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Abstract

We investigate the dynamics of a susceptible infected recovered (SIR) epidemic model
on small networks with different topologies, as a stepping stone to determining how
the structure of a contact network impacts the transmission of infection through a
population. For an SIR model on a network of N nodes, there are 3" configurations that
the network can be in. To simplify the analysis, we group the states together based on the
number of nodes in each infection state and the symmetries of the network. We derive
analytical expressions for the final epidemic size of an SIR model on small networks
composed of three or four nodes with different topological structures. Differential
equations which describe the transition of the network between states are also derived
and solved numerically to confirm our analysis. A stochastic SIR model is numerically
simulated on each of the small networks with the same initial conditions and infection
parameters to confirm our results independently. We show that the structure of the
network, degree of the initial infectious node, number of initial infectious nodes and
the transmission rate all significantly impact the final epidemic size of an SIR model on
small networks.

2010 Mathematics subject classification: primary 60J28; secondary 34A30, 34F05.

Keywords and phrases: spread of infection, contact network, probability mass functions,
network topology, clustering coefficient.

1. Introduction

The use of contact networks to model the spread of an infection through a population
has become increasingly popular in recent years [2, 4, 12, 16, 21]. It is well known
that models for the spread of an infection which assume that the population is
homogeneously mixed are only appropriate for some situations. Such models often
overestimate the proportion of the population which becomes infected during an
epidemic; this overestimation occurs when there is heterogeneity in the number of
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contacts each individual has within the population. Pair approximation models [6, 7]
improve on the accuracy of the homogeneous models by focusing on the interaction
between pairs of individuals and assume that a change in the state of an individual
depends on the state of its neighbours. However, contact networks provide more
detailed model populations; connections between individuals can be permanent (static
networks) or the number and duration of connections each individual has may
change over time (dynamic networks). In a contact network, each node represents
an individual (or group of individuals), and an edge between two nodes represents a
connection between individuals. A connection is defined depending on the context;
for example, an individual within a shared office would have connections between
all other individuals within the same office for the transmission of influenza, or a
connection could represent an individual’s partners in a sexual contact network for
HIV. There has been considerable effort put into understanding how an infection
spreads through different network structures such as scale-free, small-world, lattice
and random networks [3, 4, 8, 12, 20, 25-27]. However, there is still a lack of models
which capture the population structure in enough detail to provide more accurate
predictions, while ensuring that the mathematical methods are tractable, so that the
derivation of analytical results is possible.

There have been a number of different models for the spread of infection
developed with the aim of addressing this issue of incorporating enough detailed
information, yet keeping the mathematical methods tractable and in a form which
is able to be understood and analysed. There is often a trade off between model
complexity and mathematical tractability; thus, most of the models developed so
far are tailored to specific assumptions about the population structure or infection
dynamics. For example, consider the effective degree network models, where nodes
are classified by their infection state and by the infection state of their neighbours.
These models produce accurate predictions for SIR (susceptible infected recovered)
and SIS (susceptible infected susceptible) type models on large random static [1, 5, 11]
and dynamic [ 14, 24] networks without clustering. Analytical expressions for the basic
reproduction ratio, Ry, were found for effective degree models on static networks, and
approximations to the final proportion of the population infected were found to be in
agreement with stochastic simulations.

Other research has been focused on finding results for the spread of infection
through networks by breaking up the networks into smaller specific motifs [10, 22, 23].
These models demonstrate the importance of understanding higher-order structure
(such as larger network motifs), by comparing the spread of an infection between
networks with the same degree distribution and clustering coefficient. Because these
methods are mathematically difficult to analyse, results are obtained via numerical
simulation. Edge-based compartmental models (EBCMs) [15, 17, 18, 25] begin to
incorporate model complexity while keeping the mathematical concept and derivation
tractable. EBCMs are based on the idea of determining the probability that a given
node’s neighbour is susceptible, infectious or recovered at time ¢. These models
incorporate social heterogeneity and variation in partnership duration by investigating
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Ficure 1. Network diagrams in order of increasing complexity. (A) Triangle network. (B) Line network,
N = 3. (C) Complete network, N = 4. (D) Square network. (E) Star network. (F) Toast network. (G) Line
network, N = 4. (H) Lollipop network.

an SIR model on static and dynamic networks. EBCMs accurately predict the time
evolution of the SIR model and provide a means for finding an analytical expression
for the expected final epidemic size (in most cases) and the basic reproduction ratio,
Ry. Miller and Kiss [16] and Pellis et al. [21] have given detailed overviews of what has
previously been done to analyse epidemic spread in networks, and have outlined some
of the future challenges. It is well known that considering only the degree distribution
of a network is not enough to accurately predict the outcome of an epidemic [13], since
two networks which have the same degree distribution can exhibit different epidemic
outcomes due to topological differences. It has also been shown that networks with the
same degree distribution and clustering coeflicient can exhibit very different epidemic
behaviour [22]. There are many properties which describe the structure of a network
such as the above-mentioned degree distribution and clustering coefficient [19]. The
purpose of this paper is to start addressing the question of which network properties
matter in terms of the spread of infection and whether these properties differ between
network structures. We focus on an SIR-type compartmental model to describe the
spread of an infection through a population. We consider eight small networks of
varying topological structure and investigate the dynamics of the model on them
(Figure 1).

This paper is structured as follows. In Section 2, we outline the methods used to
find the analytical probability mass function (PMF) of the final epidemic size for
each network. In Section 3, we illustrate our methods with a line network of three
nodes. In Section 4, we briefly describe how we investigate the SIR model on the
remaining networks of three and four nodes, followed by the presentation of our
results. In Section 5, we discuss our results. In the supplementary material (Appendix
A), we explain and illustrate the output of the stochastic simulations which were
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Ficure 2. Example of grouping together topologically equivalent states for networks of size N = 3. The
three triangle network states (top) are equivalent and thus can be grouped together into one state. However,
for the line network (bottom) the two states on the left, where the end node is infectious, are equivalent
and thus are grouped together to form one state. The state on the bottom right, where the central node of
the line network is infectious, is not topologically equivalent and so it forms another state of its own.

used to confirm our analytical results. The supplementary material (Appendix B) also
contains the detailed methods for each of the remaining seven small networks shown
in Figure 1.

2. Methods

In this section, we define the notation used throughout the paper and outline the
methods used. Susceptible nodes acquire infection at rate 8 per S—I edge and infectious
nodes recover at rate y. As all of our results depend on the ratio 8/y, we define the
variable R = B/y to simplify our expressions. We denote the state that a network of
three nodes is in by XYZ, where X, Y and Z denote the infection state (S, I or R) that
nodes a, b and c are in, respectively. Similarly, we denote the state that a network of
four nodes is in by WXYZ. For an SIR model on a network of N nodes, there are 3N
possible states which the network can be in. Thus, for an SIR model on networks of
sizes N = 3 and N = 4 nodes, there are 27 and 81 possible states which the networks
can be in, respectively. To simplify our analysis, we group states together based on
symmetries of the network [23]. In the most simple case of a complete network, we
group states together that have the same number of susceptible (S), infected (I) and
recovered (R) nodes (a complete network is a network in which each node is connected
to every other node within the network). For networks which are not complete, we
must look at the topology and the number of nodes in each infection state before
determining which network states can be grouped together. Thus, for each network we
group together the states that are topologically equivalent and have the same number of
nodes in each infection state. See Figure 2 for illustrations of topologically equivalent
states. Once we have reduced the number of states, we draw a transition diagram which
shows how the infection moves through the network.

From the transition diagrams, we can calculate the probability of obtaining different
final sizes, which depends only on the initial state and the infection parameters.
The final size is the total number of nodes which acquire infection at some point

https://doi.org/10.1017/51446181116000043 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181116000043

[5] Expressions for the final epidemic size of an SIR model on small networks 433

during the epidemic. For an SIR-type model, this is simply the number of nodes
which end up in the recovered state. We obtain these final sizes by summing up all
possible infection paths to the appropriate absorbing states, given the infection starts
in one of the initial states. Once the network reaches an absorbing state, the epidemic
is over and the infection has died out. The analytical expression for the expected
final size of the epidemic is also determined. The expected final size is defined by
E[Final size] = Zfi | iP(Final size = 7). We can also show how the infection progresses
through the network by writing down a set of differential equations; each equation
describes the evolution of the probability that the network is in a given state at time z.
We then numerically solve the equations with the same initial conditions and infection
parameters which we used to find the analytical expressions of the probability mass
function for the final epidemic size. To independently verify our results, we also ran
stochastic simulations on each of the small networks for the same initial conditions
and infection parameter (R). The Gillepsie algorithm was used for the stochastic SIR
model (see [9]), which was implemented using MATLAB software. To calculate the
final size probabilities, we ran 2 x 10° stochastic simulations on each network with the
initial conditions and parameters as specified, and counted the frequency of each final
size occurring. We also calculated the clustering coefficient, ¢, for each network to see
if any patterns emerge between the final epidemic size and clustering coefficient of the
networks.

3. Line network

The triangle network is the simplest of the eight small networks we investigated,
being the smallest complete network. However, in order to demonstrate how the
network structure impacts the spread of an infection, we illustrate our methods with
the line network of three nodes. Details of the triangle network and networks of size
N =4 are given in Appendix B. For a line network with three nodes, we have two
nodes of degree 1 (a and c¢) and one node of degree 2 (b) (see Figures 1(B) and 2). For
an SIR model on a line network of three nodes, there are 27 possible states in which
the network can be. By grouping the appropriate states together, the line network can
be reduced to 18 sets of states shown by the transition diagram in Figure 3. In the
line network we have three different initial states; two initial states have one infectious
node, SSI (where nodes a, b and c are in the susceptible, susceptible and infectious
classes, respectively) and SIS (where nodes a, b and c are in the susceptible, infectious
and susceptible classes, respectively), and one initial state has two infectious nodes,
IST (where nodes a, b and c¢ are in the infectious, susceptible and infectious classes,
respectively). Initial states cannot be reached from any other state in the transition
diagram. In states SSI and SIS, the infectious node has degrees 1 and 2, respectively.

Each box in the transition diagram represents a different state of the network, and
each arrow represents either recovery or infection of a node. Transition between states
is only possible if there is a directed arrow from one to the other. Movement between
states in the transition diagram shows how the infection spreads through the network.
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Ficure 3. Transition diagram showing how an infection can spread through the line network. Possible
initial states SIS, SSI and ISI are shown on the left-hand side. The absorbing states for this process are
coloured in black. Coloured outlines identify states with the same number of nodes in each infection state
but different network configurations (colour available online).

Once the network reaches an absorbing state, the epidemic is over and the infection has
died out. Refer to Appendix B for the transition diagrams of the other small networks
shown in Figure 1.

3.1. Catalogue of transition probabilities From the transition diagram of the SIR
model on the line network, we derive the individual transition probabilities between
network states. In the following, Pxyz denotes the probability that the network is
in state XYZ. These probabilities are independent of time and depend only on the
infection parameters. From the absorbing state probabilities, we find the final epidemic
size probabilities, P.

Possible initial state indicator variables:

1 if initial state is SIS,

Esis = .
0 otherwise,
1 if initial state is SSI,
Egs1 = .
0 otherwise,
if initial state is ISI,
Eis1 =

0 otherwise.
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Probability of passing through transient states:

2R R
= E E
Psit Rl sis t R+1 SSI»
2
Prisr = R+2 1SI»
1
Psir = o 2Psn,
Psri = ——P
SRI = 42 SII»
R 2R
= E
Pm R+ 273511 + R +2 ISI»
R 2
Pur = WPSIR + §P111 + R IPISR,

1
Prri = 3P,
_1
Prir = 3P,

1
Prr = Prr1 + 5 Pr.

Probability of terminating in absorbing states:

Psrs 2R1+ Esiss
1
Pssr = o IESSI,
1
Prsr = g IPISR,
Psrr = R1+ 173511{ + Psri,

Prrr = Prir + Pirr-

To find the equations for the final size probabilities, we evaluated the following:

P(Final size = 1) = Psgrs + Pssr,
P(Final size = 2) = Prsr + PsrRr»
P(Final size = 3) = Prgr.

435

Simplifying the above, we derive three sets of analytical expressions for the final size
probabilities (see Table 1), which reflect the different initial conditions possible for the
line network. For example, to illustrate how we found P(Final size = 2), we make the
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TasLE 1. PMFs for the final size (FS).

Initial state SSI SIS ISI
PFS=1) ! ! 0
B R+1 2R +1
R 2R 1
PES =2) (R +1)? R+DRR+1) (R + 1)?
2 2
PES = 3) R 2R R(R +2)
(R +1)2 R+DRR+1) (R +1)°
3RZ+3R+1 3R +1 3REZ+6R+2
E F = s— _
xpected FS RT17 R R117

following substitutions:

P(Final size = 2) = Prsr + Psrr
1 1
= mPISR + W,PSIR + Psri
= 2 Eist + !
TR+DCR+2) T R+ DR +2)
1 2R(R +2)
R+ 17 Estt I DR s 2R+ 1)
. R(R +2)
(R + DA(R +2)
1 2R
RS T RrDeR+ 1"

1
+
Psn o 277511

Esst

R
TR

SIS

The probability mass function of the final size distribution for the line network
is shown in Figure 7. We independently verify our final size calculations using a
stochastic SIR model. See Appendix A for an illustration of the stochastic simulations
on the line network with N = 3 nodes.

3.2. Progression of infection over time In the following, we use Pxyz to denote
the probability that the line network is in the state XY Z at time ¢. Thus, the equation for
the time derivative, Pxyz, shows how the network can enter and leave the state XYZ.
The rate the network enters and leaves each state can be found from the transition
diagram. These equations allow us to simulate the time course of the epidemic and to
check our final size calculations. Equations describing the probability that the network
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is in a given state at time ¢ for an SIR model on the line network are

initial states:

Pgss =0, (3.1
Psis =—-(Q2R + 1)Psis, (3.2)
Pssi = —(R + 1)Pssi, (3.3)
Pisi=-2(R + )Py, (3.4)
transient states:

Pgi = 2R Pgis + RPssi — (R + 2)Psy, (3.5)
Pisg =2Pi51 — (R + 1)Pys, (3.6)
Pur=RPsy + 2R Pis; — 3P, (3.7
Pgir = Psii — (R + 1)Pgp, (3.8)
Psr1 = Psit — Psi, (3.9)
Pur = RPsir + RPisg + 2P — 2Pir, (3.10)
Piri = Py — 2Prr1, (3.11)
Prir = Pir — PR, (3.12)
Pirg = (Pir + 2P1R1) — P, (3.13)

absorbing states:

Pssr = Pss, (3.14)
Pggs = Pss, (3.15)
Pgrsr = Pisg, (3.16)
Psrr = PSR + Psri, (3.17)
PRRR = PirR + PRIR- (3.18)

We have included the equation for the initial state SSS for completeness, even
though it is disjoint from the transition diagram as no infection is present. As t — oo,
the infection will die out and the system will end up in one of the absorbing states. For
a given transition rate, the initial state determines the probability of tending to each
of the possible absorbing states. To find the final size probabilities, we numerically
solve the system of differential equations with specified initial conditions and sum
up the appropriate absorbing state probabilities once a steady state has been reached.
Figure 4 shows the numerical results for solving the system of differential equations
(3.1)—(3.18). Numerical results confirm our analytical expressions for the final
epidemic size.

4. Epidemics on networks of three or four nodes

We analyse an SIR model on each of the small networks of three and four nodes
(see Figure 1) following the method illustrated above shown in Section 3 for the line
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1 Initial State: SSI Initial State: SSI

0 2 4 6
Initial State: SIS

—RIR
--—-IRR

Probability of network being in a given state

Time Time

Ficure 4. Numerical results for solving the system of differential equations (3.1)—(3.18) which describes
the progression of infection over time for an SIR model on a line network with N = 3 nodes. Left and right
columns contain graphical results for R = 1 and R = 2, respectively, for the specified initial conditions.
The numerical results are in agreement with the analytical expressions for the same set of initial conditions
(colour available online).

network of three nodes. Here, we present the results from all networks considered and
refer the reader to Appendix B for the full details of the analysis for each network.
Figures 5 and 6 show plots of the expected final size for all networks of sizes N =3
and N = 4, respectively, over a range of values for R.

It can be seen clearly in Figure 5 that the expected final size for the triangle network
is always higher than the expected final size for the line network with N = 3 nodes
starting with one infectious node. Similarly, in Figure 6, the expected final size for
the complete network is always higher than every other network of size N = 4 for the
specified range of ‘R values. In Table 2, we give expressions for the expected final size
of each of the small networks with specified initial conditions. In Figure 7, we show the
probability mass function for the final epidemic size of each network considered. For
each network there is a probability mass function corresponding to each initial state.
In Table 3, we give the expected final size corresponding to each of the probability
mass functions in Figure 7. Table 3 also shows the degree of the initial infectious
node(s) and clustering coeflicient for each of the small networks of three and four
nodes considered. Not surprisingly, the triangle network has a clustering coefficient
of ¢ = 1 and all complete networks have a clustering coefficient equal to 1. All line
networks have a clustering coefficient of ¢ = 0, as there are no closed loops of any size
in a line network. Note that the square network has a closed loop of order four, which
is not included in the derivation of the clustering coefficient.
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0 1 2 3 4 5 6 7 8 9 10

FiGure 5. Expected final size functions of R for all networks of size N = 3; these were evaluated for the
range of values R = 0.1 to R = 10. Each SIR epidemic started with one infectious node, Iy, as specified
(colour available online).
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1

0 1 2 3 4 5 6 7 8 9 10
R

FiGure 6. Expected final size functions of ‘R for all networks of size N = 4; these were evaluated for the
range of values R = 0.1 to R = 10. Each SIR epidemic started with one infectious node, I, as specified
(colour available online).

We have derived exact analytical expressions for the probability mass functions
of the final epidemic size on eight small networks and investigated the effect that
network structure and the degree of the initial infectious node has on the spread of
an infection. Increasing the complexity of the network structure reduced the effect
of grouping states together based on symmetries of the network. Consequently, this
increased the complexity of the analysis, which is evident in the probability mass
function expressions and is due to the increasing number of possible infection paths.
The results presented here form the basis for finding tractable analytical results which
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FiGure 7. Probability mass functions for the eight small networks shown in Figure 1. The PMFs in light
and dark blue (colour available online) are for R = 1 and R = 2, respectively. The final size probabilities
were validated against results found from stochastic simulations.
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TasLE 2. Expressions for the expected final size of an SIR epidemic starting with one infectious node.

Initial state and initial Degree of Iy Expected final size
infectious node, Iy

Networks with N =3
6RP+13R*+6R +1

A. Triangl 1o = 2
riangle  SSI(Ip = a) (R+12QR+1)
243
SSI(Ip=aorc) 1 %
B. Line (’R+ )
3R+1
IS (Ip = 2
SIS (Ip = b) R+1

Networks with N = 4
48RC + 196 R +310R* + 217 R + 73 R? + 13 R + |

. 1 [(Ip=a,b,c
C. Complete SSSI(Ip =a, b, cord) 3 R+1)PCR+12GR+1)
3R+ 1TR* +13R +3
D. I1(Ip=a,b,c 2 4 SR ATTR+13R +3
Square SSSI (Ip = a, b, ¢ or d) RATORD
SSSI (Ip = b, cor d) 1 B 5R+37
E. Star R+172
3
ISSS (I, = a3
SSS (Ip = a) 3 —
4 3 2 3
SSIS (I = b or ¢) P 4_672 +29R +;172 +13R+‘
F. Toast QR+12R+1)
SSSI (Ip = a or d) 3 C6RY+33RI+4TRI+21R+3
0 CR+DEBR+DH(R+1)?
2
8511y = aord) ! _6R2+8R+3
G. Line R+1)
2
SSIS (Ip = b or ¢) 2 (2727+12
(R+1)
3 2
SSSI(Ip = d) 1 _8R +217§ +14R +3
R+1D’QR+1)
3 2
H. Lollipop ~ SISS (Iy = b or ¢) P 4 R +16732 +13R+3
R+1’QR+1)
2
ISSS (Ip = a) 3 4R +9IR+3

TR+DQR+D

describe the spread of an infection through large networks which are composed of
the small networks discussed in this paper. We calculated the clustering coefficient, ¢,
for each of the small networks in order to see if there was any correlation between
final size of the epidemic and how clustered the network is. The expected final size
for the triangle network is higher than that for the line network of N = 3 nodes for all
parameter values and, although not shown here, this can be proved analytically. Small
networks with a higher clustering coefficient had a higher expected final size when
the epidemic was started with one infectious node. The probability that each node
in a network would acquire infection at some point during the epidemic increased
when the degree of the initial infectious node or the transmission parameter (8, and
hence R) was increased for these small networks. Similarly, the probability that the
infection would die out before infecting an initially susceptible node was higher when
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TasLE 3. Expected final size (EFS) for an SIR epidemic and network clustering coefficients.

EFS
Clustering coefficient, ¢ Initial state Degree of initial infectious node(s) R =1 R =2

Networks with N =3

A. Triangle 1 SSI 2 2.17 2.51
SSI 1 1.75 2.11
B. Line 0 SIS 2 2 2.33
ISI 1&1 2.75 2.89

Networks with N = 4

C. Complete 1 SSSI 3 298 3.46
SSSI 2 25 3.1
D. Square 0 SIIS 2&2 35 378
SSSI 1 2 256

ISSS 3 25 3
E. Star 0 SSII 1&1 3125 348
SIII L1&1 3875  3.96
SSIS 2 264 321
F. Toast 0.75 SSSI 3 285 337
STIS 2&2 3.64 387
SSSI 1 188 241
A SSIS 2 225 278
G. Line 0 SISI 2&1 325 3.56
ISSI 1&1 325 3.63
SSSI 1 208 267
. SISS 2 246 3.02
H. Lollipop 0.6 1SSS 3 267 318
SSII 2&1 346 3.76

the degree of the initial infectious node was 1 when compared with initial infectious
nodes of degrees 2 and 3.

5. Discussion

The results presented in this paper give us a good indication that both the network
topology and the degree of the initial infectious node are key factors in understanding
how an infection might spread through small networks, which could represent small
populations or communities. Some of the results presented here are intuitive; however,
we emphasize the importance of having found exact analytical expressions for the
probability mass functions of the final epidemic size of the small networks. Having
the probability mass function for the final epidemic size provides us with more detail
than a single expression for the expected final size of an epidemic.

Ongoing investigations involve generalizing the probability mass function of the
final epidemic size of larger networks composed of the small networks shown in
Figure 1. With the correct assemblage of smaller networks, we aim to describe how an
infection can spread through a larger network, based on the results found here for the
small networks. Based on this idea, it will not be necessary to construct the transition
diagrams for each network. The correct assemblage of smaller networks to generalize

https://doi.org/10.1017/51446181116000043 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181116000043

[15] Expressions for the final epidemic size of an SIR model on small networks 443

the probability mass function of the final epidemic size is crucial. For example, if we
were to join two triangle networks together to assemble a larger network there are
three ways we could do this; the first way is by joining the two triangle networks at an
apex node; this would create a bow tie network of five nodes. We could also join two
triangle networks together by allowing them to share two nodes; this would create a
toast network (see Figure 1(F)). We could also have two triangle networks connected
by one edge, which would create a line of triangles network of six nodes. Connecting
small networks together with overlapping edges becomes problematic, as discussed by
Kiss et al. [10], when trying to generalize results based on those already found for the
small networks. However, connecting small networks together with overlapping nodes
is a feasible approach for the generalization of some time-independent results such as
the final epidemic size, which depends only upon the infection parameters and initial
conditions.

One limitation of this study is the use of static networks, when in many situations
it would be more realistic to consider a dynamic network in which each individual’s
connections can change over time. Therefore, future work could include investigating
the spread of an infection through small dynamic networks of three and four nodes with
the intention of composing a larger dynamic network made up of the smaller networks.
Another way this research could be extended would be to consider investigating
how an infection spreads through small directed networks with the same topological
structure as in Figure 1. There are many possibilities for extending the work presented
in this paper and we look forward to seeing how this area of research unfolds.

The emphasis of this research is on finding tractable analytical expressions which
describe how an infection may spread through a contact network. If we can understand
which network properties impact the transmission of infection through a population,
then we can use this information to aid the planning and implementation of control
strategies such as vaccination campaigns.
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