FREE ACTIONS OF ABELIAN GROUPS ON A CARTESIAN POWER OF AN EVEN SPHERE

BY
MICHAEL HOFFMAN

Abstract

We determine an algebraic condition necessary and sufficient for a group G to act freely on the nth Cartesian power of an even sphere, and characterize the abelian groups that satisfy this condition.

1. Introduction. Let X_{n} be the Cartesian product of n copies of $S^{2 k}$, where k is any positive integer. Then X_{n} has Euler characteristic 2^{n}, so any group acting freely on X_{n} must have order $2^{\prime}, l \leq n$. We consider the problem of which of these 2 -groups can act freely on X_{n}, concentrating on abelian 2-groups. (This paper is 'orthogonal' to the ones by Carlsson [1] and Yogita [2], since they consider only actions trivial on integral homology. In the situation considered here, all free actions are nontrivial on homology.)

In §2 we show that deciding whether a given 2-group can act freely on X_{n} reduces to determining if an appropriate representation of the group on the cohomology algebra of X_{n} exists. Let S_{n} be the group of $n \times n$ signed permutation matrices, i.e. matrices with exactly one nonzero entry in each row and column and all of whose nonzero entries are ± 1. There is a canonical homomorphism $\psi: S_{n} \rightarrow \Sigma_{n}$, where Σ_{n} is the symmetric group on n letters. For $u \in S_{n}$, let $\sigma_{1} \sigma_{2} \ldots \sigma_{m}$ be the decomposition of $\psi(u)$ into disjoint cycles. Thinking of u as a linear map $\boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$, let K_{i} be the subspace of \boldsymbol{R}^{n} corresponding to σ_{i}, and define ϵ_{i} by $\operatorname{det}\left(u \mid K_{i}\right)=\epsilon_{i} \operatorname{sgn} \sigma_{i}$ (Clearly $\epsilon_{i}= \pm 1$). Set

$$
\lambda(u)=\prod_{i=1}^{m}\left(1+\epsilon_{i}\right) .
$$

Then we can characterize the 2-groups that act freely on X_{n} as follows.
Theorem 1. A 2-group G acts freely on X_{n} if and only if G admits a representation $\rho: G \rightarrow S_{n}$ such that, for any $g \in G$ with $g \neq 1, \lambda(\rho(g))=0$.

Remark. Note that $\lambda(\mathrm{id})=2^{n}$, so any representation of the type specified in the theorem is faithful.

In $\S 3$ we construct free actions of cyclic groups on spaces X_{n}. This gives a free action of G on some X_{n} for any finite abelian 2-group G. We also show that such a group

[^0]cannot act freely on X_{n} for any n smaller than the 'obvious' value, and thus obtain the following result.

Theorem 2. Let G be an abelian 2-group, so that

$$
G \cong \boldsymbol{Z}_{2}^{n_{1}^{\prime}} \oplus \boldsymbol{Z}_{4}^{n_{2}} \oplus \cdots \oplus \mathbf{Z}_{2^{\prime}}^{n_{\prime}^{\prime}}
$$

Then G acts freely on X_{n} if and only if

$$
\sum_{i=1}^{1} n_{i} i^{i-1} \leq n
$$

2. Free actions and Lefschetz numbers. The cohomology ring $H^{*}\left(X_{n} ; \boldsymbol{Z}\right)$ is the commutative algebra generated by $n 2 k$-dimensional elements $x_{1}, x_{2}, \ldots, x_{n}$ with relations $x_{i}^{2}=0$ for $1 \leq i \leq n$. Thus, for any self-map $f: X_{n} \rightarrow X_{n}$ the endomorphism $f^{*}: H^{*}\left(X_{n} ; \mathbf{Z}\right) \rightarrow H^{*}\left(X_{n} ; \mathbf{Z}\right)$ is determined by the $n \times n$ matrix $\rho(f)=\left(a_{i j}\right)$, where

$$
f^{*}\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j}, \quad 1 \leq i \leq n .
$$

Then

$$
0=f^{*}\left(x_{i}^{2}\right)=2 \sum_{j<k} a_{i j} a_{i k} x_{j} x_{k},
$$

so $\rho(f)$ has at most one nonzero entry in each row. Thus, there is a function $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ so that $f^{*}\left(x_{i}\right)=a_{i \sigma(i)} x_{\sigma(i)}$ for $1 \leq i \leq n$. Since $H^{2 k n}\left(X_{n} ; \boldsymbol{Z}\right)$ is generated by $x_{1} x_{2} \cdots x_{n}$, we have $\operatorname{deg} f=0$ if σ is not a permutation and

$$
\operatorname{deg} f=a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

if it is. In particular, if f is invertible, $\operatorname{deg} f= \pm 1$ and $\rho(f) \in S_{n}$.
Now suppose a group G acts on X_{n}. By the preceding paragraph, the action gives rise to a representation $\rho: G \rightarrow S_{n}$. If in addition the action is free, we have

$$
L(g)=\sum_{i=0}^{2 k n}(-1)^{i} \operatorname{Tr}\left(g_{i}^{*}: H^{i}\left(X_{n} ; \boldsymbol{Z}\right) \rightarrow H^{i}\left(X_{n} ; \boldsymbol{Z}\right)\right)=0
$$

for every nonidentity element $g \in G$, by the Lefschetz fixed point theorem. To determine $L(g)$ directly from the matrix $\rho(g)$, we first assume without loss of generality that the decomposition of $\psi \rho(g)$ contains the cycle $(12 \cdots l)$. Then g^{*} cyclically permutes the elements $x_{1}, x_{2}, \ldots, x_{l}$ in $H^{2}\left(X_{n} ; \boldsymbol{Z}\right)$, so g^{*} sends no monomial in the subalgebra of $H^{*}\left(X_{n} ; \boldsymbol{Z}\right)$ generated by x_{1}, \ldots, x_{1} to a multiple of itself except $x_{1} x_{2} \cdots x_{1}$. In fact g^{*} sends this monomial to $a_{12} a_{23} \cdots a_{l 1}$ times itself, and this number is $(-1)^{l-1} \operatorname{det}(\rho(g) \mid K)$, where K is the submodule of $H^{2}\left(X_{n} ; \boldsymbol{Z}\right)$ generated by x_{1}, \ldots, x_{1}. Thus, the trace of g^{*} on the subalgebra of $H^{*}\left(X_{n} ; \boldsymbol{Z}\right)$ generated by x_{1}, \ldots, x_{l} is

$$
1+(-1)^{l-1} \operatorname{det}(\rho(g) \mid K)=1+\operatorname{sgn}(12 \cdots l) \operatorname{det}(\rho(g) \mid K)
$$

Now let $\sigma_{1} \sigma_{2} \cdots \sigma_{m}$ be the decomposition of $\psi \rho(g)$ into disjoint cycles, K_{i} be the
submodule of $H^{2}\left(X_{n} ; Z\right)$ generated by the x_{j} permuted by σ_{i}, and

$$
\epsilon_{i}=\operatorname{sign} \sigma_{i} \operatorname{det}\left(\rho(g) \mid K_{i}\right) .
$$

Then by the preceding analysis and the multiplicative property of trace on tensor products,

$$
L(g)=\prod_{i=1}^{m}\left(1+\epsilon_{i}\right)=\lambda(\rho(g))
$$

We have evidently proved the forward implication of Theorem 1 .
Remark. Henceforth we shall call those cycles σ_{i} with $\boldsymbol{\epsilon}_{i}=-1$ essential. We have just proved that for any $g \neq 1$ in G, the matrix $\rho(g)$ has an essential cycle.

Now suppose $\rho: G \rightarrow S_{n}$ is a representation of a group G such that $\rho(g)$ has an essential cycle for all nonidentity $g \in G$. We define an action of G on X_{n} as follows. Represent an element of X_{n} as an n-tuple ($\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$) of unit vectors $\boldsymbol{v}_{i} \in \boldsymbol{R}^{2 k+1}$. Think of the n-tuple as a column vector and let the matrices $\rho(g)$ act on it. That is, put

$$
g \cdot\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)=\left(a_{\operatorname{l\sigma }(1)} \boldsymbol{v}_{\sigma(1)}, a_{2 \sigma(2)} \boldsymbol{v}_{\sigma(2)}, \ldots, a_{n \sigma(n)} \boldsymbol{v}_{\sigma(n)}\right)
$$

where $\rho(g)=\left(a_{i j}\right)$ and $\sigma=\psi \rho(g)$. To see that this action is free, suppose $g \neq 1$ fixes $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)$. Now $\rho(g)$ has an essential cycle: without loss of generality we can assume the cycle is $(12 \cdots l)$. Then we must have

$$
\boldsymbol{v}_{1}=a_{12} \boldsymbol{v}_{2}=a_{12} a_{23} \boldsymbol{v}_{3}=\cdots=a_{12} a_{23} \cdots a_{11} \boldsymbol{v}_{1}=-\boldsymbol{v}_{1}
$$

a contradiction. This completes the proof of Theorem 1.
3. Abelian groups. Let $\rho: G \rightarrow S_{n}$ be a representation of an abelian group G. We think of elements of S_{n} as acting linearly on the free Z-module generated by $x_{1}, x_{2}, \ldots, x_{n}$. Each $g \in G$ gives rise to an element $\psi \rho(g) \in \Sigma_{n}$, so we can think of G as acting on $\{1,2, \ldots, n\}$. We say that $g \in G$ fixes a G-orbit Ω if $\rho(g) x_{i}=x_{i}$ for all $i \in \Omega$, and that g negates Ω if $\rho(g) x_{i}=-x_{i}$ for all $i \in \Omega$. We have the following result.

Lemma 1. Let g be a member of G, Ω an orbit under the G-action on $\{1,2, \ldots, n\}$. If $\psi \rho(g)$ fixes some $i \in \Omega$, then g either fixes or negates Ω.

Proof. Suppose $\rho(g) x_{i}=a_{i i} x_{i}$, where $i \in \Omega$, and let j be another member of Ω. Then there is some element h of G with $\rho(h) x_{i}=b_{i j} x_{j}$. Hence $\rho(h g) x_{i}=b_{i j} a_{i i} x_{j}$. But G is abelian, so $\rho(h g) x_{i}=\rho(g h) x_{i}=b_{i j} \rho(g) x_{j}$. Thus $\rho(g) x_{j}=a_{i i} x_{j}$, and the conclusion follows.

The next result gives a criterion for $\rho(g), g \in G$, to have an essential cycle in a given orbit.

Lemma 2. For $g \in G$, an orbit Ω contains an essential cycle of $p(g)$ if and only if some power of g negates Ω. In this case $\operatorname{card} \Omega \geq p$, where g^{p} is the lowest power of g that negates Ω.

Proof. If $i \in \Omega$ is in an essential cycle of g, say of length l, then

$$
\rho\left(g^{\prime}\right) x_{i}=-x_{i} .
$$

Then g^{l} negates Ω, by Lemma 1 . Conversely, suppose g^{p} negates Ω, and assume p minimal. Then no power of $\psi \rho(g)$ lower than the p th can fix anything in Ω (Lemma l again), so $\psi \rho(g) \mid \Omega$ must consist of cycles of length p, each an essential cycle of $\rho(g)$.

For any cyclic 2-group $\boldsymbol{Z}_{2^{i}}$, we can define an embedding in $S_{2^{i-1}}$ by sending a generator to the element u_{i} given by

$$
u_{i}\left(x_{j}\right)=x_{j+1}, \quad 1 \leq j \leq 2^{i-1}-1, \quad u_{i}\left(x_{2^{i-1}}\right)=-x_{1} .
$$

Then evidently u_{i} has order 2^{i} and $\lambda\left(u_{i}\right)=0$. In fact, $\lambda\left(u_{i}^{r}\right)=0$ for all powers $r<2^{i}$. This is immediate for $i=1$, so assume $i \geq 2$. Then u_{i} has determinant 1 : for odd powers $r, \psi\left(u_{i}^{r}\right)$ is a single cycle and $1=\operatorname{det}\left(u_{i}^{r}\right)=\epsilon \operatorname{sgn} \psi\left(u_{i}^{r}\right)=(-1)^{r} \epsilon$, so $\epsilon=-1$. For even powers, note that $w=u_{i}^{2 i-1}$ negates the single orbit, and some power of u_{i}^{r} is w, for any even $r<2^{i}$. Thus every power $u_{i}^{r}, r<2^{i}$, has an essential cycle. By Theorem 1, this means that $\mathbf{Z}_{2^{i}}$, acts freely on $X_{2^{i-1}}$. Then any abelian 2-group

$$
G \cong \mathbf{Z}_{2}^{n_{1}} \oplus \mathbf{Z}_{4}^{n_{2}} \oplus \cdots \oplus \mathbf{Z}_{2^{\prime}}^{n_{l}}
$$

acts freely on

$$
\prod_{j=1}^{n_{1}} X_{1} \times \prod_{j=1}^{n_{2}} X_{2} \times \cdots \times \prod_{j=1}^{n_{1}} X_{2^{\prime-1}}=X_{n_{1}+2 n_{2}+\cdots+2^{l-1_{n}}}
$$

Now suppose an abelian group G acts on X_{n}, so there is a representation $\rho: G \rightarrow S_{n}$ such that $\rho(g)$ has an essential cycle for every $g \neq 1$. Let G_{0} be the set of elements of order ≤ 2 in G. Then G_{0} is a vector space over Z_{2}, and Lemma 2 implies that every nonidentity element of G_{0} negates some orbit. (Though we shall think of G_{0} as a vector space, we shall continue to use multiplicative notation.)

Lemma 3. Let $h_{1}, h_{2}, \ldots, h_{s}$ be a basisfor a subspace $V \subset G_{0}$. Then there are orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{s}$ in $\{1,2, \ldots, n\}$ and a basis $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ for V such that, for each i,

1. uh h_{i} negates Ω_{i}, where $u \in \operatorname{span}\left\{h_{1}, \ldots, h_{i-1}\right\}$, and
2. g_{i} negates Ω_{i}, and no product of the $g_{i}, j \neq i$, does so.

Proof. We proceed by induction on s, the case $s=1$ being immediate. By the induction hypothesis there exist orbits $\Omega_{i}, 1 \leq i \leq s-1$, and a basis $\left\{k_{1}, \ldots, k_{s-1}\right\}$ for span $\left\{h_{1}, \ldots, h_{s-1}\right\}$ such that (1) and (2) (with g replaced by k) hold. Let N be the set of k_{i} such that something in span $\left\{k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{s-1}, h_{s}\right\}$ negates Ω_{i}, and let u be the product of the elements of N. Now suppose something in span $\left\{k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots k_{s-1}, u h_{s}\right\}$ negates Ω_{\imath}, for some $1 \leq i \leq s-1$. By the induction hypothesis, it must have form $w u h_{s}$, where $w \in W_{i}=\operatorname{span}\left\{k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{s-1}\right\}$. If $k_{i} \in N$, then $u=k_{i} v$ for $v \in W_{i}$ and something of form $y h_{s}, y \in W_{i}$, negates Ω_{i} : but then $w v h_{s}$ fixes Ω_{i} and $y h_{s}$ negates it, so $w v y \in W_{i}$ negates Ω_{i}, contradicting the
induction hypothesis. But if $k_{i} \notin N$, then $u \in W_{i}$ and having wuh negate Ω_{i} contradicts the definition of N. Let $g_{s}=u h_{s}$.

Now choose an orbit Ω_{s} that g_{s} negates (This evidently satisfies (1) for $i=s$). Let $W=\operatorname{span}\left\{k_{1}, \ldots, k_{s-1}\right\}$. Then there is a homomorphism $f: W \rightarrow S_{m}$, where $m=$ card Ω_{s}, defined by $f(w)=\boldsymbol{\rho}(w) \mid \hat{\Omega}_{s}$ (Here $\hat{\Omega}_{s}$ is the \boldsymbol{Z}-module generated by $\left\{x_{i} \mid i \in \Omega_{s}\right\}$). We identify $\bar{W}=W / \operatorname{ker} f$ with the image of f in the usual way, and denote the class of $w \in W$ in \bar{W} by $\{w\}$. Now if $\mu=\rho\left(g_{s}\right) \mid \hat{\Omega}_{s}$ is not in \bar{W} we can set $g_{i}=k_{i}$, so assume otherwise. Choose a basis B for \bar{W} that includes μ. Now define $g_{i}, 1 \leq i \leq s-1$, to be $k_{i} g_{s}$ if μ occurs in the representation of $\left\{k_{i}\right\}$ in terms of B, and k_{i} otherwise. Then $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ is the required basis for V.

Now we can finish the proof of Theorem 2. Since G is a 2 -group,

$$
G \cong \boldsymbol{Z}_{2}^{n_{1}} \oplus \boldsymbol{Z}_{4}^{n_{2}} \oplus \cdots \oplus \boldsymbol{Z}_{2^{\prime}}^{n_{1}}
$$

for some n_{1}, \ldots, n_{1}. Choose generators $r_{1}, r_{2}, \ldots, r_{k}$ for the summands, arranged so that r_{i} has order greater than or equal to r_{i+1}. If we raise each generator r_{i} to half its order, we obtain a basis for G_{0}. Now apply Lemma 3 with $V=G_{0}$: we obtain distinct orbits $\Omega_{1}, \ldots, \Omega_{k}$, and (1) of the lemma implies that, for each i, there is an element w_{i} that when raised to half the order of r_{i} negates Ω_{i}. Hence, by Lemma 2, card Ω_{i} is at least half the order of r_{i}. Now we have n_{1} generators of order $2, n_{2}$ of order 4 , etc., so

$$
n \geq \sum_{i=1}^{k} \operatorname{card} \Omega_{i} \geq \sum_{i=1}^{1} 2^{i-1} n_{i} .
$$

References

1. Gunnar Carlsson, On the rank of abelian groups acting freely on $\left(S^{n}\right)^{k}$, Invent. math. 69 (1982), pp. 393-400.
2. Nobuaki Yogita, On the dimension of spheres whose product admits a free action by a nonabelian group, Quart. J. Math. 36 (1985), pp. 117-127.

Department of Mathematics
U.S. Naval Academy

[^0]: Received by the editors March 26, 1986, and, in revised form, October 22, 1986.
 Research partially supported by a grant from the Naval Academy Research Council.
 AMS Subject Classification (1980): Primary 57S25, Secondary 57S17.
 (C) Canadian Mathematical Society 1986.

