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Abstract We study the existence of extremal periodic solutions for nonlinear evolution inclusions
defined on an evolution triple of spaces and with the nonlinear operator A being time-dependent and
pseudomonotone. Using techniques of multivalued analysis and a surjectivity result for L-generalized
pseudomonotone operators, we prove the existence of extremal periodic solutions. Subsequently, by
assuming that A(t, •) is monotone, we prove a strong relaxation theorem for the periodic problem. Two
examples of nonlinear distributed parameter systems illustrate the applicability of our results.
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1. Introduction

Periodic evolution equations have been studied in the past using a variety of hypotheses
and methods. We can get an idea of these methods by looking at the works of Browder [4],
Pruss [19] and Becker [3]. Browder imposed monotonicity conditions on the nonlinear
perturbation term, Pruss used a Nagumo-type tangential condition, and Becker has a
Caratheodory nonlinear perturbation term, but assumed that the unbounded linear term
(modelling the partial differential operator) is strictly m-accretive.

The same problem was recently studied in the context of evolution inclusions. Evo-
lution inclusions are evolution equations with multivalued terms. Most of the works on
evolution inclusions deal with the Cauchy problem. We refer to the works of Ahmed [1],
Migorski [12], Papageorgiou [13,14], Papageorgiou and Shahzad [18], and references
therein. More general boundary-value problems but for semilinear inclusions were exam-
ined by Anichini and Zecca [2], Papageorgiou [15], and Ding and Kartsatos [5]. The only
works dealing with the nonlinear periodic problem are those by Vrabie [21], Hirano [6],
Hu and Papageorgiou [8] and Papageorgiou et al. [17]. Vrabie extends the aforementioned
work of Becker and assumes a multivalued strongly m-accretive and time-independent
nonlinear operator A and a single-valued Caratheodory function f(t, x) on the right-hand
side. Hirano deals with a subdifferential evolution inclusion with a Caratheodory right-
hand side and drops the strong monotonicity hypothesis, replacing it with a unilateral
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condition. Hu and Papageorgiou extend the work of Pruss to a nonlinear, set-valued
setting and assume a time-varying, maximal monotone nonlinear operator A and a set-
valued right-hand side term F(t, x), which has closed and convex values. Their approach
is based on Galerkin approximations, and, consequently, their result depends crucially on
the convexity of the values of F and their proof cannot be modified to deal with the non-
convex problem. Similarly for the work of Papageorgiou et al., which uses a surjectivity
result for operators of monotone type (see Proposition 2.1 in §2).

To our knowledge, the problem studied here has not been attacked in this generality
by any other author. Here we drop the monotonicity hypothesis on A(t, •) and replace
F(t,x) by extF(t,x) (the extreme points of F(t,x)). Note that extF(t,x) need not be
closed and the multifunction x —> ext F(t, x) need not have any continuity properties,
even if F(t, •) is 'very good', for example /i-continuous. We should point out that Hu and
Papageorgiou [9] and Hu et al. [10] recently examined periodic problems for non-convex
differential inclusions in RN. However, they did not address the question of the existence
of extremal solutions that we consider here.

2. Preliminaries and extremal solutions

In this section we fix our notation and recall some basic definitions and facts from mul-
tivalued analysis and the theory of nonlinear operators of monotone type. Details can be
found in the books of Hu and Papageorgiou [7] and Zeidler [22].

Let (J7, E) be a measurable space and X a separable Banach space. We will use the
following notation:

= {A C X : A is non-empty, closed (and convex)},

P(w)k(c)(^0 — {A C X : A is non-empty, (weakly) compact (and convex)}.

A multifunction (set-valued function) F : Q —> Pf(X) is said to be 'measurable', if, for
all x £ X, the function w -> d(x,F(uj)) = inf{||a; — v\\ : v € F(LJ)} is a measurable,
R+-valued function. A multifunction F : Q —> 2X \ {0} is said to be graph measurable if

G T F = { ( w , x ) 6 n x X : x £ F ( u ) } € Z x B ( X ) ,

with B{X) being the Borel cr-field of X. For multifunctions with values in Pf(X), mea-
surability implies graph measurability, while the converse is true if E = E with E being
the universal a field. Recall that E = E, if there is a cr-finite measure \i on (J?, E)
with respect to which E is complete. Given 1 ^ p ^ oo, by S£ we denote the set of all
LP(J?,X)-selectors of F(-); i.e. S£ = {/ £ U>{Q,X) : f(w) € F(w) /x-a.e.}. Note that
for a graph measurable multifunction F : Q —> 2X \ {0}, the set S£ is non-empty if and
only if the K+-valued function w -+• inf[||z|| : z £ F(u>)] belongs to LP{Q).

On Pf(X) we can define a generalized metric h(-,-), known in the literature as the
'Hausdorff metric', by setting

h(A, B) = max[sup{d(a, B) : a £ A}, sup{d(b, A) : b £ B}].
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The metric space (Pf(X), h) is complete and P/C(X) is a closed subspace, while Pk{X) is
a separable, closed subspace (hence a Polish space). A multifunction F : X —> Pj(X) is
said to be Hausdorff continuous (/i-continuous) if it is continuous from X into (P/(X), h).

Let Y, Z be Hausdorff topological spaces. A multifunction G : Y —> 2Z \ {0} is said to
be lower semicontinuous (respectively, upper semicontinuous), if, for all C C Z closed,
the set F+(C) = {yeY: F(y) C C} (respectively, F~{C) = {yeY : F{y) n C ^ 0}) is
closed.

Next, let H be a Hilbert space and X a dense subspace carrying the structure of a
separable reflexive Banach space, which is embedded into H continuously. Identifying H
with its dual (pivot space), we have X C H C X* with all embeddings being continuous
and dense. In this paper we assume that they are also compact. The triple (X,H,X*)
is called 'evolution triple'. By | • | (respectively, || • ||, || • ||») we denote the norm of
H (respectively, of X and X*). By (•,•) we denote the inner product of H, and by
(•, •) the duality brackets of the pair (X, X*). The two are compatible in the sense that
(;-)\XXH = (•,•)•

Let 1< p, q < oo, (1/p) + (1/q) = 1, T = [0, b]. We define

Wpq{T) = { i£ LP(T,X) : x € L"(T,X*)}.

The derivative involved in this definition is understood in the sense of vector-valued
distributions. Equipped with the norm

II • i|2
\\x\\q

the space Wpq(T) becomes a separable, reflexive Banach space. It is well known that
Wpq(T) is embedded continuously in C(T,H) (so every element of Wpq{T) has a repre-
sentative in C(T,H)). Since in this work we assume that X is embedded compactly in
H, we also have that Wpq(T) is embedded compactly in LP(T, H).

Let Y be a reflexive Banach space, L : D C Y -»• Y* is a linear, densely defined
maximal monotone operator and K : Y —¥ Pwkc(Y*). We say that K(-) is 'coercive' if

We say that K(-) is an 'L-generalized pseudomonotone operator' if it is demicontinuous,
bounded (i.e. maps bounded sets to bounded ones) and if {yn}n^i C D is such that
yn A y in Y, L(yn) A L{y) in Y*, and \imsup{K(yn),yn - y)y,Y ^ 0, then we have
K(Vn) —> K(y) in Y* and (K(yn),yn)y,Y -* {K{y),y)v,Y as n -^ oo. Also we say that
the multivalued operator V is 'L-generalized pseudomonotone'

(a) if for every y e Y, V(y) 6 Pwkc{Y*);

(b) if V(-) is upper semicontinuous from every finite-dimensional subspace ZofY into
Y*; and
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(c) if {yn}n^i C D is such that yn A y in F, Z,(yn) A L(y) in y*, y* 6

n ^ l , | / ; 4 y * in y*, and limsup(j£,i/n)y.iy < (y*,2/)y,y, then (y,y*) €GrV

and (^ , i /n)y,y -»• (z/*,2/)y,y-

The following surjectivity result for L-generalized pseudomonotone operators will be
used in the main existence theorem.

Proposition 2.1. IfY is a reflexive and strictly convex Banach space, L : D C Y -»
y* is a linear densely defined maximal monotone operator and K : Y —> 2Y \ {0} is a
bounded, L-generalized pseudomonotone map that is coercive, then R(L + V) = Y*.

Remark 2.2. This surjectivity result for K single-valued can be found in Lions [11],
while the result for multivalued K(-) can be found in Papageorgiou et al. [17].

Let T = [0, b) and let (X, H, X*) be an evolution triple of spaces with the embeddings
being compact. We examine the following problem:

x(t) + A(t,x(t))€extF(t,x(t)), a.e.onT,)

s(0) = x(b). J

By extF(t,x(t)) we denote the extreme points of the set F(t, x(t)). Our hypotheses
on the data of (2.1) follow.

H(A)i: A : T x X —» X* is an operator such that

(i) for every x € H, t —» A(t, x) is measurable;

(ii) for almost all t € T, x —¥ A(t, x) is demicontinuous, pseudomonotone;

(iii) for almost alH € T and all x € X we have

with oi E L"(T) (p ̂  2, (1/p) + (1/q) = 1), Cl > 0;

(iv) for almost all t 6 T and all x € X we have

{A(t,x),x)^c\\x\\p-a{t), with a € L1(T)+, c> 0.

H(F)i: F :T x i / -> P/C(H) is a multifunction such that

(i) for every x £ H, t —> F(t, x) is measurable;

(ii) for all t e T, x -* F(t, x) is /i-continuous;

(iii) for almost all t € T and all x € H, we have

|F(i,x)| = sup{M : y € F(t,x)} < a2(t) + C2|i|2/«,

with a2 6 i-9(T), c2 > 0;

(iv) there exists r > 0 such that for almost all t e T, all |x| = r and all y € F(t,x),
we have (y, x) ^ — a(t).
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By a solution of (2.1) we mean a function x G Wpq(T) such that x(t) + A(t,x(t)) —
f(t) a.e. on T, x(0) = x(b), with / G Sq

F, x,~.y We have the following existence result
concerning problem (2.1).

Theorem 2.3. If hypotheses H(A)i and H(F)i hold, then problem (2.1) has a solu-
tion x G Wpq(T).

Proof. We introduce a modification of the orientor field F(t,x). So let Fi : T x H —>
Pfc(H) be defined by

f), if |x |<r,
\-(x-pr(x)) + F(t,pr(x)), H\x\2r,

where p r ( ) is the r-radial retraction on H; i.e.

if |z| ^ r,
if \x\ > r.

Recall that pr(-) is Lipschitz continuous. Then it is clear from the above definition that
t -> F\(t,x) is measurable and x —> Fi(t,x) is /i-continuous. Moreover, \Fi(t,x)\ ^
03(0 + c3\x\2/q a.e. on T, for all x G H and with a3 G Lq{T), c3 > 0. Consider the
following periodic problem:

i(t) + A(t,i(t))6fi(t,af(t)), a.e. on T, 1

x(0) = x(b). J

We will show that (2.2) has a solution x G Wpq(T). To this end let L : D C ^ ( T , X) ->
L«(T,X*) be defined by L(x) = x for all x G D = {x G VKP,(T) : x(0) = x(6)}. It is well
known that L is linear, densely defined and maximal monotone (see, for example, Hu
and Papageorgiou [7, p. 419] or Zeidler [22, p. 855]). Let A : Lf{T,X) -» Lq{T,X*) be
the Nemitsky operator corresponding to the map A(t,x), i.e. A(x)(-) = yl(-,x(-)). Also,
G\ : LP(T,H) —> Pjc(L

q(T,H)) the multivalued Nemitsky operator corresponding to
-Fi(i,x), i.e. d ( x ) = {g G L«CT, JJ) : y(t) G -Fi{t,x) a.e. on T}.

Claim 2.4. .4 + Gi is L-generalized pseudomonotone.

First we show that A+Gi : V^T, X) -4 Pwkc(L
q(T, X*)) is upper semicontinuous from

L"(T,X) into Lq(T, X*)w. To this end we have to show that for every C C Lq(T,X*) non-
empty and weakly closed, the set ( i+Gi)"(C) = {x G LP(T, X) : (i(z)+Gi(z))nC ^ 0}
is closed. So let xn G (A + G\)~(C), n ^ 1, and assume that xn -* x in LP(T,X) as
n-too. Let un e (^ + Gi)(xn)nC. Evidently, {un}n^i C L9(T, X*) is bounded, and so,
by passing to a subsequence, we may assume that un —> u in Lq(T, X*) as n —> 00. We
have un = A(xn) + gn, with #n G Gi(xn), n ^ 1. The sequence {gn}n>i C L9(T, H) is
bounded and so we may assume that gn - ^ 5 in L9(T, / / ) . Using Proposition VII.3.9 from
Hu and Papageorgiou [7, p. 694], we have that g G Gi(x). Also, if by ((•,•)) (respectively,
(,-)pq) we denote the duality brackets for the pair {LP(T,X),Lq(T,X*) = Lv{T,Xy)
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(respectively, for the pair Lp(T,H),Lq(T,H) = LP{T,H)*), we have ((gn,xn - x)) =

{9n,Xn ~ x)pq —» 0 as n —>• oo. In addition we have ((un,xn — x)) —> 0 as n —> oo. So

we obtain \im((A(xn),xn — x)) < 0. But, from Proposition 1 of Papageorgiou [16], we

know that A is L-generalized pseudomonotone. Hence, A(xn) —> A(x) in Lq(T,X*), and

so u = A(x) 4- g with g e G\(x). Thus, u £ (A + G\(x)) n C, which proves the upper

semicontinuity of A + G\.

Next let {xn}n^i C D and assume that xn - ^ x in ^ ( T , X ) , x G D, L(xn) - ^ L(x)

in L«(T, X*) (hence, xn A x in Wpg(T) as n -> oo), x* € ( i + Gi)(xn), n ^ 1, x*n A x*

in Lq(T,X*) and lim((x*,xn — x)) ^ 0. By definition we have x*n = A(xn) + gn with

gn € Gi(xn), n ^ 1. As before we may assume that gn -̂ > g in Lq(T,H) and we can

check that p 6 Gi(x) (recall that xn A x in Wpg(T) implies that xn -»• x in /^(T,

So we have

(x*-5n,xn-x)) = lim((x*,xn-x))-lim(#n,xn-:r)p,j < 0,

=> A{xn) ^ A{x), in Lq(T,X*) and ((i(xn),xn))-> ((i(x),x))

(from the L-generalized pseudomonotonicity of A(-)),

=>• x* = A(x) + g, withgeGi(x) and ((x*,xn)) -> ((x*,x)), as n -> oo,

=> A -I- Gi is L-generalized pseudomonotone as claimed.

Claim 2.5. A + G\ is coercive.

Let x e LP(T,X) and x* € {A + Gi){x). So x* = A(x) + g with 5 € Gi(x). We have

Also,

rb r r
((g,x)) = (g,x)pq = / (g(t), x(t)) dt = / (g(t),x(t))dt + / (g(t),x(t))dt.

JO J\x\~^r J\x\<r

On the set {teT: \x(t)\ ^ r} we have that -g{t) = -(x(t) - pr(x(t))) + f(t) a.e. on T

with f(t) e F(t,pr(x(t))) a.e. on T. So, using hypothesis H(F)1 (iv) we obtain

-(x(t) - pr{x{t)),x{i)) dt+ [ (g(t),x(t)) dt
ir ^|i|<r

^ rll5lll ^ r^)1 llffllq = C4||3llg (with C4 =

Thus, finally, we can write that

x >x / / — VV-'̂ v'vi J'^/^Wy>-i'^/^''llxMp II c-t|| 1 C4||>/||(j

=?> A + G\ is coercive as claimed.
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Claims 2.4 and 2.5 allow us to apply Proposition 2.1 and obtain x € Wpq{T) such that

0 € {L + A + Gi)(x) => x{t) + A{t,x(t)) € Fi(t,x(£)) a.e. on T and x(0) = x(b), i.e.

x € WP9(T) is a solution of problem (2.2).

Claim 2.6. For every solution x € Wpq (T) of (2.2) and every teT,we have \x(t) | < r.

Suppose that \x{t)\ > r for all t € (^,7) and \x{@)\ = |x(7)| = r. We have (x(t),x(t)) +

(A(t,x{t)),x(t)) = (g(t),x(t)) a.e. on [/3,7] with 5 € ^ i ( . : c ( . ) ) :

=> ^I^WI2 < -(x(t)-Pr(x(t)),x(t)) + (f(t),x(t)) + a(t), a.e. on [A7],
with/eS«(.iPp(x(0)))

a - e - o n

(see hypothesis H(F)\ (iv)).

Integrating over [/?, 7] we obtain |x(7)| < |x(/3)| a contradiction. This proves the claim.

This claim allows us to assume, without loss of generality, that \F\(t,x)| ^ <p(t) =

ai(t) + cirp~l a.e. on T and <p e Lq(T). Let

V = {g 6 L g (r , / / ) : |9(t)| < <p{t) a.e. on T}.

Furnished with the weak topology, this space is compact metrizable. For fixed g € V

consider the following problem:

x{t) + A(t,x{t))=g(t), a.e.onT,l

s(0) = *(&). J

From the previous arguments we know that the solution set U(g) C Wpq(T) of (2.3) is

non-empty. Moreover, if x € U(g) we have x € (L + A)~1(g). But we already know that

(L + A):DC LP(T, X) -> L"(T, X*)

is coercive, hence (L + .A)"1 maps bounded sets into bounded sets. Therefore, (L +

is bounded. Then, for x € (L 4- A)'1^), we have

<\g(t)\ + \\A(t,x{t))\L

^ <p(t) + ai(t) + dHxWII""1, a.e. on T,

=> (L + i) - 1(V) = t/(V) CDC Wpq(T), is bounded.

Claim 2.7. U(V) is compact in C(T, H).
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Let {xn}n^.i C U(V). We have xn e U(gn), n ^ 1. We may assume that gn —> g

in Lq(T,H) and xn A x in Wp9(T), hence xn ->• x in U>{T,H) (recall that Wpg(T) is

embedded compactly in LP{T,H)). Thus we may also assume that xn{t) —* x(£) in If

for all t e T \ iV, with |JV| = 0 (with | • | denoting the Lebesgue measure on T). The

sequence {{xn(-),xn(-) — x(-))}n^i is uniformly integrable. So, given e > 0, we can find

T,teT\N such that

^ \e. (2.4)

Extending the notational convention introduced earlier, by ((•, -))Tt we denote the duality
brackets for the pair (U>([T,t],X),Lq([r,t],X*) = Lp([r,t],X)*). We have

((*„,*„ - x))Tt = \\xn{t) - x(t)\2 - \\xn{T) - X(T)\2 + ((x,xn - x))Tt

and \\XU{T) - X{T)\2 ,\\xn{t) - x{t)\2 -f 0 (since r,t GT\N), {{x,xn - x))Tt ^ 0 as
n —>• oo. So (( i : n , xn — x))Tt —> 0 as n —> oo. Note tha t

((in , xn - x)) = ((xn, xn - x))Tt + / (in(s), xn(s) - x(s)) ds
J[0,r]U[t,6]

=> ((in , xn - x)) ^ ((xn, xn - x))Tt - e (see (2.4))

=̂> l im( (x n , Xn - X)) ^ - £ .

Let £ 4- 0 to conclude that

l im(( i n ,x n -x) ) ^ 0 . (2.5)

Employing a similar argument we can show that ({xn, xn — x)) ^ {{xn,xn — x))Tt + e.
Passing to the limit as n —» oo and then letting e | 0, we obtain

, a : n - x ) ) < 0 . (2.6)

Prom (2.5) and (2.6) we have that ((xn,xn - x)) -> 0. Since

((in , xn - x)) = ((A(xn), xn - x)) + (gn, xn - x)pq,

we infer that lim((^4(xn), xn — x)) ^ 0. Because A is L-generalized pseudomonotone (see

Papageorgiou [16]), we have that A{xn) A A{x) in Lq(T,X*) and ((A(xn),xn)) ->

((^(x), x)) as n —> oo. In the limit as n -> oo, we have x(t) + A(t, x(t)) = g(t) a.e. on T,

x(0) = x(6) and g e V. So x € i/(/f). Also, for every ( e T

i|xn(t) - x ( i ) | 2 = ((^n - 3 , x n - x ) ) t - ((A(xn) -A(x),xn - x))u

fb

\\xn{t) - x(t)\2 ^ / \(gn{s)-g(s),xn{s)-x{s))\ds
Jo

fb

Jo

b

\(A(s,xn(s)),xn(s)-x(s))\ds + ((A(x),xn-x))t. (2.7)
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Note that
fb

/ \(9n{s)- g(s),xn(s) - x ( s ) ) | d s -»0 , a s n - ^ o o .

Jo

Also, if

hn{t) = (A(t,xn{t)),xn(t) - x(t))

from the proof of Proposition 1 of Papageorgiou [16], we know that hn -> 0 in Ll{T). So

fb

/ \{A{t,xn(t)),xn(t)-x(t))\dt->0, asn->oo.
Jo

Moreover, let
r,n(t) = f {A(s,x(s)),xn(s)-x(s))ds.

Jo

Let tneT such that
7?n(tn)=max[7?n(£) :teT).

We may assume that tn —¥ t S T. We have

ftn

Vn(tn) = / {A(s, x(s)), xn(s) - x(s)) ds = ((x[o,tn]A(x), xn - x)).
Jo

Note that

fb rtnVt
/ \\X[o,tn](s)A(s,x(s))-X[o,t}(s)A(S,x(s))\\ds= / \\A(s,x(s))\Uds

JO Jtn/\t

(here, tn\J t = max{tn,t} and tn A t = min{in,t}). But

rtnvt
/ \\A(s,x(s))\\tds-¥ 0, as n - > oo,

JtnAt

=> X[o,tn]Mxn) -> X[o,t]^(a:), i n ^ 9 ( T . * * ) . as n ̂  oo,

=>• ^n(^n) -> 0 as n -¥ co and so supt e T((j4(x),xn — x))t —> 0. Thus, using all these
convergences in (2.7), we obtain

sup \xn{t) - x{t)\ = \\xn - xHoo - ^ 0 , as n -> oo,

which proves the claim.

Let K = corxvU(V) S Pkc{C(T,H)) and consider the multifunction

R:K^Pwkc(L"(T,H)),

defined by
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Let L^iT, H) denote the space LX(T, H) equipped with the 'weak norm'

/ ( r ) dr : 0 < s < t ^

Using Theorem II.8.31 from Hu and Papageorgiou [7, p. 260] we can find r : K —>
L^iT, H), a continuous map such that r(x) € ext R(x) for all x € K. We know that

(see Theorem II.4.6 in Hu and Papageorgiou [7, p. 192]). Note that K viewed as a subset
of the uniformly convex space LP{T,H) is compact and convex (recall that Wpq(T) is
embedded compactly in LP(T,H)). So the metric projection map x -¥ p(x;K) from
W{T,H) into K C LP(T,H) is well defined and continuous. Let

r:Lp(T,H)-*Lq(T,H)

be denned by r(x) = r{p{x\ K)).

Claim 2.8. A — f is L-generalized pseudomonotone.

To this end let xn € D, n ^ 1, and assume that xn -̂ » x in Wpq(T) with

I I i ) - r(xn),xn - x)) s$ 0.

We know that xn -> x in LP(T, H) and so p{xn\ K) -» p(x; K) in LP(T, H) as n -* oo.
Hence,

r(xn) > r(x),

which, by virtue of the lemma of Papageorgiou [15], implies that r(xn) —> f(x) in
Lq(T, H) as n -^ oo. Also, ((r(xn), xn - x)) = (f(xn), xn - x)pq -> 0 and so lim((i(a;n),
xn — x)) ^ 0. As before, we infer that A(xn) A A(x) in Lq(T, X*) and ((j4(xn),a;n)) ->•
((i(x),x)). Thus, finally, i ( x n ) - f(xn) A i (x) - r(x) in L«(T,X*) and ((i(xn) -
f(xn),xn)) —> ((A(x) — r(x),x)) as n -4 oo, which prove the claim.

Claim 2.9. A — f is coercive.

For every x E LP(T, X), we have

((i(x) - f(x),x)) = ({A{x),x)) - ((f(x),x))

^ c||x||P - ||a||i - c5||v?||g||x||p (for some c5 > 0),

=> A — f is coercive.
Claims 2.8 and 2.9 allow us to use Proposition 2.1 to obtain a solution x € Wpq(T)

such that

x(t) + A{t, x(t)) = r(p(x; K))(t), a.e. on T,

x(0) = x{b).
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But r(p(x;K)) G V, hence x G U(V) C K and so p(x;K) = x. Because r(x) G
•^extFif-x()) w e n a v e r (x)( i) e exti<i(i,a:(*)) a.e. on T. Also, from the first part of
the proof we have that \x{t)\ ^ r for alH G T and so Fi(t,x{t)) = F(t,x{t)). Therefore
x G Wpq(T) solves (2.1). D

3. Strong relaxation

In conjunction with (2.1) we consider the convexified problem

x(t) + A{t,x(t)) G F{t, x(t)), a.e. on T, 1

x(0)=x(b). j

Let Se C WP,(T) be the solution set of (2.1) and Sc C WP,(T) the solution set of 3.1.
We want to have conditions that imply that 5C = Se

C(-T'H^ ('strong relaxation theorem').
Such a result is of importance in the context of control systems, because it says that any
trajectory of the system can be approximated with any degree of accuracy, by trajectories
which are generated by bang-bang controls, which are easy to realize.

Now the hypotheses on the data are stronger.

' A : T x X —>• X* is an operator such that

(i) for all x G X, t —> A(t,x) is measurable;

(ii) for almost allt G T, x —> A(t, x) is demicontinuous, monotone;

(iii) for almost allteT and all x G X we have

x > 0;

(iv) for almost all t G T and all x G X, we have

(A{t,x),x)^c\\x\\p-a(t), with a G Ll{T)+, c> 0.

H(F)2: F :T x H -> Pfc{H) is a multifunction such that

(i) for all x G H, t —> F(t, x) is measurable;

(ii) for almost all t G T and all x,y G H, h{F(t,x),F(t,y)) ^ k(t)\x - y\ with

(iii) for almost allt G T and all x G H, we have

\F{t,x)\ = sup{\y\ : y G F(t,x)} ^ a2{t) + c-1\x\Vq

with a2 G Lq(T), c2 > 0;

(iv) there exists r > 0 such that for almost all t G T, all x G H with |x| = r and all
y G F(t,x), we have (y,x) ^ -a(t).
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Theorem 3.1. If hypotheses H(A)2 and H{F)2 hold, then Sc = Se the closure taken
inC(T,H).

Proof. Let x € Sc (see Theorem 2.3). By definition we have

x(t) + A(t, x(t)) = f{t), a.e. on T,

ar(O) = x(b),

with / e S^x^y Let K € Pkc(C(T,H)) be as in the proof of Theorem 2.3. Given
y e K and e > 0, let

re : T -> 2 " \ {0}

be defined by

T£(t) = {ueH: \f(t) -u\< (e/2Mb) + dH(f(t), F(t,y(t))), u e F{t,

with \K\ = sup[||u||i,«(r,w) : u € K) < M. It is easy to see that Gr T£ e C x S(/f), with £
being the Lebesgue u-field of T. We can apply Theorem II.2.14 from Hu and Papageorgiou
[7, p. 158] (the Yankov-von Neumann-Aumann selection theorem) to obtain u : T —> H
a Lebesgue-measurable map such that u(t) G re(t) for all t eT. So, if we define

Le : K

by

ie(l/) ={«£ S£.(.iy(.)) : |/(t) - u(0| < (e/2M6) + ^ ( / W ^ ^ ^ W ) ) a.e. on T},

we see that LE has non-empty, decomposable values. Moreover, Lemma II.8.3 in Hu
and Papageorgiou [7, p. 239] implies that L£ is lower semicontinuous, and, hence, so is
y —¥ LE(y). Invoking Theorem II.8.7 from Hu and Papageorgiou [7, p. 245], we obtain
ue : K —> L1(T,-ff) a continuous map such that ue(y) e L£(y) for all y € K. We have

| / (0 - uc(y)(01 < (e/2Mb) + k(t)\x(t) -y(t)\, a.e. on T.

Also using Theorem II.8.31 from Hu and Papageorgiou [7, p. 260], we can generate
vE : K —¥ L^T, H), a continuous map such that

ve(y) e extS^.^.)) = Se1^.,^.))

and \\u£{y) - v£{y)\\w < e for all y € K.
Now let en 4- 0 and set un = u£n, vn = v£n. Let z = a;(0) = x(b), and for each n ^ 1

consider the following boundary-value problem:

xn(t) + A(t, i n ( 0 ) = wn(a;n)(0» a-e- °.n T> 1

xn(0) = xn(b) = z. J
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Claim 3.2. Problem 3.2 has a unique solution x € Wpq(T).

First assume that z € X and let A\{t,x) = A(t,x + z), v^(x) = vn(x + z). It is easy
to check that the properties of A and vn are passed to A\ and v\, respectively. Consider
the problem

yn{t)+A1{t,yn(t)) = v1
n(yn){t), a .e .onT.l

yn(0) = yn(b) = 0. J

Let

L : D C LP(T,X) -> L"(T,X*)

be denned by L{x) = x for all x 6 D = {x € WP,(T) : x(0) = x(6) = 0}. This is
a linear, densely defined maximal monotone operator. As in the proof of Theorem 2.3,
we can check that A\ — v\ : LP(T,X) —> Lq(T,X*) is L-generalized pseudomonotone
and coercive. So we can use Proposition 2.1 and obtain a solution yn £ Wpq(T) for
problem (3.3). Then xn{-) = yn(-) + z e Wpq{T) is a solution of (3.2) when z € X. Next,
let z E H and let zm 6 X such that zm —> z in i / as m —>• oo. Let znTn 6 Wpg(T)
be the solution of (3.2) when the boundary value is zm. Then, by standard o priori

estimation (see, for example, Papageorgiou [14]), since \zm\ < Mi for all m ̂  1, we can
check that {xnrn}m^i C Wpq(T) is bounded. Thus, we may assume that xnm - ^ xn in
Wpg(T) as m -> oo. As we did in the proof of Theorem 2.3, exploiting the L-generalized
pseudomonotonicity of A and the continuity of

vn:L
p(T,H)^L"(T,H)w

for all n ^ 1, we obtain xn(t) + A(t,xn(t)) = vn(xn)(t) a.e. on T, zn(0) = xn(b) = z.

So problem (3.2) has a solution xn g Wpq{T), which is easily seen to be unique because

A(t, •) is monotone.

Since {xn}^\ C K and the latter is compact in C(T, H), we may assume that xn -» y

in C(T, H). Since |xn(0) — x(0)| = 0, exploiting the monotonicity of A(t, •), we obtain

\\xn{t) - x(t)\2 < f \vn(xn)(s) - f(s),xn(s) - x(s))ds
Jo

/ {vn(xn){s)-un(xn)(s),xn(s)-x(s))ds
Jo

\un(xn)(s) - f(s)\ \xn(s) - x(s)\ds. (3.4)
Jo
f

Jo

Note that ||un(xn) - un(xn)\\w < en -> 0, hence vn(xn) - un(xn) A 0 in Lq(T, H). Also,
by construction, we have

[ \un{xn)(s) - f{s)\ \xn{s) - x(a)\ ds ^ en + f k(s)\xn{s) - x(s)\2 ds.
Jo Jo
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Passing to the limit as n —¥ oo in (3.4), we obtain

I|y(t)-x(t)|2< ftk(s)\y(s)-x(s)\2ds
Jo

=>• x = y (via Gronwall's inequality).
So xn —* x in C(T,H) as n —» oo and note that xn G Se, n ^ 1. Therefore,

Sc Q mc(-T'H). It is easy to check that Sc is closed in C(T,H) and so Sc=~Sl, the
closure in C(T,H). •

4. Examples

In this section we present two examples illustrating the applicability of our work. So,
let T = [0, b] and Z C RN a bounded domain with C^-boundary P. First we consider a
vector-valued nonlinear problem with a multivalued right-hand side. In what follows for
a function x : Z —> Rm we write

Also, if A <E RmN, then we define the norm \\A\\ = tr(AA')1/2. Let x = {xi)™=1 and let
A™ be the vectorial p-Laplacian, i.e. A™(z) = (div || Dz||p~2 Dxi)^. We consider the
following problem:

dx ~\
— - A™x + ao(t,z,x) e ext f(t,z,x), on T x Z, I

^ | rx r = 0, x(0,z) = x(b, z), a.e. on Z. )

Such problems encompass a variety of systems that arise in applications, like closed-
loop control systems, implicit equations, systems with uncertainties, etc. By a weak
solution of (4.1) we mean a function x e L"(T, Wo

llP(Z,Rm)) such that

and, for all <p 6 L"(T, W0
1>p(Z,Km)), we have

JJ (ao(t,z,x,T>x),<p(t,z))Rmdzdt

= (h(t,z),(p(t,z))nmdzdt,
Jo Jz

where
rb r

 mrb

<*>*)= /Jo

and h e LP(T x Z,Rm) with h(t, z) G ext/(i, z,x,Dx). Our hypotheses on the data of
(4.1) are as follows.
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H(a0): a0 : T x Z x Km -»• Rm is a function such that

(i) for all x € Km, {t, z) —>• ao(t, z,x) is measurable;

(ii) for all (t, z) 6 T x Z, x —» ao(£, z, x) is continuous;

(iii) for almost all (t,z) eT x Z and all x 6 Rm, we have | |ao(t,z,i) | | ^ 0i{t,z) +
ciUxyP-1 with 0i € L9(T x Z), a > 0 and (ao(t,z,x),x)Rm ^ 0.

i / ( / ) i : / : T x Z x I m 4 Pfcc(K
m) is a multifunction such that

(i) for all x 6 Rm, (t,z) -^ f(t,z,x) is measurable;

(ii) for all (t,z) € T x Z, x -+ f(t,z,x) is /i-continuous;

(iii) for almost all (i, z) G T x Z and all x € Km, | / ( t ,z ,x) | < /J2(t,z)+c2||x||p-1 with
/32 6 L*(T x Z), c2 > 0;

(iv) for almost all (t, z) € T x Z, all x e Km and all i/ € /(t , z, x), (y,x)Rm ^ 0.

Let X = Wo
llP(Z,Rm), H = L2(Z,Rm) and X* = W-^^Z^R"1). Then (X.ff.X*)

is an evolution triple with compact embeddings (Sobolev Embedding Theorem). Let
Ai : X -> X* be defined by

m .

(A1(x),y)=T \\Bx\\"-2(Dxi,Dyi)Rsdz, for all x,y

It is easy to see that ^4i(-) is monotone, demicontinuous, hence maximal monotone.
Also, let i 2 : T x X -4 X* be defined by A2(t,x)(-) = ao{t, -,x(-)) £ Lq(Z,Rm) C X*.
Evidently, t —̂  J42(^,X) is measurable, while from the compact embeddings of X in
LP{Z, Km) and of Lq{Z, Em) in X* and from Krasnoselskii's theorem about the continuity
of the Nemitsky operator, we infer that v42((, •) is completely continuous. So, if A(t, x) =
Ai(x) + A2(t,x), then t -> ^4(t,x) is measurable, while x -> A(t,x) is pseudomonotone,
demicontinuous.

Next let F : T x H -> Pwkc(H) be defined by

Using hypotheses H(ao) (iv) and H(f)i, we check that F satisfies conditions H(F)i.
Then we can rewrite (4.1) in the following equivalent evolution inclusion form:

x(t) + A{t,x(t))eextF(t,x(t)), a.e.onT.1

z(0)=x(6). /

We can apply Theorem 2.3 and obtain a solution for (4.2), and, hence, for (4.1) too.
Thus we can state the following existence theorem for problem (4.1).

Theorem 4.1. If hypotheses H(ao) and H(f)i hold, then problem (4.1) has a solution
x 6 IS(T, W0

1>p(Z,Km))nC(T,L2(Z,Km)) with dx/dt e Li{T,W-l't{Z,Wn)).
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Remark 4.2. If we assume an /i-Lipschitz condition on f(t, z, •), we can have a strong
relaxation theorem.

In the second example we consider a controlled nonlinear Navier-Stokes equation in
R2. So now Z C K2 (i.e. N = 2):

dx
— £Ax + (xD)x = f(t,z,x)u-Dp, onTxZ,
at

x\Txr=0, x(0,z) =x(b,z), a.e. on Z,

IK*, z)\\ < r(x), a.e. on T x Z, £ > 0.

(4.3)

Let T>= {x e C$°(Z,R2) : divx = 0} and let X = V (the closure taken in H\{Z, R2)).
We know that X = {x G W0

llP(Z,R2) : divx = 0} (see Temam [20, p. 18]). Then, if
H = L2(Z, R2), (X, H,X*) is an evolution triple with compact embeddings.

Let A G £(X,X*) be denned by

(A(x),y) =

This operator is clearly monotone (thus maximal monotone), coercive (i.e. (A(x),x)

Let

b:XxX xX ^R

be the trilinear form defined by

2 .

b{x,y,v)= Y] / xk(Dkyi)vidz.

Since N = 2, Lemma 1.2 from Temam [20, p. 162], implies that b is trilinear continuous,
b(x,y,y) = 0 and b{x,y,v) = —b(x,v,y) for all x,y, v G X. Then we can introduce
B : X —> X* to be the nonlinear map defined by (B(x),y) = 6(x,x,y). Lemma 3.2 from
Temam [20, p. 289] implies that B is sequentially weakly continuous.

We introduce the following hypotheses concerning f(t,z,x).

i / : T x 2 x R 2 ^ K i s measurable in (t, z), Lipschitz continuous in x G R2 and
\f(t, z,x)\^ Pit, z) a.e. on T x Z, for all x G R2, where P e L°°(T x Z).

Let / : T x # -> if be denned by /(t ,x)() = /(t, -,x(-)) and let £/ : L2(Z,R2) ->•
L°°(Z,K2) be defined by C/(x) = {u e L^(Z,R2) : \\u{z)\\ 4 r(x), a.e. on Z}. Assume
the following.

H(r): r : L2(Z,R2) ->• R+ is Lipschitz continuous.
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Then, if F(t,x) = f(t,x)U(x), we can rewrite (4.3) in the following equivalent depara-

metrized (i.e. control-free) evolution inclusion form:

{t)), a.e. onT.l

x(0)=x(b). }

Using the properties of B, we can check that £A + B is pseudomonotone and

Moreover, F(t,-) is /i-Lipschitz. Thus, Theorem 3.1 can be applied. If n : H -> K is a

continuous, coercive cost function and we consider the terminal cost problem

r)(x(b, •)) —¥ inf = m, (4.5)

then, using Theorem 3.1 we can have the following result concerning problem (4.5).

Theorem 4.3. If hypotheses H{f)2 and H{r) hold and e > 0, then we can Gnd

x € W2,2(T) and u € ext U(x) such that r)(xu{b, •)) < m + e; here, by xu we denote the

state generated by the control u {recall that ext F(t, x) C f(t, x) ext U{x)).
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