FURTHER INEQUALITIES FOR CONVEX SETS WITH LATTICE POINT CONSTRAINTS IN THE PLANE

P.R. Scott

Let K be a bounded closed convex set in the plane containing no points of the integral lattice in its interior and having width w, area A, perimeter p and circumradius R. The following best possible inequalities are established:

$$
\begin{aligned}
& (w-1) A \leq \frac{3}{2} w^{2}, \\
& (w-1) p \leq 3 w, \\
& (w-1) R \leq w / \sqrt{3} .
\end{aligned}
$$

1. Introduction

Let K be a bounded, closed, convex set in the euclidean plane, containing no points of the integral lattice in its interior. We denote the diameter, width, perimeter, area, inradius and circumradius of K by d, w, p, A, r and R respectively.

It is known [3] that the width satisfies

$$
\begin{equation*}
w \leq \frac{1}{2}(2+\sqrt{ } 3) \tag{1}
\end{equation*}
$$

with equality when and only when K is an equilateral triangle E, of side length $(2+\sqrt{ } 3) / \sqrt{3}$. It has also been recently established [5] that

$$
(w-1)(d-1) \leq 1,
$$

or equivalently,

$$
\begin{equation*}
(w-1) d \leq w \tag{2}
\end{equation*}
$$

Received 19 June 1979.
with equality when and only when K is a triangle of diameter d and width $w=d /(d-1) \quad$ (Figure 1$)$.

Figure 1

We shall prove several analogous results.

THEOREM 1. $(w-1) A \leq \frac{1}{2} w^{2}$, with equality when and only when K is a triangle of width w and diameter $w /(w-1)$ (Figure 1).

THEOREM 2. $(w-1) p \leq 3 w$ with equality when and only when $K=E$.
THEOREM 3. $(w-1) R \leq w / \sqrt{3}$ with equality when and only when $K=E$.
According to Blaschke's Theorem [1], every bounded convex figure of width w contains a circle of radius $w / 3$. It follows that $w \leq 3 r$; equality holds here when and only when the figure is an equilateral triangle. Using this result and (l), we obtain the following corollaries.

COROLLARIES.

$$
\begin{aligned}
& (w-1) A \leq 3 w r / 2 \leq 9 r^{2} / 2 \\
& (w-1) A \leq(7+4 \sqrt{ } 3) / 8(\approx 1.74) \\
& (w-1) p \leq 9 r \\
& (w-1) p \leq(6+3 \sqrt{ } 3) / 2 \\
& (w-1) R \leq \sqrt{3} \cdot r \\
& (w-1) R \leq(3+2 \sqrt{ } 3) / 6
\end{aligned}
$$

In each case we have equality when and only when $K=E$.

2. Proof of Theorems 2 and 3

To establish Theorem 3, we recall a theorem of Jung [2] which states that any set of diameter d is contained in a circular disc of radius $R \leq d / \sqrt{ } 3$. Theorem 3 now follows immediately from (2), since

$$
(w-1) R \leq(w-1) d / \sqrt{ } 3 \leq w / \sqrt{ } 3
$$

For equality in Jung's result we require K to be an equilaterial triangle; for equality in (2), K must be as in Figure 1. Hence equality occurs in Theorem 3 when and only when $K=E$.

We now show that Theorem 2 can be deduced from Theorem 1 . If K is any convex polygon, we can partition K into triangles by joining each vertex to the (an) in-centre of K. Summing the areas of these triangles easily gives for K the inequality

$$
A \geq \frac{3}{2} p r .
$$

Since any convex set K in the plane can be approximated as closely as we please by a convex polygon, we conclude that this inequality is valid for any convex set K in the plane.

Assuming the validity of Theorem 1 , we now have

$$
(w-1) p \leq 2(w-1) A / r \leq w^{2} / r \leq 3 w
$$

since $w \leq 3 r$ by Blaschke's Theorem. Hence $(w-1) p \leq 3 w$ as required. It is easily seen that equality occurs here when and only when $K=E$.

We notice that the inequality of Theorem 2 follows easily from (2) in the special case when K is a triangle, for then $p \leq 3 d$, and

$$
(w-1) p \leq(w-1) 3 d \leq 3 w
$$

3. Some preliminary results

We observe that the statement of Theorem 1 can be written as

$$
\frac{1}{2 A}-\frac{w-1}{w^{2}} \geq 0
$$

We shall assume therefore that K is a set for which the left hand side of this inequality is as small as possible. Since $(w-1) / w^{2}$ is an increasing function of w, we choose K with A, w as large as possible.

Let D be a largest circular disc contained in K, having radius r. It is known [4] that for any convex set K,

$$
(w-2 r) A \leq w^{2} r / \sqrt{ } 3
$$

Hence if $r \leq \frac{2}{2}$,

$$
(w-1) A \leq(w-2 r) A \leq w^{2} r / \sqrt{ } 3 \leq w^{2} /(2 \sqrt{ } 3)<w^{2} / 2
$$

We may therefore assume that K contains a disc \mathcal{D} of radius $r>\frac{3}{2}$.
By suitably translating K we may assume that the centre of D lies in the interior of the square with vertices $0(0,0), B(1,0), C(1,1)$, $D(0,1)$. Since K is convex, K is bounded by lines through the points O, B, C, D. If these lines form a convex quadrilateral Q, then Q contains no lattice points in its interior, and we may assume that K is Q. On the other hand, these lines may determine a triangular region T, as for example a degenerate quadrilateral, or when a line through D separates K from C. Such a region T may contain interior lattice points; nevertheless, it will be sufficient for us to establish the theorem for T.

4. Proof of Theorem 1

First let K be the convex quadrilateral Q. The following result is established in [3].

LEMMA. The quadrilateral Q can be transformed into a kite Q^{\prime} having the following properties:
(a) $w\left(Q^{\prime}\right) \geq w(Q)$;
(b) Q^{\prime} contains no Zattice point in its interior;
(c) Q' has its axis along the line $x=\frac{1}{2}$,
(d) the sides of Q^{\prime} pass through O, B, C, D respectively;
(e) $A\left(Q^{\prime}\right) \geq A(Q)$.

Property (e) is not stated explicitly in [3], but follows from the fact that Q^{\prime} is obtained from Q by Steiner symmetrization and enlargement with scale factor $s \geq 1$.

Clearly we may take K to be the kite $Q^{\prime}=X Y Z W$ (Figure 2). Let
$X Z=t, Y W=u$. Then $2 A=t u$. Also, computing the areas of the component parts of Q^{\prime} gives

$$
\begin{aligned}
2 A & =2+(t-1) \cdot 1+(u-1) \cdot 1 \\
& =t+u .
\end{aligned}
$$

Hence

$$
t u=t+u
$$

Suppose that $0<t \leq u$; then $t \leq 2$. Now

$$
A=\frac{1}{2} t u=\frac{1}{2} t^{2} /(t-1)<\frac{3}{2} w^{2} /(w-1),
$$

since $w<t$, and $t^{2} /(t-1)$ is a decreasing function of t for

Figure 2
$0<t \leq 2$. A similar argument holds
for $0<u \leq t$.
Hence if K is the quadrilateral Q,

$$
A(\omega-1)<\frac{3}{2} w^{2} .
$$

Now let K be the triangle T. In this case

$$
A=\frac{1}{2}(\omega) \leq \frac{3}{2} \omega^{2} /(\omega-1)
$$

using (2).
Thus for any K,

$$
(\omega-1) A \leq \frac{3}{2} w^{2} .
$$

Equality occurs here when and only when K is a triangle as in Figure 1.

References

[1] Wilhelm Blaschke, Kreis und Kuge I (Walter de Gruyter, Berlin, 1956).
[2] Heinrich Jung, "Ueber die kleinste Kugel, die eine raumliche Figur einschliesst", J. Reine Angew. Math. 123 (1901), 241-257.
[3] P.R. Scott, "A lattice problem in the plane", Mathematika 20 (1973), 247-252.
[4] P.R. Scott, "A family of inequalities for convex sets", Bull. Austral. Math. Soc. 20 (1979), 237-245.
P.R. Scott, "Two inequalities for convex sets with lattice point constraints in the plane", Bull. London Math. Soc. (to appear).

Department of Pure Mathematics, University of Adelaide, Adelaide, South Australia 5001, Australia.

