the triple (C, \jt, D) we associate the set S = {(c, [d]4> c\jj)): ceC ,deD}.
On S, a relation ^ is defined by (1) if x = (a, [d]S>(ai/0), y = (b, [e]O((bi/0)e S
then x < ; . y o a ^ ; f c i n B and [tf|<t(ai/0 ^ [e]<t>(ai/0 in D/O)(a^).

It is readily checked that 5£ is a well-defined relation which is trivially re-
flexive and anti-symmetric. It is transitive since ^ is order-reversing and hence
is a partial order. A short computation shows that S is a semilattice with respect
to this order with the infimum given by

(2) x A y = (a A b, [d A e]O((a A

where x and j are given as in (1).
It has a largest element 1 given by

(3) 1 = (1, [1]<D(1^) = (1, 1),

while if (C,\j>,D) is a 0-triple then S has smallest element 0 given by

(4) 0 = (

S is a modular semilattice. Suppose x = (a, [d]$(ai/')), y = (6, \e]<i>(b\j/))
and z = (c, [f]<&(c\j/)) are in S and x f\ y -^ z ^ y. Then, from (1) and (2),

aAb^c^d, [d A e]«((fl A W ) ^ [/]«((«" A

and [/]<D(ci/0 ^ [e]*(ci/0.
Since C is modular, c = at /\ b for some ax e C such that a^ ^ a .
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Because D is modular, Proposition 1.5 implies that d f\e f\f = d /\e /\w
for some we (a A b)\j/ a n d / A e = f f\u for some u s cij/. But (a A b)\ji = a\j/\/ b\p
s o w ^ f i A » 2 . where t^ e ai/' and v2 e bij/. Since d A ( /A ") = d A e A w, we
have

/ A « A % ^ d A/A «A"2 ^ A / A " ^ d Ae A "i A f 2

That is,

Also,

( / A (u A v2)) A (e A »2) = / A (M A »2).

Put / ' = / A (« A V2), d' = d f\v± ande' = e A 2̂ • Asc ^ b,b\p ^ cr]/so v2eop
whence u /\v2sc\j/. Hence

and e' = e(O(ct/r)). Since d' A e' I / ' ^ e', the modularity of Z) implies
f' = dl/\e' for some dt ^ d', dteD.

Put xt = (ai,[di]O(ai^)). As a ^ d] and

(1) implies x ^ Xj.From (2)

xl/\y = (a1A b, [dt A e]«((fli A W)) = (c, [dt A

s i n c e / s / ' = dt A e'(<t)(ci/')). The modularity of S is established.
lf(C,\j/,D) is a distributive triple then S is a distributive semilattice. Apart

from the obvious change in notation the proof is the same as that of Katrinak
[5, Korollar 5.4].

S possesses a neutral p-closure operator n. If x = (a, [d]<I>(ai/0) € S then
the map x -> xn = (a, [l]$(ai^)) is clearly a closure operator which is multipli-
cat ive in view of (2).

Cn(S) = {(a,[l]O(a./0): aeC) while

It then follows from (2) that n is a p-closure.
Define ^ : C(S)-> F(£)n(S)) by

(a, [ l ] « ( a ^ M = {(l,d)eD,(S): (l,d) ^ (

and dei//}.
Since ^ is a 1-dual homomorphism it follows that iftl is a 1-dual homomor-

phism. Because S is modular, 7r is neutral by Proposition 1.8.
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If (C,il/,D) is a 0-triple then n is normalized.
Clearly the map p: D -*• Dn(S) given by dp = (l,d) is an isomorphism. Also

a: C -> Cn(S) given by ca = (c, [d]<D(ci/0) is an isomorphism. If F(p) denotes the
extension of p to F(D) given by (J)F(p) = {dp: deJ} then F(p) is an isomorphism
and for each ceC, cipF(p) = ca\j/s

n.
Summarizing so far we have the construction theorem.

THEOREM 2.4. Let (C,ij/,D) be a triple. Then there exists a modular semi-
lattice S with 1 and a neutral p-closure operator n on S such that there are
isomorphisms a: C^Cn(S), p:D->DK(S) and if \jjs

n is the structure homomor-
phism associated with S and n then ci//F(p) = catj/^for each ceC, whereF(p)
is the isomorphism of F(D) onto F(Dn(S)) induced by p.

Moreover n is normalized if(C,\j/,D) is a 0-triple and S is distributive if
(C,\j/,D) is a distributive triple.

PART D. The fundamental theorem and the fill-in theorem.

Following Chen and Gratzer [3] or Katrinak [5] two triples (C, \\i, D) and
(C1,\j/1,D1) are isomorphic if there is a pair {a, p), where a is an isomorphism of
C onto Cr and p is an isomorphism of D onto Dt such that for each ce C,
al/F(p) = c(nj/1.

Like the above authors we easily obtain the fundamental theorem from
Parts B and C.

THEOREM 2.5. Two modular semilattices with neutral p-closure operators
are closure-isomorphic if and only if their associated triples are isomorphic.
Every triple {distributive triple, 0-triple) is isomorphic to a triple associated
with a semilattice with 1, and a neutral p-closure, whuich is modular (distri-
butive, has a normalized closure).

In the next section of the paper we will consider the most important neutral
p-closure, namely that arising from pseudo-complementation. However, the fol-
lowing fill-in theorem demonstrates the existence of other examples and the fact
that a modular semilattice can possess many different neutral p-closure operators
each having the same closed elements and the same dense elements.

THEOREM 2.6. Let C and D be modular (distributive) semilattices with 1.
/ / C has more than one element there is a l-dual homomorphism \j/: C -»F(D)
so that (C,\j/,D) is a modular (distributive) triple. If C has 0 then ij/ can be
chosen so that (C,\j/,D) is a 0-triple.

PROOF. If C has more than one element, choose a filter J on C such that
J =£ C. Define \ji: C^F(D) by xf = [1) if x e J and x\j/ = D if xeC\J. \j/ has
the required properties. •
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3. Modular pseudo-complemented semilattices

A semilattice S is caleed pseudo-complemented if it has a1 smallest element
0 and for each x in S there is a necessarily unique element x* such that x A y = 0
if only and if y ^ x* for each yeS. The map p: S -* S given by xp = x** is a
normalized multiplicative closure operator such that CP(S) is a Boolean algebra
with the infimum as in S and a* as the complement of a e CP(S). 1 = 0* is
the largest element of both S and CP(S). For details we refer to [5] and the
references contained therein.

/ / S is a modular pseudo-complemented semilattice then p is a p-closure
onS. For x** Ax* = 0 i x ^ x** implies x = x** A d, where x* ^ d. If
zeS and z A d = 0 then z : g x * so z = z A ^ = 0, whence d* = 0 and so
rfeZ)p(S).

In the general case we do not know whether p is neutral. Of course, it is if
S is distributive. However, there is another important case.

The following lemma may be known though we cannot find an explicit proof
in the literature. It is closely related to a result of Ore [7, Theorem 3, p. 622].

LEMMA 3.1. Let F be a filter on a lattice L. Then <S>(F) is a lattice con-
gruence if and only if the equation

(AC\B)\/ F = (Ay F ) n ( B V F)

holds for any filters A and B on L.

PROOF. Suppose that 3>(F) is a lattice congruence. Let a,beL. Then a = a /\t
and b = b A (($(f)) for any t e F. Hence a V b = (a A 0 V (b A 0 whence
(a\Jb)At' = ((a A 0 V (b A 0 ) A t' fo r s o m e t'eF.

To establish ([«) n \b)) \J F = ([a) \J F) n ([b) V F) it is sufficient to prove
that if x e ([a) V F) n ( [ » V F) then x e ([a) n [b)) \/ F. For such an element
x, x ^ a /\ tl; b A t2, where tut2eF. Put t = t± AheF • From the first para-
graph of this proof there is ( ' e F such that

x ^ ((a A t)V (b A t)) A t' = (fl V * ) A « ' e ( [ a ) n [ i ) ) V f .

It readily follows that ( ^ n B ) V i7 = (^ V F)n(B V f) holds for arbitrary
filters A and B.

Conversely, suppose that F satisfies the given distributive equation in F(L).
If a s b(<t>(F)) then [a)\J F = [b)V F. Hence, [a V c) V F = ([a)O [c)) V F
= ([a) V F)n([c) V F) = ( [ » V F)n([c) V F) = [ />Vc)Vf for any ceL.
That is, a V c = fe V c(O(F)) for any ceL. Thus cD(L) has the substitution prop-
erty for the join.

PROPOSITION 3.2. If L is a modular pseudo-complemented lattice then the
filter of dense elements is neutral.
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PROOF. It is well known that the relation R defined by x s y(R)ox** = y**
is a lattice congruence on any pseudo-complemented lattice L. For the semi-
lattice L, <5>{DP(L)) £ R. However, since L is modular p is a p-closure and it
follows that R c O(D). Thus 3>(Dp(L)) = R is a lattice congruence and the pre-
ceding lemma shows that DP(L) is neutral.

LEMMA 3.3. Let (C,\p,D) be a O-triple where C is a Boolean algebra. Then
the modular semilattice S associated with this triple is a pseudo-complemented
semilattice and the closure operator is a p-closure operator. S is distributive
if D is distributive.

PROOF. If x = (a, [d]d>(ai/0) e S then, from (1), (2) and (4) of PartC of Sec-
tion 2, x A y = 0 iff y g x* = (a', [ l j^a ' i / / ) ) , where a' is the complement of a
in C.

Since C is distributive, S is distributive when D is.

It is clear that two pseudo-complemented semilattices are isomorphic if and
only if they are (p-) closure isomorphic. Thus we obtain the following result
from Lemma 3.3 and Theorem 2.5.

THEOREM 3.4. Two modular pseudo-complemented semilattices S and T ,
each possessing a neutral ideal of dense elements, are isomorphic if and only
if their associated triples (Cp(S),\j/s

p,Dp(S)) and (Cp(T), \j/T
p, Dp(T)) are isomor-

phic. Every O-triple {C,\j/,D) with C a Boolean algebra is isomorphic to a triple
associated with a modular pseudo-complemented semilattice S with a neutral
filter of dense elements and S is distributive if and only if D is distributive.

COROLLARY 3.5. Two modular pseudo-complemented lattices are isomorphic
if and only if their associated triples are isomorphic. A modular pseudo-com-
plemented lattice is distributive if and only if its filter of dense elements is
itself a distributive lattice.

PROOF. TWO lattices are isomorphic if and only if they are isomorphic as
semilattices. The first sentence then follows from Proposition 3.2 and Theorem 3.4.
The second sentence follows fom Theorem 3.4 and the analogue of Corollary 1.2
for distributive lattice.

Katrifiak [5] has been able to describe the triple associated with a distribu-
tive pseudo-complemented lattice when viewing it as a semilattice. His solution
is complex; in [6] he gave a triple approach more suited to lattices. We have
found the difficulties associated with either approach insurmountable when trying
to pass to modular lattices.
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