Projective Plane Bundles Over an Elliptic Curve

Tomokuni Takahashi

Abstract

We calculate the dimension of cohomology groups for the holomorphic tangent bundles of each isomorphism class of the projective plane bundle over an elliptic curve. As an application, we construct the families of projective plane bundles, and prove that the families are effectively parametrized and complete.

1 Introduction

Let B be an elliptic curve defined over the field \mathbb{C} of complex numbers, and let Σ be a ruled surface over B. In |4|, the dimension of the cohomology group $H^{i}\left(\Theta_{\Sigma}\right)$ is calculated for $i=0,1,2$, where Θ_{Σ} is the holomorphic tangent sheaf of Σ. In particular, it is obtained that $H^{2}\left(\Theta_{\Sigma}\right)=0$ holds for any isomorphism class of a ruled surface. Consequently, by using the result of |23|, we have that there exists a family $\xi: \mathcal{X} \rightarrow \mathcal{M}$ with the following properties:
(i) $\quad \operatorname{dim} \mathcal{M}=\operatorname{dim} H^{1}\left(\Theta_{\Sigma}\right)$;
(ii) $\quad \xi^{-1}(0) \cong \Sigma$ for some point $0 \in \mathcal{M}$;
(iii) the Kodaira-Spencer map at 0 is bijective.

From (iii) this family is effectively parametrized and complete at 0 .
In [4], the family as above is concretely constructed for every isomorphism class Σ of a ruled surface. It is constructed by parametrizing the transition function of the ruled surface as a \mathbb{P}^{1}-bundle.

In this paper, we expand the arguments of [4] to projective plane bundles over an elliptic curve, namely, \mathbb{P}^{2}-bundles over an elliptic curve.

If W is a \mathbb{P}^{2}-bundle over an elliptic curve B, then $W \cong \mathbb{P}(E)$ holds for some vector bundle E of rank 3. In Section 2, we summarize the results obtained in [1 4].

In Section 3, we classify the isomorphism classes of \mathbb{P}^{2}-bundles over B. We have to consider it by dividing the argument into the following 3 cases:
(a) E is isomorphic to a direct sum of 3 line bundles;
(b) E is isomorphic to a direct sum of a line bundle and an indecomposable vector bundle of rank 2;
(c) E is indecomposable.

[^0]In case (c), there exist only three types of isomorphism classes. In case (b), an isomorphism class depends only on the degree of the direct sum components of the defining vector bundle. In case (a), the classification is a bit more complicated than in cases (b) and (c).

In Section 4 we calculate the dimension of the cohomology group $H^{i}\left(\Theta_{W}\right)$ $(i=0,1,2)$ for every \mathbb{P}^{2}-bundle W, where Θ_{W} is the holomorphic tangent sheaf of W. In order to do it, we write the patching data, namely, the transition function as a \mathbb{P}^{2}-bundle for every isomorphism classes.

As an application, we construct the families of \mathbb{P}^{2}-bundles that are similar to the cases of ruled surfaces. We set some \mathbb{P}^{2}-bundle W, and construct the family $\xi: \mathcal{X} \rightarrow \mathcal{M}$ with $\xi^{-1}(0) \cong W$ for some $0 \in \mathcal{M}$ and $\operatorname{dim} \mathcal{M}=\operatorname{dim} H^{1}\left(\Theta_{W}\right)$. We consider three cases of the isomorphism classes of W. The families are given by parametrizing the transition function of W as a \mathbb{P}^{2}-bundle. Furthermore, we prove that these families are effectively parametrized and complete.

2 Preliminaries

Let $\mathcal{E}_{B}(r, d)$ be a set of the isomorphism classes of indecomposable vector bundles of rank r and of degree d over an elliptic curve B.

Theorem 2.1 (cf. [1]) If B is an elliptic curve, then we have $\mathcal{E}_{B}(r, d) \neq \varnothing$ for any $r \in \mathbb{Z}_{>0}$ and $d \in \mathbb{Z}$. For any $E_{1}, E_{2} \in \mathcal{E}_{B}(r, d), E_{1} \cong E_{2} \otimes L$ holds for some $L \in \mathcal{E}_{B}(1,0)$. For any $r \in \mathbb{N}$, there is a unique element $F_{r} \in \mathcal{E}_{B}(r, 0)$ with $H^{0}\left(B, F_{r}\right) \cong \mathbb{C}$. For any $E \in \mathcal{E}_{B}(r, 0) \backslash\left\{F_{r}\right\}$, we have $H^{0}(B, E)=0$.

Remark 2.2 We use the notation $\mathcal{E}_{B}(r, d)$ and F_{r} freely in the rest of the paper.
Lemma 2.3 (cf. e.g., |4|) If B is an elliptic curve, then the following hold:
(i) There exists an automorphism $\varphi \in \operatorname{Aut}(B)$ satisfying $L_{1} \cong \varphi^{*} L_{2}$ for any two line bundles L_{1} and L_{2} of degree d, where d is any positive integer.
(ii) Let $p \in B$ be any fixed point. For any $L \in \operatorname{Pic}^{0}(B)$, there exists a point $p^{\prime} \in B$ satisfying $L \cong \mathcal{O}_{B}\left(p-p^{\prime}\right)$, where - is an operator of divisors.
(iii) Let U_{1} be the local coordinate neighbourhood near some point $p \in B$, and let u_{1} be the coordinate on U_{1}. Put $U_{0}:=B \backslash\{p\}$, and let v_{0} be a complex number. Then the line bundle obtained by patching $\left(u_{1}, z_{0}\right) \in U_{0} \times \mathbb{C}$ and $\left(u_{1}, z_{1}\right) \in U_{1} \times \mathbb{C}$ when they satisfy $z_{0}=e^{v_{0} / u_{1}} z_{1}$ for $u_{1} \in U_{0} \cap U_{1}$ is contained in $\mathcal{E}_{B}(1,0)$. Furthermore, this line bundle is trivial if and only if v_{0} / u_{1} is in the image of $H^{1}(B, \mathbb{Z}) \rightarrow H^{1}\left(B, \mathcal{O}_{B}\right)$.

3 Classification of the Isomorphism Classes

Lemma 3.1 Let $d_{1}, d_{2}, d_{1}^{\prime}, d_{2}^{\prime}$ be integers with $0<d_{1}<d_{2}$ and $0<d_{1}^{\prime}<d_{2}^{\prime}$. Put $E:=\mathcal{O}_{B} \oplus L_{1} \oplus L_{2}$ for $L_{i} \in \mathcal{E}_{B}\left(1, d_{i}\right)(i=1,2)$ and $E^{\prime}:=\mathcal{O}_{B} \oplus L_{1}^{\prime} \oplus L_{2}^{\prime}$ for $L_{j}^{\prime} \in \mathcal{E}_{B}\left(1, d_{j}^{\prime}\right)$ $(j=1,2)$. Then $\mathbb{P}(E) \cong \mathbb{P}\left(E^{\prime}\right)$ holds if and only if there exists an automorphism $\varphi \in$ $\operatorname{Aut}(B)$ with $\varphi^{*} L_{1} \cong L_{1}^{\prime}$ and $\varphi^{*} L_{2} \cong L_{2}^{\prime}$. Necessarily, we have $d_{1}=d_{1}^{\prime}$ and $d_{2}=d_{2}^{\prime}$.

Proof Denote by π : $W:=\mathbb{P}(E) \rightarrow B$ and $\pi^{\prime}: W^{\prime}:=\mathbb{P}\left(E^{\prime}\right) \rightarrow B$ the \mathbb{P}^{2}-bundles. Let $\Psi: W \rightarrow W^{\prime}$ be an isomorphism. Since there exists no surjective morphism from \mathbb{P}^{2} to B, Ψ maps any fiber of π to the fiber of π^{\prime}. Then we get the following commutative diagram:

where φ is an automorphism of B induced by Ψ. If T^{\prime} is a tautological divisor of W^{\prime}, then we have $\pi_{*} \Psi^{*} \mathcal{O}_{W^{\prime}}\left(T^{\prime}\right) \cong \varphi^{*} E^{\prime}$ by the base change theorem. Hence, we obtain the line bundle \mathcal{L} with $E \cong\left(\varphi^{*} E^{\prime}\right) \otimes \mathcal{L}$. We obtain $\mathcal{L} \cong \mathcal{O}_{B}, L_{1}^{\prime} \cong \varphi^{*} L_{1}$ and $L_{2}^{\prime} \cong \varphi^{*} L_{2}$.

Next, we prove the converse. Let $W^{\prime \prime}$ be the fiber product $W^{\prime} \times_{B} B$ for $\pi^{\prime}: W^{\prime}:=$ $\mathbb{P}\left(E^{\prime}\right) \rightarrow B$ and $\varphi: B \rightarrow B$. Then we obtain the morphisms $\Psi^{\prime}: W^{\prime \prime} \rightarrow W^{\prime}$ and $\pi^{\prime \prime}: W^{\prime \prime} \rightarrow B$. Clearly, Ψ^{\prime} is an isomorphism. On the other hand, we obtain

$$
\pi_{*}^{\prime \prime} \Psi^{\prime *} \mathcal{O}_{W^{\prime}}\left(T^{\prime}\right) \cong \varphi^{*} E^{\prime} \cong E,
$$

by the base change theorem, where T^{\prime} is the tautological divisor of W^{\prime}. Hence we obtain $W^{\prime \prime} \cong W:=\mathbb{P}(E)$.

Remark 3.2 For $d_{1} \in \mathbb{Z}_{>0}$, there exists $\varphi \in \operatorname{Aut}(C)$ with $\varphi^{*} L_{1} \cong L_{1}^{\prime}$ for any $L_{1}, L_{1}^{\prime} \in \mathcal{E}_{C}\left(1, d_{1}\right)$. Hence, when we consider the isomorphism class of \mathbb{P}^{2}-bundles as in Lemma 3.1. we can fix the second component of the direct sum and have only to consider the case where the isomorphism class of the third component varies.

Lemma 3.3 Put $E:=\mathcal{O}_{B} \oplus E_{0}$ and $E^{\prime}:=\mathcal{O}_{B} \oplus E_{0}^{\prime}$ for $E_{0} \in \mathcal{E}_{B}(2, e)$ and $E_{0}^{\prime} \in \mathcal{E}_{B}\left(2, e^{\prime}\right)$, where e and e^{\prime} are both nonzero integers. Then $\mathbb{P}(E)$ is isomorphic to $\mathbb{P}\left(E^{\prime}\right)$ if and only if $e=e^{\prime}$ holds.

Proof The proof of the only if part is similar to Lemma 3.1 In order to prove the if part, it is sufficient to prove that there exists an automorphism $\psi \in \operatorname{Aut}(B)$ with $E_{0} \cong \psi^{*} E_{0}^{\prime}$. If e is odd, there exists ψ with $\operatorname{det} E_{0} \cong \operatorname{det}\left(\psi^{*} E_{0}^{\prime}\right)$ by Lemma 2.3 (i). Since the map det: $\mathcal{E}_{B}(2, e) \rightarrow \mathcal{E}_{B}(1, e)$ is bijective ($c f$. [1. Corollary to Theorem 7]), we obtain $E_{0} \cong \psi^{*} E_{0}^{\prime}$. If e is even, there exist line bundles L_{0} and L_{0}^{\prime} with $E_{0} \cong L_{0} \otimes F_{2}$, and $E_{0}^{\prime} \cong L_{0}^{\prime} \otimes F_{2}$. Hence, the statement is obtained.

Remark 3.4 When $e=e^{\prime}=0$, the "if" part of Lemma 3.3 does not hold. Put $E:=\mathcal{O}_{B} \oplus F_{2}$, and $E^{\prime}:=\mathcal{O}_{B} \oplus E_{0}$ for $E_{0} \in \mathcal{E}_{B}(2,0) \backslash\left\{F_{2}\right\}$. Then the cohomology groups of the holomorphic tangent bundles for $\mathbb{P}(E)$ and $\mathbb{P}\left(E^{\prime}\right)$ have different dimension each other. See Theorem 4.1(ix) and (xii).

The following is trivial by the results of [1].
Lemma 3.5 The isomorphism classes of the projective plane bundles defined by indecomposable vector bundles over an elliptic curve of rank three are the following:
(i) $\mathbb{P}\left(F_{3}\right) \quad\left(F_{3} \in \mathcal{E}_{B}(3,0)\right)$,
(ii) $\mathbb{P}\left(F_{3,1}\right) \quad\left(F_{3,1} \in \mathcal{E}_{B}(3,1)\right)$,
(iii) $\mathbb{P}\left(F_{3,2}\right) \quad\left(F_{3,2} \in \mathcal{E}_{B}(3,2)\right)$.

4 The Cohomology Groups of the Holomorphic Tangent Sheaf

In this section, we consider the dimension of the cohomology groups of the holomorphic tangent sheaf for each isomorphism class of \mathbb{P}^{2}-bundle. Let E be a vector bundle of rank 3 over an elliptic curve B, and $W:=\mathbb{P}(E)$ the \mathbb{P}^{2}-bundle. Then from the results of the previous section, we have to consider the following cases:
(i) $E \cong \mathcal{O}_{B}^{\oplus 3}$.
(ii) $E \cong \mathcal{O}_{B} \oplus \mathcal{O}_{B} \oplus L_{2}$, where $L_{2} \in \operatorname{Pic}^{0}(B) \backslash\left\{\mathcal{O}_{B}\right\}$.
(iii) $E \cong \mathcal{O}_{B} \oplus L_{1} \oplus L_{2}$, where $L_{1}, L_{2} \in \operatorname{Pic}^{0}(B) \backslash\left\{\mathcal{O}_{B}\right\}$ and $L_{1} \not \approx L_{2}$.
(iv) $E \cong \mathcal{O}_{B} \oplus \mathcal{O}_{B} \oplus L_{2}$, where $L_{2} \in \mathcal{E}_{B}\left(1, d_{2}\right), d_{2}>0$.
(v) $E \cong \mathcal{O}_{B} \oplus L_{1} \oplus L_{1}$, where $L_{1} \in \mathcal{E}_{B}\left(1, d_{1}\right), d_{1}>0$.
(vi) $E \cong \mathcal{O}_{B} \oplus L_{1} \oplus L_{1}^{\prime}$, where $L_{1}, L_{1}^{\prime} \in \mathcal{E}_{B}\left(1, d_{1}\right), L_{1} \not \approx L_{1}^{\prime}, d_{1}>0$.
(vii) $E \cong \mathcal{O}_{B} \oplus L_{1} \oplus L_{2}$, where $L_{1} \in \operatorname{Pic}^{0}(B) \backslash\left\{\mathcal{O}_{B}\right\}$ and $L_{2} \in \mathcal{E}_{B}\left(1, d_{2}\right), d_{2}>0$.
(viii) $E \cong \mathcal{O}_{B} \oplus L_{1} \oplus L_{2}$, where $L_{i} \in \mathcal{E}_{B}\left(1, d_{i}\right)(i=1,2)$ and $0<d_{1}<d_{2}$.
(ix) $E \cong \mathcal{O}_{B} \oplus F_{2}$.
(x) $\quad E \cong \mathcal{O}_{B} \oplus E_{0}$, where $E_{0} \in \mathcal{E}_{B}(2, e), e>0$ and $e \equiv 0(2)$.
(xi) $\quad E \cong \mathcal{O}_{B} \oplus E_{0}$, where $E_{0} \in \mathcal{E}_{B}(2, e), e>0$ and $e \equiv 1(2)$.
(xii) $E \cong L \oplus F_{2}$, where $L \in \operatorname{Pic}^{0}(B) \backslash\left\{\mathcal{O}_{B}\right\}$.
(xiii) $E \cong F_{2} \oplus L$, where $L \in \mathcal{E}_{B}(1, d)$ and $d>0$.
(xiv) $E \cong F_{2,1} \oplus L$, where $L \in \mathcal{E}_{B}(1, d)$ and $d>0$.
(xv) $E \cong F_{3}$.
(xvi) $E \cong F_{3,1}$.
(xvii) $E \cong F_{3,2}$.

Let B be defined as $B=\mathbb{C} /\langle 1, \omega\rangle$, where ω is an element of the upper half plane of \mathbb{C}. For any $u_{0} \in \mathbb{C}$, let $\left[u_{0}\right] \in B$ be a class whose representative element is u_{0}.

For each case, W is obtained as following:
In cases (i), (iv), (v), (ix), (x), (xi), (xiii), (xiv), (xv), (xvi), and (xvii), let U_{0} and U_{1} be as in Lemma 2.3 (iii). Then W is obtained by patching $U_{0} \times \mathbb{P}^{2}$ and $U_{1} \times \mathbb{P}^{2}$. Let u_{1} be a local coordinate near p. Denote by $\left(u_{i},\left(X_{i}: Y_{i}: Z_{i}\right)\right)(i=0,1)$ the element of $U_{i} \times \mathbb{P}^{2}$, where $\left(X_{i}: Y_{i}: Z_{i}\right)$ is a homogeneous coordinate of \mathbb{P}^{2}.

In case (i), we obtain W by patching

$$
\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right) \in U_{0} \times \mathbb{P}^{2} \quad \text { and } \quad\left(u_{1},\left(X_{1}: Y_{1}: Z_{1}\right)\right) \in U_{1} \times \mathbb{P}^{2}
$$

when they satisfy $X_{0}=X_{1}, Y_{0}=Y_{1}, Z_{0}=Z_{1}$ and $\left[u_{0}\right]=p+u_{1}$, where $p+u_{1}$ means $\left[u^{\prime}+u_{1}\right]$ for $u^{\prime} \in \mathbb{C}$ such that $p=\left[u^{\prime}\right]$.

Similarly, in other cases, W is obtained by the following patching data with the equality $\left[u_{0}\right]=p+u_{1}$:
In case (iv), $X_{0}=X_{1}, Y_{0}=Y_{1}, Z_{0}=\frac{1}{u_{1}^{d_{2}}} Z_{1}$.
In case (v), $X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}^{d_{1}}} Y_{1}, Z_{0}=\frac{1}{u_{1}^{d_{1}}} Z_{1}$.
In case (ix), $X_{0}=X_{1}, Y_{0}=Y_{1}+\frac{1}{u_{1}} Z_{1}, Z_{0}=Z_{1}$.
In case $(\mathrm{x}), X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}^{e_{0}}} Y_{1}+\frac{1}{u_{1}^{e_{0}+1}} Z_{1}, Z_{0}=\frac{1}{u_{1}^{e^{e}}} Z_{1},\left(e_{0}=\frac{e}{2}\right)$.

In case (xi), $X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}^{e_{0}}} Y_{1}+\frac{1}{u_{1}^{e_{0}+2}} Z_{1}, Z_{0}=\frac{1}{u_{1}^{e_{0}+1}} Z_{1},\left(e_{0}=\frac{e-1}{2}\right)$.
In case (xiii), $X_{0}=X_{1}+\frac{1}{u_{1}} Y_{1}, Y_{0}=Y_{1}, Z_{0}=\frac{1}{u_{1}^{d}} Z_{1}$.
In case (xiv), $X_{0}=X_{1}+\frac{1}{u_{1}^{2}} Y_{1}, Y_{0}=\frac{1}{u_{1}} Y_{1}, Z_{0}=\frac{1}{u_{1}^{d}} Z_{1}$.
In case (xv), $X_{0}=X_{1}+\frac{1}{u_{1}} Y_{1}, Y_{0}=Y_{1}+\frac{1}{u_{1}} Z_{1}, Z_{0}=Z_{1}$.
In case (xvi), $X_{0}=X_{1}+\frac{1}{u_{1}} Y_{1}, Y_{0}=Y_{1}+\frac{1}{u_{1}^{2}} Z_{1}, Z_{0}=\frac{1}{u_{1}} Z_{1}$.
In case (xvii), $X_{0}=X_{1}+\frac{1}{u_{1}} Z_{1}, Y_{0}=Y_{1}+\frac{1}{u_{1}^{3}} Z_{1}, Z_{0}=\frac{1}{u_{1}^{2}} Z_{1}$.
Next, we consider cases (ii), (vi), (vii), (viii), and (xii). Let $p \in B$ and $p^{\prime} \in B$ ($p \neq p^{\prime}$) be points with $L_{2} \cong \mathcal{O}_{B}\left(p-p^{\prime}\right)$ in case (ii), $L_{1} \cong \mathcal{O}_{B}\left(d_{1} p\right)$ and $L_{1}^{\prime} \cong \mathcal{O}_{B}\left(d_{1} p^{\prime}\right)$ in case (vi), $L_{1} \cong \mathcal{O}_{B}\left(p-p^{\prime}\right)$ and $L_{2} \cong \mathcal{O}_{B}\left(d_{2} p\right)$ in case (vii), $L_{1} \cong \mathcal{O}_{B}\left(d_{1} p\right)$, and $L_{2} \cong \mathcal{O}_{B}\left(d_{2} p^{\prime}\right)$ in case (viii) and $L \cong \mathcal{O}_{B}\left(p-p^{\prime}\right)$ in case (xii). Put $U_{0}:=B \backslash\left\{p, p^{\prime}\right\}$, and let $\left(U_{1}, u_{1}\right)$ and $\left(U_{2}, u_{2}\right)$ be local coordinate system near p and p^{\prime}, respectively. We can assume that $U_{1} \cap U_{2}=\varnothing$. Denote the element of $U_{i} \times \mathbb{P}^{2}$ by $\left(u_{i},\left(X_{i}: Y_{i}: Z_{i}\right)\right)$ ($i=0,1,2$).

In case (ii), we obtain W by patching $\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right)$ and $\left(u_{1},\left(X_{1}: Y_{1}: Z_{1}\right)\right)$ when they satisfy

$$
X_{0}=X_{1}, Y_{0}=Y_{1}, Z_{0}=\frac{1}{u_{1}} Z_{1} \quad \text { and } \quad\left[u_{0}\right]=p+u_{1}
$$

$\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right)$ and $\left(u_{2},\left(X_{2}: Y_{2}: Z_{2}\right)\right)$ when they satisfy

$$
X_{0}=X_{2}, Y_{0}=Y_{2}, Z_{0}=u_{2} Z_{2} \quad \text { and } \quad\left[u_{0}\right]=p^{\prime}+u_{2}
$$

Similarly, in other cases, W is obtained by the following patching data with the equalities $\left[u_{0}\right]=p+u_{1}$ and $\left[u_{0}\right]=p^{\prime}+u_{2}$:
In case (vi),

$$
X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}^{d_{1}}} Y_{1}, Z_{0}=Z_{1} \quad \text { and } \quad X_{0}=X_{2}, Y_{0}=Y_{2}, Z_{0}=\frac{1}{u_{2}^{d_{1}}} Z_{2}
$$

In case (vii),

$$
X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}} Y_{1}, Z_{0}=\frac{1}{u_{1}^{d_{2}}} Z_{1} \quad \text { and } \quad X_{0}=X_{2}, Y_{0}=u_{2} Y_{2}, Z_{0}=Z_{2} .
$$

In case (viii),

$$
X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}^{d_{1}}} Y_{1}, Z_{0}=Z_{1} \quad \text { and } \quad X_{0}=X_{2}, Y_{0}=Y_{2}, Z_{0}=\frac{1}{u_{2}^{d_{2}}} Z_{2}
$$

In case (xii),

$$
X_{0}=\frac{1}{u_{1}} X_{1}, Y_{0}=Y_{1}+\frac{1}{u_{1}} Z_{1}, Z_{0}=Z_{1} \quad \text { and } \quad X_{0}=u_{2} X_{2}, Y_{0}=Y_{2}, Z_{0}=Z_{2}
$$

Finally, we consider case (iii). Let $p, p^{\prime}, p^{\prime \prime} \in B$ be the points with $L_{1} \cong \mathcal{O}_{B}\left(p-p^{\prime}\right)$, $L_{2} \cong \mathcal{O}_{B}\left(p-p^{\prime \prime}\right)$. Put $U_{0}:=B \backslash\left\{p, p^{\prime}, p^{\prime \prime}\right\}$, and let $\left(U_{1}, u_{1}\right),\left(U_{2}, u_{2}\right)$, and $\left(U_{3}, u_{3}\right)$ be the local coordinate systems near p, p^{\prime}, and $p^{\prime \prime}$, respectively. We can assume that $U_{i} \cap U_{j}=\varnothing(i, j=1,2,3, i \neq j)$. Denote by $\left(u_{i},\left(X_{i}: Y_{i}: Z_{i}\right)\right)(i=0,1,2,3)$ the element of $U_{i} \times \mathbb{P}^{2}$.

We obtain W by patching $\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right)$ and $\left(u_{1},\left(X_{1}: Y_{1}: Z_{1}\right)\right)$ with

$$
X_{0}=X_{1}, Y_{0}=\frac{1}{u_{1}} Y_{1}, Z_{0}=\frac{1}{u_{1}} Z_{1} \quad \text { and } \quad\left[u_{0}\right]=p+u_{1}
$$

$\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right)$ and $\left(u_{2},\left(X_{2}: Y_{2}: Z_{2}\right)\right)$ with

$$
X_{0}=X_{2}, Y_{0}=u_{2} Y_{2}, Z_{0}=Z_{2} \quad \text { and } \quad\left[u_{0}\right]=p^{\prime}+u_{2}
$$

$\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right)$ and $\left(u_{3},\left(X_{3}: Y_{3}: Z_{3}\right)\right)$ with

$$
X_{0}=X_{3}, Y_{0}=Y_{3}, Z_{0}=u_{3} Z_{3} \quad \text { and } \quad\left[u_{0}\right]=p^{\prime \prime}+u_{3}
$$

Theorem 4.1 Let $\pi: W:=\mathbb{P}(E) \rightarrow B$ be a \mathbb{P}^{2}-bundle over an elliptic curve B defined by a vector bundle E of rank 3, and let Θ_{W} be the holomorphic tangent bundle.
(i) We have $\operatorname{dim} H^{2}\left(W, \Theta_{W}\right)=\operatorname{dim} H^{3}\left(W, \Theta_{W}\right)=0$.
(ii) We have $\operatorname{dim} H^{0}\left(W, \Theta_{W}\right)=\operatorname{dim} H^{1}\left(W, \Theta_{W}\right)$. If we let N be this dimension, then it has the following values:

Case	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
N	9	5	3	$2 d_{2}+4$	$2 d_{1}+4$	$2 d_{1}+2$	$2 d_{2}+2$	$2 d_{2}+2$

Case	(ix)	(x)	(xi)	(xii)	(xiii)	(xiv)	(xv)	(xvi)	(xvii)
N	5	$e+2$	$e+1$	3	$2 d+2$	$2 d$	3	1	1

Proof Consider the following two exact sequences:

$$
\begin{gathered}
0 \longrightarrow \mathcal{O}_{W} \longrightarrow \mathcal{O}_{W}(T) \otimes \pi^{*} E^{\vee} \longrightarrow \Theta_{W / B} \longrightarrow 0 \\
0 \longrightarrow \Theta_{W / B} \longrightarrow \Theta_{W} \longrightarrow \mathcal{O}_{W} \longrightarrow 0
\end{gathered}
$$

Since $H^{j}\left(W, \mathcal{O}_{W}\right)=0$ and $H^{j}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} E^{\vee}\right)=0$ hold for $j \geq 2$, we obtain $H^{j}\left(W, \Theta_{W / B}\right)=0$ and $H^{j}\left(W, \Theta_{W}\right)=0$. Since
$\operatorname{dim} H^{0}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} E^{\vee}\right)=\operatorname{dim} H^{0}\left(B, E \otimes E^{\vee}\right)$

$$
=\operatorname{dim} H^{1}\left(B, E \otimes E^{\vee}\right)=\operatorname{dim} H^{1}\left(W, \mathcal{O}_{W}(T) \otimes \pi^{*} E^{\vee}\right)
$$

holds by Serre duality theorem, we obtain

$$
\operatorname{dim} H^{0}\left(W, \Theta_{W}\right)=\operatorname{dim} H^{1}\left(W, \Theta_{W}\right)
$$

Hence, it is sufficient to prove the statement for $\operatorname{dim} H^{0}\left(W, \Theta_{W}\right)$.
Put $x_{i}=X_{i} / Z_{i}$ and $y_{i}=Y_{i} / Z_{i}$ for $i=0,1,2$. On U_{0}, a global holomorphic vector field $\theta \in H^{0}\left(W, \Theta_{W}\right)$ is written as

$$
\begin{aligned}
\left.\theta\right|_{U_{0}}=\left(a_{0}+a_{1} x_{0}+a_{2} y_{0}+\right. & \left.a_{3} x_{0}^{2}+a_{4} x_{0} y_{0}\right) \frac{\partial}{\partial x_{0}} \\
& +\left(b_{0}+b_{1} x_{0}+b_{2} y_{0}+a_{3} x_{0} y_{0}+a_{4} y_{0}^{2}\right) \frac{\partial}{\partial y_{0}}+c \frac{\partial}{\partial u_{0}}
\end{aligned}
$$

where $a_{i}(i=0,1,2,3,4,5), b_{j}(j=0,1,2)$, and c are holomorphic functions on U_{0}.
Since each case can be proved similarly, we prove only cases (ii) and (xiii), and leave the details of the other cases to readers.

Consider case (ii). On $U_{0} \cap U_{1}$ and on $U_{0} \cap U_{2}, \theta$ can be written as

$$
\begin{aligned}
\left.\theta\right|_{U_{0} \cap U_{1}}= & a_{0} \frac{\partial}{\partial x_{1}}+a_{1} x_{1} \frac{\partial}{\partial x_{1}}+\frac{a_{2}}{u_{1}} y_{1} \frac{\partial}{\partial x_{1}}+a_{3} x_{1}^{2} \frac{\partial}{\partial x_{1}}+\frac{a_{4}}{u_{1}} x_{1} y_{1} \frac{\partial}{\partial x_{1}} \\
& +b_{0} u_{1} \frac{\partial}{\partial y_{1}}+b_{1} u_{1} x_{1} \frac{\partial}{\partial y_{1}}+\left(b_{2}+\frac{c}{u_{1}}\right) y_{1} \frac{\partial}{\partial y_{1}} \\
& +a_{3} x_{1} y_{1} \frac{\partial}{\partial y_{1}}+\frac{a_{4}}{u_{1}} y_{1}^{2} \frac{\partial}{\partial y_{1}}+c \frac{\partial}{\partial u_{1}}, \\
\left.\theta\right|_{U_{0} \cap U_{2}}= & a_{0} \frac{\partial}{\partial x_{2}}+a_{1} x_{2} \frac{\partial}{\partial x_{2}}+a_{2} u_{2} y_{2} \frac{\partial}{\partial x_{2}}+a_{3} x_{2}^{2} \frac{\partial}{\partial x_{2}}+a_{4} u_{2} x_{2} y_{2} \frac{\partial}{\partial x_{2}} \\
& +\frac{b_{0}}{u_{1}} \frac{\partial}{\partial y_{2}}+\frac{b_{1}}{u_{1}} x_{2} \frac{\partial}{\partial y_{2}}+\left(b_{2}-\frac{c}{u_{2}}\right) y_{2} \frac{\partial}{\partial y_{2}} \\
& +a_{3} x_{2} y_{2} \frac{\partial}{\partial y_{2}}+a_{4} u_{2} y_{2}^{2} \frac{\partial}{\partial y_{2}}+c \frac{\partial}{\partial u_{2}} .
\end{aligned}
$$

We obtain that a_{0}, a_{1}, a_{3}, and c are arbitrary constants. Furthermore, we obtain $a_{2}=$ $0, a_{4}=0, b_{0}=0$, and $b_{1}=0$. We have that b_{2} is a meromorphic function with two poles p and p^{\prime} of order one. If ζ is the zeta function with period $(1, \omega)$, there exists a constant c^{\prime} with $b_{2}=c^{\prime}-c \zeta\left(u_{0}-p\right)+c \zeta\left(u_{0}-p^{\prime}\right)$. Consequently, we obtain five arbitrary constants a_{0}, a_{1}, a_{3}, c and c^{\prime}, which leads us to $\operatorname{dim} H^{0}\left(W, \Theta_{W}\right)=5$.

Let W be case (xiii). On $U_{0} \cap U_{1}, \theta$ is written as

$$
\begin{aligned}
\left.\theta\right|_{U_{0} \cap U_{1}}= & \left(\frac{a_{0}}{u_{1}^{d}}-\frac{b_{0}}{u_{1}^{d+1}}\right) \frac{\partial}{\partial x_{1}}+\left(a_{1}-\frac{b_{1}+d c}{u_{1}}\right) x_{1} \frac{\partial}{\partial x_{1}} \\
& +\left(a_{2}+\frac{a_{1}-b_{2}}{u_{1}}+\frac{c-b_{1}}{u_{1}^{2}}\right) y_{1} \frac{\partial}{\partial x_{1}}+a_{3} u_{1}^{d} x_{1}^{2} \frac{\partial}{\partial x_{1}}+\left(a_{3} u_{1}^{d-1}+a_{4} u_{1}^{d}\right) x_{1} y_{1} \frac{\partial}{\partial x_{1}} \\
& +\frac{b_{0}}{u_{1}^{d}} \frac{\partial}{\partial y_{1}}+b_{1} x_{1} \frac{\partial}{\partial y_{1}}+\left(b_{2}+\frac{b_{1}-c}{u_{1}}\right) y_{1} \frac{\partial}{\partial y_{1}} \\
& +a_{3} u_{1}^{d} x_{1} y_{1} \frac{\partial}{\partial y_{1}}+\left(a_{3} u_{1}^{d-1}+a_{4} u_{1}^{d}\right) y_{1}^{2} \frac{\partial}{\partial y_{1}}+c \frac{\partial}{\partial u_{1}} .
\end{aligned}
$$

We obtain that a_{0} and b_{0} are identically zero, and b_{1} and c are constants. Since there is no meromorphic function that has p as a pole of order 1 and no other pole, a_{1} and b_{2} are constants, and $b_{1}=c=0$ holds. For the same reason as above, we obtain $a_{1}=b_{2}$ and a_{2} is a constant. Then a_{3} and a_{4} determine the meromorphic functions which have p as a unique pole of order at most d and $d+1$, respectively. The coefficient of the term for $u_{1}^{-(d+1)}$ of a_{4} depends on a_{3}. Hence, we obtain $\operatorname{dim} H^{0}\left(W, \Theta_{W}\right)=2 d+2$.

5 Construction of the Families

In this section, we construct a family of the projective plane bundles over an elliptic curve that is complete and effectively parametrized. Let the notation be as before. Recall that B is defined as $B=\mathbb{C} /\langle 1, \omega\rangle$.
(i) Let $\mathcal{M} \subset \mathbb{C}^{8}$ be a domain containing the origin, and let $\left(t_{1}, \ldots, t_{8}, \omega\right)$ be the parameter on $\mathcal{M} \times \mathcal{H}$. Let $W_{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, \omega}$ be a \mathbb{P}^{2}-bundle obtained by patching
$\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right) \in U_{0} \times \mathbb{P}^{2}$ and $\left(u_{1},\left(X_{1}: Y_{1}: Z_{1}\right)\right) \in U_{1} \times \mathbb{P}^{2}$ with

$$
\begin{array}{ll}
X_{0}=e^{\frac{t_{1}}{u_{1}}} X_{1}+\frac{t_{2}}{u_{1}} Y_{1}+\frac{t_{3}}{u_{1}} Z_{1}, & Y_{0}=\frac{t_{4}}{u_{1}} X_{1}+e^{\frac{t_{5}}{u_{1}}} Y_{1}+\frac{t_{6}}{u_{1}} Z_{1}, \\
Z_{0}=\frac{t_{7}}{u_{1}} X_{1}+\frac{t_{8}}{u_{1}} Y_{1}+Z_{1}, & {\left[u_{0}\right]=p+u_{1} .}
\end{array}
$$

Then we have $W_{0,0,0,0,0,0,0,0, \omega} \cong \mathbb{P}\left(\mathcal{O}_{B}^{\oplus 3}\right)$. For $i=1,2,3,4,5,6,7,8$, denote by $W_{t_{i}}$ the \mathbb{P}^{2}-bundle $W_{t_{1}, \ldots t_{8}, \omega}$ when $t_{i} \neq 0$ and $t_{j}=0(j \in\{1, \ldots, \widehat{i}, \ldots, 8\})$, where \widehat{i} is a sign for elimination. By applying the result of [4. §3], we have $W_{t_{1}} \cong W_{t_{5}} \cong \mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{O}_{B} \oplus L\right)$ for some $L \in \operatorname{Pic}^{0}(B)$, and $W_{t_{2}} \cong W_{t_{3}} \cong W_{t_{4}} \cong W_{t_{6}} \cong W_{t_{7}} \cong W_{t_{8}} \cong \mathbb{P}\left(\mathcal{O}_{B} \oplus F_{2}\right)$. For $i, i^{\prime}=1,2,3,4,5,6,7,8\left(i<i^{\prime}\right)$, denote by $W_{t_{i}, t_{i}{ }^{\prime}}$ the \mathbb{P}^{2}-bundle $W_{t_{1}, \ldots t_{8}, \omega}$ when $t_{i}, t_{i^{\prime}} \neq 0$ and $t_{j}=0\left(j \in\left\{1, \ldots, \widehat{i}, \ldots, \widehat{i^{\prime}}, \ldots, 8\right\}\right)$. Then we have $W_{t_{2}, t_{6}} \cong W_{t_{4}, t_{8}} \cong$ $\mathbb{P}\left(F_{3}\right)$.

If we put $x_{i}=X_{i} / Z_{i}$ and $y_{i}=Y_{i} / Z_{i}(i=1,2)$, then we have

$$
\begin{equation*}
x_{0}=\frac{e^{\frac{t_{1}}{u_{1}}} x_{1}+\frac{t_{2}}{u_{1}} y_{1}+\frac{t_{3}}{u_{1}}}{\frac{t_{7}}{u_{1}} x_{1}+\frac{t_{8}}{u_{1}} y_{1}+1}, \quad y_{0}=\frac{\frac{t_{4}}{u_{1}} x_{1}+e^{\frac{t_{5}}{u_{1}}} y_{1}+\frac{t_{6}}{u_{1}}}{\frac{t_{7}}{u_{1}} x_{1}+\frac{t_{8}}{u_{1}} y_{1}+1} . \tag{5.1}
\end{equation*}
$$

Theorem 5.1 The above family is complete and effectively parametrized at the point $(0,0,0,0,0,0,0,0, \omega)$.

Proof Put $O=(0,0,0,0,0,0,0,0, \omega)$ and let $T_{M \times \mathcal{H}, O}$ be the tangent space of $M \times \mathcal{H}$ at O. Put $W:=W_{0,0,0,0,0,0,0,0, \omega}$ and let $\sigma: T_{M \times \mathcal{H}, O} \rightarrow H^{1}\left(W, \Theta_{W}\right)$ be KodairaSpencer map. It is sufficient to prove that σ is an isomorphism. Let $\partial W / \partial t_{i}$ and $\partial W / \partial \omega$ be the image of $\partial / \partial t_{i}(i=1, \ldots 8)$ and $\partial / \partial \omega$ by σ, respectively. It is clear that $\partial W / \partial \omega$ can not be written as a linear combination of $\partial W / \partial t_{i}(i=0, \ldots, 8)$. Hence, it is sufficient to prove that $\partial W / \partial t_{i}(i=1, \ldots, 8)$ are linearly independent. Consider that these are the elements of the cohomology group $H^{1}\left(\mathcal{U}, \Theta_{W}\right)$ corresponding to the open covering $\mathcal{U}:=\left\{U_{0}, U_{1}\right\}$. Let $\partial W / \partial t_{i}$ be expressed as a 1-cocycle $\theta^{\left(t_{i}\right)}=\left\{\theta_{01}^{\left(t_{i}\right)}\right\}$. Then by (5.1), we obtain the following:

$$
\begin{aligned}
& \theta_{01}^{\left(t_{1}\right)}=\frac{x_{1}}{u_{1}} \frac{\partial}{\partial x_{0}}, \quad \theta_{01}^{\left(t_{2}\right)}=\frac{y_{1}}{u_{1}} \frac{\partial}{\partial x_{0}}, \quad \theta_{01}^{\left(t_{3}\right)}=\frac{1}{u_{1}} \frac{\partial}{\partial x_{0}}, \quad \theta_{01}^{\left(t_{4}\right)}=\frac{x_{1}}{u_{1}} \frac{\partial}{\partial y_{0}}, \quad \theta_{01}^{\left(t_{5}\right)}=\frac{y_{1}}{u_{1}} \frac{\partial}{\partial y_{0}}, \\
& \theta_{01}^{\left(t_{6}\right)}=\frac{1}{u_{1}} \frac{\partial}{\partial y_{0}}, \quad \theta_{01}^{\left(t_{7}\right)}=-\frac{x_{1}^{2}}{u_{1}} \frac{\partial}{\partial x_{0}}-\frac{x_{1} y_{1}}{u_{1}} \frac{\partial}{\partial y_{0}}, \quad \theta_{01}^{\left(t_{8}\right)}=-\frac{x_{1} y_{1}}{u_{1}} \frac{\partial}{\partial x_{0}}-\frac{y_{1}^{2}}{u_{1}} \frac{\partial}{\partial y_{0}} .
\end{aligned}
$$

Assume that $\sum_{i=1}^{8} \alpha_{i} \theta^{\left(t_{i}\right)} \sim 0$ holds for constants $\alpha_{1}, \ldots, \alpha_{8}$. Then there exist $\theta_{0} \in$ $\Gamma\left(U_{0}, \Theta_{W}\right)$ and $\theta_{1} \in \Gamma\left(U_{1}, \Theta_{W}\right)$ such that

$$
\begin{equation*}
\sum_{i=1}^{8} \alpha_{i} \theta_{01}^{\left(t_{i}\right)}=\theta_{0}-\theta_{1} \tag{5.2}
\end{equation*}
$$

If θ_{0} and θ_{1} are written as

$$
\begin{aligned}
\theta_{0}= & \left(a_{0}+a_{1} x_{0}+a_{2} y_{0}+a_{3} x_{0}^{2}+a_{4} x_{0} y_{0}\right) \frac{\partial}{\partial x_{0}} \\
& +\left(b_{0}+b_{1} x_{0}+b_{2} y_{0}+a_{3} x_{0} y_{0}+a_{4} y_{0}^{2}\right) \frac{\partial}{\partial y_{0}}+c_{0} \frac{\partial}{\partial u_{0}}, \\
\theta_{1}= & \left(a_{10}+a_{11} x_{1}+a_{12} y_{1}+a_{13} x_{1}^{2}+a_{14} x_{1} y_{1}\right) \frac{\partial}{\partial x_{1}} \\
& +\left(b_{10}+b_{11} x_{1}+b_{12} y_{1}+a_{13} x_{1} y_{1}+a_{14} y_{1}^{2}\right) \frac{\partial}{\partial y_{1}}+c_{1} \frac{\partial}{\partial u_{1}},
\end{aligned}
$$

then by (5.2), we have

$$
\begin{aligned}
\frac{\alpha_{1} x_{1}}{u_{1}} & \frac{\partial}{\partial x_{0}}
\end{aligned}+\frac{\alpha_{2} y_{1}}{u_{1}} \frac{\partial}{\partial x_{0}}+\frac{\alpha_{3}}{u_{1}} \frac{\partial}{\partial x_{0}}+\frac{\alpha_{4} x_{1}}{u_{1}} \frac{\partial}{\partial y_{0}}+\frac{\alpha_{5} y_{1}}{u_{1}} \frac{\partial}{\partial y_{0}} .
$$

and hence, we have

$$
\begin{array}{llll}
a_{0}-a_{10}=\frac{\alpha_{3}}{u_{1}}, & a_{1}-a_{11}=\frac{\alpha_{1}}{u_{1}}, & a_{2}-a_{12}=\frac{\alpha_{2}}{u_{1}}, & a_{3}-a_{13}=-\frac{\alpha_{7}}{u_{1}}, \\
a_{4}-a_{14}=-\frac{\alpha_{8}}{u_{1}}, & b_{0}-b_{10}=\frac{\alpha_{6}}{u_{1}}, & b_{1}-b_{11}=\frac{\alpha_{4}}{u_{1}}, & b_{2}-b_{12}=\frac{\alpha_{5}}{u_{1}} .
\end{array}
$$

We can write $a_{0}=\alpha_{3} / u_{1}+a_{10}$. Since p cannot be a pole of order 1 for a_{0}, we have $\alpha_{3}=0$ ($a_{0}=a_{10}=$ constant). Similarly, we obtain $\alpha_{i}=0(i=1,2,4,5,6,7,8)$. Therefore, $\partial W / \partial t_{i}(i=1,2,3,4,5,6,7,8)$ are linearly independent.
(ii) Let $\mathcal{M} \subset \mathbb{C}^{4}$ be a domain containing the origin, and let $\left(t_{1}, t_{2}, t_{3}, t_{4}, \omega\right)$ be the parameter on $\mathcal{M} \times \mathcal{H}$. Further, let $t \in \mathbb{C}$ be a complex number such that the line bundle whose transition function on $U_{0} \cap U_{1}$ is represented as $e^{t / u_{1}}$ is contained in $\operatorname{Pic}^{0}(B) \backslash\left\{\mathcal{O}_{B}\right\}$. Let $W_{t_{1}, t_{2}, t_{3}, t_{4}, \omega}$ be the \mathbb{P}^{2}-bundle over B obtained by patching $\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right) \in U_{0} \times \mathbb{P}^{2}$ and $\left(u_{1},\left(X_{1}: Y_{1}: Z_{1}\right)\right) \in U_{1} \times \mathbb{P}^{2}$ with

$$
X_{0}=X_{1}+\frac{t_{1}}{u_{1}} Y_{1}, \quad Y_{0}=\frac{t_{2}}{u_{1}} X_{1}+e^{\frac{t_{3}}{u_{1}}} Y_{1}, \quad Z_{0}=e^{\frac{t+t_{4}}{u_{1}}} Z_{1}, \quad\left[u_{0}\right]=p+u_{1}
$$

Then we have $W_{0,0,0,0, \omega} \cong \mathbb{P}\left(\mathcal{O}_{B}^{\oplus 2} \oplus L_{2}\right)$ for some $L_{2} \in \operatorname{Pic}^{0}(B)$. Furthermore,

$$
W_{t_{1}, 0,0,0, \omega} \cong W_{0, t_{2}, 0,0, \omega} \cong \mathbb{P}\left(F_{2} \oplus L_{2}\right)
$$

when $t_{1} \neq 0$ and $t_{2} \neq 0, W_{0,0, t_{3}, 0, \omega} \cong \mathbb{P}\left(\mathcal{O}_{B} \oplus L_{1} \oplus L_{2}\right)$ for some $L_{1} \in \operatorname{Pic}^{0}(B)$ when $t_{3} \neq 0$ and $W_{0,0,0, t_{4}, \omega} \cong \mathbb{P}\left(\mathcal{O}_{B}^{\oplus 2} \oplus L_{2}^{\prime}\right)$ for some $L_{1}^{\prime} \in \operatorname{Pic}^{0}(B)$ when $t_{4} \neq 0$.

We can prove the following theorem by the same argument as Theorem 5.1

Theorem 5.2 The above family is complete and effectively parametrized at $(0,0,0,0, \omega)$.
(iii) Let $\mathcal{M} \subset \mathbb{C}^{2}$ be a domain containing the origin, and let $\left(t_{1}, t_{2}, \omega\right)$ be the parameter on $\mathcal{M} \times \mathcal{H}$. Further, let t and t^{\prime} be complex numbers such that the line bundles whose transition functions on $U_{0} \cap U_{1}$ are represented as $e^{t / u_{1}}$ and $e^{t^{\prime} / u_{1}}$ are contained in $\operatorname{Pic}^{0}(B) \backslash\left\{\mathcal{O}_{B}\right\}$. Let $W_{t_{1}, t_{2}, \omega}$ be the \mathbb{P}^{2}-bundle over B obtained by patching $\left(u_{0},\left(X_{0}: Y_{0}: Z_{0}\right)\right) \in U_{0} \times \mathbb{P}^{2}$ and $\left(u_{1},\left(X_{1}: Y_{1}: Z_{1}\right)\right) \in U_{1} \times \mathbb{P}^{2}$ with

$$
X_{0}=X_{1}, \quad Y_{0}=e^{\frac{t+t_{1}}{u_{1}}} Y_{1}, \quad Z_{0}=e^{\frac{t^{\prime}+t_{2}}{u_{1}}} Z_{1}, \quad\left[u_{0}\right]=p+u_{1}
$$

It is clear that $W_{t_{1}, t_{2}, \omega}$ is defined by $\mathcal{O}_{B} \oplus L_{1}^{\prime} \oplus L_{2}^{\prime}$ for some $L_{i}^{\prime} \in \operatorname{Pic}^{0}(B)(i=1,2)$.
We can prove the following theorem by the same argument as Theorem 5.1
Theorem 5.3 The above family is complete and effectively parametrized at $(0,0, \omega)$.

References

[1] M. F. Atiyah, Vector bundles over an elliptic curve. Proc. London Math. Soc. (3) 7, 414-452 (1957) http://dx.doi.org/10.1112/plms/s3-7.1.414
[2] K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformation of complex analytic structures. Ann. Math. 68, 150-159 (1958) http://dx.doi.org/10.2307/1970256
[3] K. Kodaira and D. C. Spencer, A theorem of completeness for complex analytic fiber spaces. Acta Math. 100, 281-294 (1958) http://dx.doi.org/10.1007/BF02559541
[4] T. Suwa, On ruled surfaces of genus 1. J. Math. Soc. Japan 21, 291-311 (1969) http://dx.doi.org/10.2969/jmsj/02120291
National Institute of Technology, Ichinoseki College, Ichinoseki, 021-8511, Japan e-mail: tomokuni@ichinoseki.ac.jp

[^0]: Received by the editors October 18, 2016; revised April 17, 2017.
 Published electronically June 7, 2017.
 Partly supported by the Grant-in-Aid for Scientific Research (C) (25400058), Japan Society for the Promotion of Science.

 AMS subject classification: 14J10, 14J30, 14D15.
 Keywords: projective plane bundle, vector bundle, elliptic curve, deformation, Kodaira-Spencer map.

